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Two main meanings for SSL

 Systems (typically robots) that collect their own training data but then
solve a standard supervised learning task

e Systems that learn to extract meaningful representations from the
data itself



Two main meanings for SSL

e Systems that learn to extract meaningful representations from the
data itself



1a. An experiment in self-
supervised learning for Robots

A robot that acquires its own training data...
but then solves a standard Supervised Learning problem



Mighty Thymio

« 5 front-facing infra-red sensors
« /20p camera

« ODRIOD C1

* Wi-Fi connectivity







Cross-sensor prediction (image -> proximity)




Problem definition example
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Sensor's range

Thymio




d=0cm

Sensor's range

Thymio












Data gathering

 Various examples:

» Different distances and directions
* Floors with different textures

« Obstacles with different shapes, materials

and colors
» 8 recording sessions

» 36k training examples




An (optional) controller for efficient data
gathering

Fig. 4. Example trajectory generated by the data acquisition controller.



Distance

Quantitative evaluation

Area Under the Receiver Operating Characteristic Curve
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Sensors

Symmetric
Decreases on sides
Decreases with distance

Distance = 0 cm is the hardest
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Why Ocm is so hard? the camera blind spot!
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Prediction

Target

Prediction

Target
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It works!
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Video
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Video
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Generalizing...
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Fig. 2. (a) A mobile robot at pose p(t) has a lor}g-range sensor L (red) and
(b) a short-range sensor .S. Our objective is to predict the value of S at n target
poses pi,p2,...p, from the value of L(p(t)). (c, d) For a given 1,nstance,
we generate ground truth for a subset of labels by searching the robot’s future
trajectory for poses close to the target poses.

https://github.com/idsia-robotics/learning-long-range-perception
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VIDEOS, DATASETS, AND CODE

Videos, datasets, and code o reproduce our re
sults are available at: hre github.com/idsia-
robotics/learning-long-range-perception/

L INTRODUCTION
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iy proximity sensor or a contact sensor (bumper), We then con-
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the task and sensors, it is often the case th

at the long-range
sensors produce a large amount of dat

a, whose interpretation
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example, detecting obstacles in the video stream of a forward-
pointing camera is difficult but potentially allows us to detect
them while they are still far; solving the same task with a prox-
imity sensor or bumper is straightforward as the sensor directly
n-p(;n\ the presence of an obstacle, but only works at very close
range

In this letter we propose a novel technique for solving a
perception task by learning to interpret the long-range sensor
data; in particular, we adopt a self-supervised learing approach
in which future outputs from the short range sensor are used as
a supervisory signal. We develop the complete pipeline for an
obstacle-detection task using camera frames as the long-range
sensor and proximity sensor readings as the short-range sensor
(see Figure 1). In this context, the camera frame acquired at time
t (input) is associated 10 proximity sensor readings obtained
at a different time ' # ¢ (labels): for example, if the robot's
odometry detects it has advanced straight for 10 ¢m between
tand ¢', the proximity sensor outputs at t' correspond 1o the
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att. These outputs at time ¢ can be associated o the camera
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https://github.com/idsia-robotics/learning-long-range-perception

1b. A seminal paper from 2006

A robot that acquires its own training data...
but then solves a standard Supervised Learning problem



Improving Robot Navigation

through Self-

Supervised

Self-supervised online learning for big-ass Robots

Online Learning

Boris Sofman, Ellie Lin, J. Andrew Bagnell,
John Cole, Nicolas vandapel,

and Anthony Stentz

Robotics Institute

Carnegie Mellon University
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In mobile robotics, there are often features that, while potentially powerful for improving
navigation, prove difficult to profit from as they generalize poorly to nov ¢l situations
Overhead imagery data, for instance, have the potential to greatly enhance autonomous
robot navigation in complex outdoor environments. In practice, reliable and effective au-
tomated interpretation of imagery from diverse terrain, environmental conditions, and
sensor varieties proves challenging. Similarly, fixed techniques that successfully interpret
on-board sensor data across many environments begin to fail past short ranges as the
density and accuracy necessary for such computation quickly degrade and features that
are able to be computed from distant data are very domain specific. We introduce an on-
line, probabilistic model to effectively learn to use these sc ope-limited features by lever-
aging other features that, while perhaps otherwise more limited, generalize reliably. We
apply our approach to provide an efficient self-supervised learning method that
rately predicts traversal costs over large areas from overhead data. We
from field testing on-board a robot operating over large dist
vironments. Additionally, we show how our
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accu-
present results
ances in various off-road en-
algorithm can be used offline with ov erhead
a priori traversal cost maps and detect misalignments be
data and estimated vehicle positions. This
satility of many unmanned ground vehicl
terrains with increased performance.

tween overhead
approach can significantly improve the ver-
es by allowing them to traverse highly varied
2007 Wiley Periodicals, Inc

1. i .
INTRODUCTION sion scenarios [see for example Kelly et al. (2006),

Autonomous robot navigation in unstructure

d natu-
ral environments has

been demonstrated exter

nsively
ina large variety of terrain, se ;

nsor payload, and mis-

Contract grant sponsor
Agency (DARPA)

Contract grant number:; MDAY972-01-9-0005,

Defense Advanced Research Projects

Joumnal of field obotics 93 2 5 5 (2006)
f R 3(11112), 1059-107 06
Published online in Wiley InterScience (wWww, vl(l:ou “

nterscie:

EEee—

© 2007 Wiley ¢ cals, I S :
nce wlcyumsey pﬂlwl(ah‘ e

Bodta and Camden (2004), and Goldberg, Maimone
& Matthies (2002) J. Even though powerful at sensing
modeling, and interpreting the environment

systems required significant tuning of par,
ther by hand or supe

their algorithms to th
tests are conducted.

these
ameters, ei-
rvised training, to best

adjust
e local environment w

here the

AwiLey

).+ DO 10.1002/r0b.901649 InterScienca




The task

Predict the traversal cost of terrain given overhead data

Figure 2. Sample results of terrain traversal cost predic-
tions. (a) 0.35 m resolution color overhead imagery used
by our online learning algorithm and (b) corresponding
predictions of terrain traversal costs. Traversal costs are
color-scaled for improved visibility. Blue and red corre-
spond to lowest and highest traversal cost estimates,
respectively.



Supervision

e Short range ladar

* Robot assigns traversal
costs to areas in front of
itself from features
computed by interpreting
the position, density, and
point cloud distributions
of sensed obstacles

Figure 1. Typical ladar response from vehicle’s percep-
tion system. Ladar points are color coded by elevation
with lowest points appearing in blue and highest points
appearing in yellow. Vehicle position is shown by the or-
ange square. Notice the large drop in ladar response den-
sity (especially on the ground) as distance from the vehicle
increases. Large objects such as the trees on the left gener-
ate ladar responses even at far ranges but are difficult to
interpret through fixed techniques across different
environments.



Traversal Costs (Local)

P )

Traversal Costs (Global)

Quiz:

What would you call

|”

“supervisory signal” here?




A big advantage: online learning
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How do you evaluate something like this?

Figure 7. Comparison of paths executed by our robot for
shown course when using only on-board perception (in
solid red) and with OOLL (in dashed blue) and FROLL (in
dotted cyan) used in real-time on-board the robot. Course
started at the top right and ended at the bottom left.

Table I. Statistics for course traversals with and without online learning algorithm

Without algorithm With OOLL
Total Traversal time (s) 1369.86 1000.82
Total distance traveled (m) 1815.71 1681.73
Avera%e speed (m/s) 1.33 1.68
interventions 1 0




How do you evaluate something like this?




Two main meanings for SSL

e Systems that learn to extract meaningful representations from the
data itself



Two main meanings for SSL

 Systems (typically robots) that collect their own training data but then
solve a standard supervised learning task



2. Self-supervised (aka self-
taught) deep learning

Comprehensive source: Slides from Andrew Zisserman, 2018
https://project.inria.fr/paiss/files/2018/07/zisserman -self-supervised.pdf



Shades of supervision: full supervision

To some extent, any visual task can be solved now by:
1. Construct a large-scale dataset labelled for that task
2. Specify a training loss and neural network architecture
3. Train the network and deploy

Classification error on imagenet
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But...

e Labeled data is expensive (eg medical, or whatever problem they are
paying you to solve)

* Huge amounts of unlabeled data
* Facebook: one billion images uploaded per day
* 300 hours of video are uploaded to YouTube every minute

- we want to exploit unlabeled data, at least in part



Using pretrained weights

Step 1

Prediction

i

Trained
classifier

i

Trained
convolutional
base

Input



Option 1

Flatten




Option 1

Save these
features

for the whole
training and
testing datasets.

Flatten

Then, train a new classifier that uses these features as input



Option 2




Option 3

Flatten




Shades of supervision: self-supervised
learning

Can we learn something WITHOUT labels?
How do we (humans) learn?!?

The Scientist in the Crib: What Early Learning Tells Us About the Mind
by Alison Gopnik, Andrew N. Meltzoff and Patricia K. Kuhl

The Development of Embodied Cognition: Six Lessons from Babies

by Linda Smith and Michael Gasser




Definition (attempt to)

* You are interested in solving problem A

* Take a lot of data similar to the one you’ll use, without labels
(of course: you are lazy)

* Invent a problem B (pretext task) on the data for which
* you can get a ground truth for free from the data itself
* you need to “understand” the data in order to solve it

* Train a network for B

- The network has learned something valuable for A, i.e. to
understand the data



You already know at least one method to
achieve this: autoencoders

Input layer Hidden layers Output layer

Pretext task desiderata:
* you can get a ground truth

W)
(8

\

* 'A a; - ‘ a; 9
DO 91
(R ) KD
 Yalis¥ Vol 4. Yaits

e M Ve

for free from the data itself
* you need to “understand”
the data in order to solve it
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https://www.jeremyjordan.me/autoencoders/



Jnsupervised Visual
Representation Learning

oy Context Prediction

https://arxiv.org/abs/1505.05192,
2015
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art performance among algorithms which use only Puscal-
provided training set annotations

1. Introduction

Recently. new computer vision methods have leveraged
large datasets of millions of labeled examples to leam rich,
high-performance visual representations [#2]. Yet efforts
to scale these methods to truly Internet-scale datasets (ie.
hundreds of billions of images) are hampered by the sheer
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Example

Question 1:
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Ty
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Figure 1. Our task for learning patch representations mnvolves ran-
domly sampling a patch (blue) and then one of eight possible
n:mh'hnn (red). Can you guess the spatial contiguration for the
two pairs of patches? Note that the task is much easier once you

have recognized the object!
2w dog, 720 wdu wonog 10 £y 1amsuy

in the context (i.e.. a few words before and/or after) given
the vector. This converts an apparently unsupervised prob-
lem (finding a good similarity metric between words) into
a “self-supervised” one: learning a function from a given
word to the words surrounding it. Here the context predic-
tion task is just a “pretext” to force the model to leamn a
good word embedding, which, in tum, has been show nto
be useful in a number of real tasks, such as semantic word
similarity [20],

Our paper aims to provide a similar “self-supervised™
formulation for image data: a supervised task involving pre-
dicting the context for a patch. Our task is illustrated in Fig-
ures 1 and 2. We sample random pairs of patches in one
eight spatial configurations, and present each pair to a ma-
chu\g Iv:umgr. providing no information about the patches'
onginal position within the image. The algorithm ny st then
8uess the position of one patch relative 1o the othe C
underlying hypothesis i I oty

ving hypo 1esis is that doing well on this task re-
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Pretext task desiderata:

Some more, .. * you can get a ground truth

for free from the data itself

e you need to “understand”
the data in order to solve it
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How can we evaluate
whether the representation
makes sense?

e Given a query patch, we
can look for nearest
neighbors in the dataset

Are these semantically
similar?
* |t turns out that... Yes,
they are

 Surprisingly they also are
somewhat similar if the
network is randomly
initialized (!)
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B MWAHAHRHRHARSS
Find the bug - ——

* The network will CHEAT if it can

* When designing a pretext task,
care must be taken to ensure that
the task forces the network to
extract the desired information
(high-level semantics, in our case),
without taking “trivial”

shortcuts. Pretext task desiderata:

=)

e you can get a ground truth
for free from the data itself

e you need to “understand”
the data in order to solve it




Brainstorm: you are a lazy neural network

s

You are a network that, given the
center patch and one of the others,
has to predict the relative position
of the second wrt the first (8
possible classes).

Pitch lazy ways to solve the problem
without actually understanding the
image!

https://answergarden.ch/1278976



https://answergarden.ch/1278976

Anti-cheat 1 and 2!

low-level cues like boundary patterns or
Include a textures continuing between patches

could potentially serve as a lazy shortcut
gap
: it is possible that long lines spanning
Jitter the patCh neighboring patches could could give
locations away the correct answer

)




What is cheat 3? Hint...
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Chromatic aberration




Cheat 3 (genius!)

* Chromatic aberration arises from
differences in the way the lens focuses
light at different wavelengths. In some
cameras, one color channel (commonly
green) is shrunk toward the image center
relative to the others.

A ConvNet, it turns out, can learn to
localize a patch relative to the lens itself
simply by detecting the separation
BIetV\;een green and magenta (red +

ue).

* Once the network learns the absolute
location on the lens, solving the relative
location task becomes trivial.

.
o

MWAHA‘HTAHAHA-?-



Anti-cheat 3
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Abstract. In this paper. we s
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mulate our method as an unsupervised sequentia

we determine whether a sequence of frames from ;
With this simple task and no semantic labels, we
a Convolutional Neural Net-

a video is in the cor-

rect temporal order
learn a powerful v isual xv'nmvn!.diun using i !
work (CNN). The representation contains complementary information to
that leamed from supervised image datasets like ImageNet Qualitative
results show that our method captures information that is temporally
varving, such as human pose. When used as pre-trining for action recog-
nition, our method gives significant gains over leaming without external
data on benchmark datasets like UCF101 and HMDB51. To demonstrate
its sensitivity to human pose, we show results for pose estimation on the
FLIC and MPII datasets that are competitive, or better than approaches
using significantly more supervision. Our method can be combined with

supervised representations to provide an additional boost in accuracy

Keywords: Unsupervised leaming: Videos: Sequence Verification: Ac-
tion Recognition: Pose Estimation Convolutional Neural Networks
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Pretext problem (classification): LEEAcEESREEIEE
* you can get a ground truth

Q)

re these frames in the correct .
for free from the data itself

order? e you need to “understand”
the data in order to solve it

()

Temporally Correct order

Positive Tuples ( Negative Tuples

S

Original video

X




<«
Frame Motion | =

Sampling (
reasonable i
Instances

Positive Tuples

.

/v fe

motion
window

* What is the problem if

you sample frames from
any video?

* That most samples will be
impossible to predict due

to almost no motion S I
sampling
* Then, only sample from to high
high-motion windows motion
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= Abstract. Given a grayscale photograph as illl)}ll- this P“l]’"r "‘":‘;‘l(l"'
2 O 1 6 > the problem of hallucinating a plausible color Versio™ - .p.N-T(tgrl .ln'(:
u This problem is clearly underconst rained, so ])rv\'mu:-& upplo.u. 1€ hd“. :
X either relied on significant user interaction or resulted in (lcsatulau-‘ col-
;3 orizations. We propose a fully automatic approach that produ(-.vs vibrant
beed and realistic colorizations. We embrace the underlying uncertainty of the
problem by posing it as a classification task and use (‘lé\ss-l‘(‘l)ﬂlk}l}('illg at
e training time to increase the diversity of colors in the result. The sys-
’> tem is implemented as a feed-forward pass in a CNN at test time and is
: trained on over a million color images. We evaluate our algorithm using a
W “colorization Turing test,” asking ln_uuau participants to choose between
o0 a generated and ground truth color image. Our method successfully fools
O humans on 32% of the trials, significantly higher than previous methods.
. Moreover, we show that colorization can be a powerful pretext task for
" self-supervised feature learning, acting as a cross-channel encoder. This
E f‘l’l)r()m‘h results in state-of-the-art performance on several feature learn-
= ing benchmarks.
§ llfaer)l'l:l(;rds: Colorization, Vision for Graphics, CNNs, Self-supervised
—_
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1 Introduction

(Ul.lsl(ll:r the grayscale photographs in Figure 1. At first gl
their (~9]urs seems daunting, since so much of ll.l ) o e
.thrcc dimensions) has been lost. Looking ﬁlore 2
1 many cases, the semantics of the scene
cues for many regions in -
typically blue, and the
semantic priors do not
might not, in reality, be
However, for this ;;apcr
truth color, byt rat her

. hallucinating
information (two out of the
: .c;luscl_\'t: however, one notices that
and its surface texture i
i S ‘ > provide ample
13(]:. l1)(“11 p‘u.lgt. tho.graxs 18 typically green, the s‘kvpl'L:
wu;k [5; l:vu‘xofll flcfuutcly red. Of courSc. these kiud-s of
il (:_yl (t] ling, lu? the croquet balls on the grass
) »and purple (though its ; :
s our goal is "esgari . ooy oo =
3 msfhwcl; m;t‘u.cl-‘um.sanl_v to recover the acgtual g;:f&h
ausible colorizatioy that could ot(gntiuﬁ
ntially




Image colorization (haHucmate colors)
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Pretext task desiderata:
e you can get a ground truth
for free from the data itself

g

"2 * you need to “understand”
the data in order to solve it




Main idea

Learned
representation
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Self-supervised deep learning conclusions

* You are interested in solving problem A

* Take a lot of data similar to the one you’ll use, without labels
(of course: you are lazy)

* Invent a problem B (pretext task) on the data for which
* you can get a ground truth for free from the data itself
* you need to “understand” the data in order to solve it

* Train a network for B

- The network has learned something valuable for A, i.e. to
understand the data



What we have seen so far

 Systems (typically robots) that collect their own training data but then
solve a standard supervised learning task

e Systems that learn to extract meaningful representations from the
data itself



Now...

* Take a coffee
* Fill this form:

https://forms.office.com/Pages/ResponsePage.aspx?id=pDglg56TEk-VLUMS8-
eVonUcsmPZBUUVBgjoOf_0ZabpUNV1IMMEtQS1IBUFY4WUXUNVVOTTZBWESDUS4u

e See you at 17:25 for discussion

One interesting application of Self-Supervised

Learning

Please discuss one potential application of SSL that you find interesting, either because you would like to apply
the idea to your work/research, or because you found a paper about it that you like

* Required

1. If you are describing a paper you found, write the link here. Otherwise write "my
own problem” *

Enter your answer

2. Briefly describe the problem setting *

Enter your answer

3. What are the inputs and outputs of the model?

Enter your answer

4, How is SSL applied here?

Enter your answer

5. Why do you find this specific problem interesting?

Enter your answer

6. Would you like to briefly discuss this topic during the lecture? Just to explain what you wrote
above, in a couple of minutes, and brainstorm with the class.

'::‘ Yes!
O Maybe

O hitpsy//giphy.com/gits/woffinAd s html5




