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1. Motivations

Why do we even care?



1.1 Motivating story 1

An application to robot perception



(o

[t will be easy”, they said.




Our focus

Perception of the trail
direction

Obstacle perception
and avoidance

Visual Odometry

Mapping

Path Planning

Control




A challenging pattern recognition problem

Trail heading left Trail heading straight ahead Trail heading right




An image classification problem

P(trail is left)

P(trail is straight)
P(trail is right)

l Raw pixel values

Deep Neural

Network




Deep Network Architecture

LO - Input layer: 3 maps of 101x101

L1 - Convolutional
Layer: 32 maps of
98x98 neurons. '
Filter: 4x4

L2 - MaxPooling
Layer: 32 maps of
49x49 neurons.
Kernel 2x2

L3 - Convolutional
Layer: 32 maps of
46x46. Filter 4x4

L4 - MaxPooling Layer: 32 maps of 23x23. Kernel: 2x2

L5 - Convolutional Layer: 32 maps of 20x20. Filter: 4x4

L6 - MaxPooling Layer: 32 maps of 10x10 neurons. Kernel: 2x2 AL T M L]

L7 - Convolutional Layer: 32 maps of 8x8 neurons. Filter: 4x4 ! e
L8 - MaxPooling Layer: 32 maps of 4x4 neurons. Kernel: 2x2 SIS

L9 - Fully Connected Layer: 200 neurons e
L10 - Output Layer: 3 neurons =u



Internal view of the classifier

How the classifier works




How the classifier was trained

Training the classifier

.\




Training the classifier




Classification accuracy

Predicted Labels Predicted Labels
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(a) DNN+mir (acc: 85.23%) (b) DNN (acc: 84.57%)




Test images which are easily classified

(b) not-GS images with lowest P(GS). i.e. frames where the path is easily found as not being straicht ahead



Test images which are misclassitied

failure cases where the path should be

= g

(d) not-GS images with highest P(GS). i.e. failure cases where the path is not straight ahead but was detected as such



App\ication to video acquired from an

handh

mput

output

. |

TL GS TR

output (filtered)

. |

TL GS TR

main trail direction




Steering a MAV with a purely reactive
controller

roboticse sz



Implementation

Odroid U3 runs Semi-direct Visual Odometry (SVO)
pipeline and our DNN at more than 15FPS

/ Odroid U3 quad-core computer

— PIXHAWK Autopilot

Forward-looking camera
(for trail perception)

Down-looking camera (for SVO pipeline)



Where is the problem?




Brainstorm here!

https://answergarden.ch/1279254
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Where is the problem?



https://answergarden.ch/1279254
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The devil is in the details

“"I'm here about the details.”

Source domain (a lot of training data) Target domain (few or no training data)




1.2 Motivating story 2

Traversability estimation for ground robots



Traversability rules are non-trivial
and robot-dependent




UAVs can create detailed 3D terrain maps

3D reconstruction of scenario at ETH-RSL from UZH-RPG group



Problem statement

* Given a robot model
* Given a large 3D map

 Where can my robot pass?




Solution

Train a deep neural network that given a small oriented patch of
terrain, predicts whether our robot can move from the center to the

end of the patch




Gathering training data in simulation




Gathering training data from simulations

e Spawn robot with
random position and
orientation

* Let it proceed straight
until stuck

e Save traversed /
nontraversed patches

* Repeat
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Procedurally-generated training terrains

Low bumps High bumps




Procedurally-generated training terrains




Procedurally-generated training terrains




Procedurally-generated training terrains




Procedurally-generated training terrains




Training patches (20 out of 100k)




Quantitative results
on unseen testing data

Synthetic dataset

Real-elevation dataset

ACC AUC ACC AUC
CNN 0.9134 0.9756 0.7456 0.8729
RandomForest 0.7884 0.9128 0.5940 0.6556
Baseline 0.4956 0.4957 0.5072 0.4974

Chavez et al., Robotics and Automation Letters, 2018



Computing a traversability

map

Unseen map (not part of training set)

Trained Deep Neural Network

&

High-resolution DEM data from SenseFly (3D reconstruction of a Swiss Mining Quarry)
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Oriented travrsability




How is this related to Domain Adaptation?

Domain
Simulation | Real World

A lot of
cheap data

Very few, expensive samples, if any

We care about this

Applying models | Training models



Domain adaptation: a scientific challenge

Simulation
data

Standard

v

v

Real Standard
data

Simulation
data

v

Real Standard
data

Domain

Simulation Real adaptation
data data .

Source Domain

Target Domain

tuned to simulation @

weak
(few training samples)

dominated by @

- simulation data

1
tuned to real world (~“

borrows statistical power
from simulated dataset



Real data comes from different sources
(domains)




Office dataset (multi-domain object
recognition benchmark)

Amazon Caltech DSLR Webcam

2 | a7
- Ay
i \ diraf
-
/1
J
‘r
- {
"‘ rhe ' -
J oS -

!
]
: -




2. Definitions and
related problems



Main assumption in Domain Adaptation

Source domain Target domain

Joint PDF Ps (X,Y) ¢ Pf(X,Y)

[\

Random variable representing the input Random variable representing the label



What training data do we have available?

=

Labeled data

Unlabeled data



In semisupervised Domain Adaptation

(usually, a lot) (usually, very very few)

_

Labeled data

Unlabeled data



In unsupervised Domain Adaptation

(usually, a lot)

T :

(usually, a lot)

Labeled data




Domain adaptation taxonomy

 Availability of labels in the target domain: ~(
* Yes: semisupervised DA
* No: unsupervised DA

e Number of source domains:
* One: (default)

* Many: multisource DA /

* Feature dimensionality among domains:
 Same: (default) 7
* Different: heterogeneous DA




Different but related problems

e Covariate shift

Marginal distributions of X differ in the two domains
but P(Y|X) is the same in the two domains

e Class imbalance

Marginal distributions of Y differ in the two domains
but P(X]Y) is the same in the two domains

e Transfer learning aka multitask learning
Multiple tasks with different labels but a single P(X) for all tasks

* Semisupervised learning :
A single domain, with a mix of labeled and unlabeled data

* Self-taught learning aka self-supervised learning :
As above, but the unlabeled data might be very loosely related to the task (e.g. just

share very simple features such as corners etc)

* Multiview learning aka cross-view or multimodal
Samples from different domains are paired



3. Overview of some DA
approaches



-rustratingly Easy
Domain Adaptation

https://arxiv.org/abs/0907.1815, 2009
Augments the feature vectors

(semisupervised)

Frustratin

gly Easy Domain

Adaptation

Hal Daumé 111
School of Computing
University of Utah

Salt Lake City

. Utah 84112

me@hal3.name

Abstract

We describe an approach to domain adapta-
tion that is appropriate exactly in the case
when one has enough “target” data to do
slightly better than just using only “source”
du;u “Our approach is incredibly simple,
casy to implement as a preprocessing step
(10 lines of Perl') and outperforms state-
of-the-art approaches on a range of datasets.
Moreover, it is trivially extended to a mulu-
domain adaptation problem, where one has
data from a variety of different domains.

1 Introduction

The task of domain adaptation is to develop learn-
ing algorithms that can be easily ported from one
domain to another—say, from newswire to biomed-
ical documents. This problem 1s particularly inter-
esting in NLP because we are often in the situation
that we have a large collection of labeled data in one
“source” domain (say, newswire) but truly desire a
model that performs well in a second “target” do-
main, The approach we present in this paper is based
on the idea of transforming the domain adaptation
learning problem into a standard supery
ng problem to which any standard alg
be applied (eg., maxent, SVMs, ete.). C
mation is incredibly simple: we
space of both the source
result as input 10 o stan,

There are roughly
adaptation problem th,
literature: the fully

1sed learn-
orithm may
Jur transfor-
augment the feature
and target data and use the
dard learning algorithm.

WO varieties of the domain
at have been addressed in the

upervised case and the semi-

The fully supervised case mod-

supervised case ‘ ;
g We have access to a

els the following _wcnurm. . ‘ iy
large, annotated corpus of data from a M“"L,L
main. In addition, we spend a little money to anno-
tate a small corpus in the target domain. We want to
leverage both annotated datasets to obtain a model
that performs well on the target domain Thc semi-
supervised case is similar, but instead of having a
small annotated target corpus, we have a large but
unannotated target corpus. In this paper, we focus
exclusively on the fully supervised case.

One particularly nice property of our approach
is that it is incredibly easy to implement: the Ap-
pendix provides a 10 line, 194 character Perl script
for performing the complete transformation (avail-
ahlc at http: hal3.name easyadapt.pl.gz) |n
addition to this simplicity, our algorithm performs as
well as (or, in some cases, better than) current state
of the art techniques.

2 Problem Formalization and Prior Work

To facilitate discussion, we first mtroduce some no-
tation. Denote by X’ the input space (typically either
areal vector or a binary vector), and by y the output
space. We will write D* 1o denote the distribution
over source examples and D' 1o denote the
bution over larget examples. We
a samples D* ~ D+ of source examples from the
source domain, and samples D' ~. P! of target ex-
an:plcs from the target domain. We wil| assume lh'al
|1?~(IS a c})llccllon of N examples and D! i col-
cction of M examples (where, typically, N 5, \)
I()ur goal is 1o learn a function - .l: -y \-\‘ilﬁ
OW expected loss with respect 1o the larget domain_

distn-
assume access (o


https://arxiv.org/abs/0907.1815

Think about it!
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How does it work?

domain-

dependent
transformation

-~

source domain

P° (x) =

target domain

O’ (x{') =

IDONT.UNDERSTAND



't actually works!

Classification errors on target domain, lower is better

Baselines

.

AUGMENT

1.98

( 3.47
3.39

2.12

1.91

0.32

1.76

3.601

3.37

4.11
Datasets 3.51
5.15
4.90
5.41
5.73
4.89
4.42
4.78

6.30
4.65




Interval: brainstorm about DA baselines!

* Which other “trivial” approaches can you think of that could be used
as baselines in a Domain Adaptation setting?

* Brainstorm here!

= E answergarden.ch/1279232




't actually works!

Classification errors on target domain, lower is better

Baselines

.

AUGMENT

1.98

( 3.47
3.39

2.12

1.91

0.32

1.76
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't actually works!

Classification errors on target domain, lower is better

Datasets

Baselines
A
-~ TN
SRCONLY TGTONLY ALL WEIGHT PRED LININT PRIOR AUGMENT
498 2.37 2.29 223 2.11 2.21 2.06 1.98
454 4.07 3.55 3.53 3.89 4.01 3.47 3.47
478 3.71 3.86 3.65 3.56 3.79 3.68 3.39
2.45 2.45 2.12 2.12 2.45 2.33 2.41 2.12
3.67 2.46 2.48 2.40 2.18 2.10 2.03 1.91
2.08 0.46 0.40 0.40 0.46 0.44 0.34 0.32
2.49 295 1.80 1.75 2.13 1.77 1.89 1.76
12.02 4.15 543 4.15 4.14 395 3.99 3.601
10.29 3.82 3.67 3.45 3.46 344 3.35 3.37
6.63 435 4.33 4.30 4.32 432 4.27 4.11
15.90 415 4.50 4.10 4.13 4.09 3.60 3.51
5.16 6.27 4.85 4.80 4.78 4.72 522 5.15
432 5.36 4.16 4.15 4.27 4.30 4.25 4.90
5.05 6.32 5.05 4.98 5.01 5.05 527 5.41
5.66 6.60 542 5.39 5.39 5.53 5.99 5.73
3.57 6.59 3.14 3.11 3.15 331 4.08 4.89
4.60 5.56 427 422 4.20 4.19 4.48 4.42
4.82 5.62 4.63 4.57 4.55 4.55 4.87 4.78
5.78 0.13 5.71 5.19 5.20 5.15 6.71 6.30
6.35 5.75 4.80 4.75 4.81 4.72 4.72 4.65

The SRCONLY baseline 1gnores the target data and
trains a single model, only on the source data.

The TGTONLY baseline trains a single model only
on the target data.

The ALL baseline simply trains a standard learning
algorithm on the union of the two datasets.

A potential problem with the ALL baseline 1s that
if N > M, then D® may “wash out” any affect
D! might have. We will discuss this problem in
more detail later, but one potential solution 1s
to re-weight examples from D°. For instance,
if N = 10 x M, we may weight each example
from the source domain by 0.1. The next base-
line, WEIGHTED, 1s exactly this approach, with
the weight chosen by cross-validation.

The PRED baseline 1s based on the 1dea of using
the output of the source classifier as a feature in
the target classifier. Specifically, we first train a
SRCONLY model. Then we run the SRCONLY
model on the target data (training, development
and test). We use the predictions made by
the SRCONLY model as additional features and
train a second model on the target data, aug-
mented with this new feature.

In the LININT baseline, we linearly interpolate
the predictions of the SRCONLY and the TG-
TONLY models. The interpolation parameter 1s
adjusted based on target development data.



Intuition: Why does it work!?!

augmented
features
domain 1 general
(WSJ)
WSJ-specific

hardware-specific

features (DS

the
monitor i
Q)l‘ 0 general
1
0] -
WSJ-specific
0]
domain 2 0] .
hardware-specific
(hardware) 1 P

Before we proceed with a formal analysis of this
transformation, let us consider why it might be ex-
pected to work. Suppose our task is part of speech
tagging, our source domain is the Wall Street Journal
and our target domain is a collection of reviews of
computer hardware. Here, a word like “the” should
be tagged as a determiner in both cases. However,
a word like “monitor” is more likely to be a verb
in the WSJ and more likely to be a noun in the hard-
ware corpus. Consider a simple case where X' = R?,
where x indicates 1if the word 1s “the” and x5 indi-
cates if the word 1s “monitor.”” Then, in X , o1 and I»
will be “general” versions of the two indicator func-
tions, &3 and &4 will be source-specific versions, and
¥5 and g will be target-specific versions.

Now, consider what a learning algorithm could do
to capture the fact that the appropriate tag for “the”
remains constant across the domains, and the tag
for “monitor” changes. In this case, the model can
set the “determiner” weight vector to something like
(1,0,0,0,0,0). This places high weight on the com-
mon version of “the” and indicates that “the” 1s most
likely a determiner, regardless of the domain. On
the other hand, the weight vector for “noun” might
look something like (0,0,0,0,0,1), indicating that
the word “monitor” is a noun only in the target do-
main. Similar, the weight vector for “verb” might
look like (0, 0,0, 1,0, 0), indicating the “monitor” is
a verb only in the source domain.



CORAL: Frustratingly Easy
Domain Adaptation 2

http://www.aaai.org/ocs/index.php
/AAAI/AAAIL16/paper/download/12
443/11842, AAAI 2016

Matches the distributions of the
source and target features by
aligning the covariances

(unsupervised)

Return of Fr

Jiashi Feng
CS. UC Berkeley.
{ of ECE. National

Baochen Sun

Lowell, MA 01854 USA
bsun@cs.uml.edu

Abstract

ming often fails to han-

Inlike ~arning, machine lea
Unlike human le o

dle changes between training (source) and test (target)
h domain shifts, common in practical sce-

istributions. Such
- ¢ of conventional ma-

narios, severely damage the performanc
chine leaming methods Supervised domain adaptation meth-
ods have been proposed for the case when the target data
have labels, including some that perform very well despite
being “frustratingly easy” to implement. However. in prac-
lice, the target domain is often unlabeled. requining unsuper-
vised adaptation, We propose a simple, effective. .md.cllh ient
method for unsupervised domain adaptation called C( JRrela-
tion ALignment (CORAL). CORAL minimizes domain shift
by aligning the second-order statistics of source and target
distributions. without requiring any target labels. Even though
it is extraordinarily simple-it can be implemented in four
lines of Matlab code-CORAL performs remarkably well in
extensive evaluations on standard benchmark datasets

“Everything should be made as simple as possible, but
not simpler.”

Albert Einstein

1 Introduction

Machine leaming is very different from human learning.
Humans are able to leam from very few labeled c\mnpli‘s
and apply the learned knowledge to new examples in novel
conditions. In contrast, supervised machine learning meth-
ods only perform well when the given extensive ~l;lhclcd
data are lmn.l the same distribution as the test distribution
Both lhqwcucul (Ben-David et al. 2007 Blitzer, Drcdlc.
%nd 'Pcr‘m‘m 2007) and practical results (Saenko et al 2()10;
omralba and Efros 2011) have shown that the test error of
\:E?T{\[::imal:::]\ gcr;\cr;:il) increases in proportion to the
ctween the distriby aining ;
examples. For example, Dnn;ihu:l:l";:;. ‘1{(;:.-‘::“\‘;1{! ‘m:: -
even state-of-the-an Dccp (‘nn\‘olulmnuf N z lm"c e
features leamed on a datase ; ‘maé:\uj:t itk
! are suscepti-
Addre ssing domain shift is unduuhlcrzll_\r

ine learnin 2 methods

_—
Copyright ¢ 2016,
Intelligence (wwy

Association for the
aaai.org)

3 Advancement e
Al rights reserved. of Atificial

ustratingly Easy

§ epartment of EE!
Department of ComPHEl g l[:t{”(\n Departmen
]  Massachusetts Lowell S/ “bore. Singapore

University of Mass University of Singapore. Sing

Domain Adaptation

Kate Saenko
Department of Computer Sucnc;““
University of .‘d.lwuchuxcll‘\‘l.mu
Lowell. MA 01854. USA
saenko@cs.uml edu

clefjia@nus.edu.sg

Visual Domain Shift Textual Domain Shift
isual
-
Domain 1 7_{;
o i
3 Got it at Walmart can't even
remove a scuff

Figure 1: Two Domain Shift Scenarios: object recogmtion
across visual domains (left) and sentiment prediction across
text domains (right). When data distributions differ across
domains, ﬂppl)ll;g classifiers trained on one domain directly
to another domain is likely to cause a significant perfor-
mance drop

To compensate for the degradation in performance due to
domain shift, many domain adaptation algorithms have been
developed. most of which assume that some labeled exam-
ples in the target domain are provided to learn the proper
model adaptation. Daume 111 (2007) proposed a supervised
domain adaptation approach notable for its extreme sim-
plmy_\-" it merely changes the features by making domain-
specific and common copies, then trains a supervised clas-
sifier on the new features from both domains. The method
grfnml\ very well, yetis “frustratingly easy” to implement.
, :)\:]chf. it cannot be apphgd in the situations where the tar-
get domain is unlabeled, which unfortunately are quite com-
mon in practice. ’

In this work esent a “f
s - suc rk, we present a frustratingly easy™ unsuper-

sed domain adaptation method called CORrel
S (% : : relation ALign-
ment (CORAL). CORAL aligns the b
10! -

ons of the source and target dom:

lyin; F . cach domain and (2) ap.
::)'lhf \u:c \.‘h"c“'“g and re-coloring linear transfi =
source features. Then, supervised | sformation

as usual-trainin sed learning proceeds

a classifi
tures. 8 a classifier on the transformed source fea.


http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12443/11842
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How does it work?
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© target (b)
* source

(a) original data
(b) remove correlations in source domain

(c) copy feature correlations from target to source



Deep Domain Confusion

https://arxiv.org/abs/1412.3474,
2014

Introduces an adaptation layer and
an additional domain confusion
loss, to learn a representation that
is both semantically meaningful
and domain invariant

(unsupervised)

Deep Domain Confusion:

Eric Tzeng. Judy Hoffman, "\'111}_'.1'/.I1;m;,v
T UC Berkeley, EECS & ICS

Abstract

supervised deep

al a generu
Recent reporls sugges! that a g i

reduces
CNN model trained on a large scale dataset reduc :
s dataset bias on a standard benchmar

lomain can require a

does not remove,
Fine-tuning deep models in a new d s
significant amount of data, which for nmu.\ apy ’ .

simply not available We propose a new ( NN uln ,“’“/ 1;“47
which introduces an adaptation layer and an additional ¢ I
main confusion loss, to learn a representation l/mlyn both
semantically meaningful and domain invariant We addi

tionally show that a domain confusion metric can be used
for model selection 1o determine the dimension of an u.l.up‘
tation laver and the best position for the layer in the CNN
architecture. Our proposed adapration method offers em

pirical performance which exceeds previously published re-
sults on a standard benchmark visual domain adaptation
task

1. Introduction

Dataset bias is a well known problem with traditional
supervised approaches to image recognition [ ']. A num
ber of recent theoretical and empirical results have shown
that supervised methods’ test error increases in proportion
to the difference between the test and training input distri-
bution | 3, I In the last few years several methods
for visual domain adaptation have been sugg
come this issue | =% 23, 22, 17, 16, 19, 20), but
were limited 1o shallow models. The traditional approach
to adapting deep models has been fine tuning; see [1°] for
arecent example

Directly fine-tuning a dee,

ested to over-

P network’s parameters on a
small amount of labeled target data ums out 1o be prob-
lematic Fortunately, pre-trained deep models do perform
well in novel domains Recently, | | showed that using
the deep mid-level features learned on ImageNet, instead
of the more conventional bag-of-words features, effectively
e N & 9 y ¥
emoved the bias in some of the domain adaptation settine
in the Office dataset i ol fa

el [19). These algorithms transferred the

represe
Presentation from g large scale domain, ImageNet, as well

Maximizing for Dc

UMass Lowell. CS

ymain [nvariance

Trevor Darrell

sy UC Berkeley, EECS & ICSI

e ]
e ]
Cooms ]

==

Figure 1: Our architecture optimizes a deep CNN for both
\.l:l\\l“(.l““l\ loss as well as domain invaniance. The model
can be trained for supervised adaptation, when there is a
small amount of target labels available, or unsupervised
adaptation, when no target labels are available. We intro-
duce domain invariance through domain confusion guided
selection of the depth and width of the adaptation layer, as
well as an additional domain loss term during fine-tuning

that directly minimizes the distance betw een source and tar-
get representations

as using all of the data in that domain as source data for ap-
Propnate categories. However, these 1

methods have no way
1o select a represent

ation from the deep architecture

and in-
stead report results across multiple

layer selection choices.

Dataset bias was classically illustrated in computer vi-

sion by way of the “name the dataser™ game of Torralba and
Efros | | Indeed, this turns out to be f
to measures of domain
domain iny ariance,

ormally connected
|. Optimizing for
considered equiv :xlcnl
class labels while sj.
4 representation that makes the do-

discrepancy [
therefore, can be
to the task of leaming 1o predict the
multaneously finding



https://arxiv.org/abs/1412.3474
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Intuition [ —_

Minimize classification
error

Source ' Target

Maximize domain
confusion
>

Target



computed on computed on all
labeled images images

How does it work? Co(Xp.y)  AMMD2(Xs, Xp)

classification domain
9 loss loss
L=Lc(XL,y) + AMMD*(Xg, X7) /b | | /7
|
fc_adapt fc_adapt
f07 PR fc7
fCG P fce
MMD means Maximum Mean Discrepancy
MMD(XS’ XT) _ conv5 T Convs
1
' |— Z ¢(xs) = Z o) conv1 e conv1
r.€Xg ItEXT \ / \ /

s —
label
Labeled Images Ulnmaab:esed



Hyperparameter tuning by MMD minimization

Where should we put the adaptation layer?

. 90
| - Test accuracy ]
= = =Maximum mean discrepancy 180 >
<
©
84} g
}‘ -
S 160 8
© ©
3 83} | g
S {50 g
w
@
@ 82 140 §
£
130 &
81 =
120
80

FC6 FC7, FC8

Representation layer
Figure 3: Maximum mean discrepancy and test accuracy
for different choices of representation layer. We observe
that MMD between source and target and accuracy on the

target domain test set seem inversely related, indicating that
MMD can be used to help select a layer for adaptation.

How large should it be?

87.5

—
—

—Test accuracy
= = =Maximum mean discrepancy

ry
o

oo
Maximum mean discrepancy

87(

Test accuracy
o o
o o @D
o (8] O
N ©

o
(8]
(8)}

84564 128 256 512 1024 2048 4096 °
Adaptation layer width

Figure 4: Maximum mean discrepancy and test accuracy
for different values of adaptation layer dimensionality. We
observe that MMD between source and target and accuracy
on the target domain test set seem inversely related, indicat-
ing that MMD can be used to help select a dimensionality
to use.
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Unsupervised Domain
Adaptation by
Backpropagation

2014, https://arxiv.org/abs/1409.7495

Promotes the emergence of features
that are

(i) discriminative for the main
learning task on the source
domain and

(ii) invariant with respect to the shift
between the domains

This adaptation behaviour can be
achieved in almost any feed-forward
model by augmenting it with few
standard layers and a simple new
gradient reversal layer. The resulting
augmented architecture can be trained
using standard backpropagation.

L super\‘ist'

Yaroslav Ganin
Victor Lempitsky
Skolkovo Institute of Science anc

| Technology (Skoltec h)

Abstract e
Top-performing deep architectures are trained < |.
massive amounts of labeled data In the absence
of labeled data for a certain task, domain adap
tation often provides an attractive option given
that labeled data of similar nature but from a dif
ferent domain (e.g. synthetic images) are avail
able. Here, we propose a new approach to do
main adaptation in deep architectures that can
be trained on large amount of labeled data from
the source domain and large amount of unlabeled
data from the target domain (no labeled target
domain data is necessary)

As the training progresses, the approach pro
motes the emergence of “deep” features that are
(i) discriminative for the main learning task on
the source domain and (i1) invaniant with respect
to the shift between the domains. We show that
this adaptation behaviour can be achieved n al
most any feed-forward model by augmenting it
with few standard layers and a simple new gra
dient reversal layer. The resulting augmented
architecture can be trained using standard back-
propagation

Overall, the approach can be implemented with
little effort using any of the deep learning pack

ages. The method performs very well in a se-
nies of image classification experiments, achiev

ing adaptation effect in the presence of big do
main shifts and outperforming previous \l;x{u’ of

the-art on Office datasets
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tions is known as domain adaptation (DA). A number of
approaches to domain adaptation has been suggested in the
context of shallow learning, e.g. in the situation when data
representation/features are given and fixed. The proposed
approaches then build the mappings between the source
(training-time) and the farget (test-time) domains, so that
the classifier learned for the source domain can also be ap
plied to the target domain, when composed with the learned
mapping between domains. The appeal of the domain
adaptation approaches is the ability to learn a mapping be
tween domains in the situation when the target domain data
are either fully unlabeled (unsupervised domain annota-
fion) or have few labeled samples (semi-supervised domain
adapiation). Below, we focus on the harder unsupervised
case. although the proposed approach can be generalized to
the semi-supervised case rather straightforw ardly
Unlike most previous papers on domain adaptation that
worked with fixed feature representations, we focus on
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Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.



Principle

The parameters of both classifiers are optimized in order to minimize
their error on the training set.

The parameters of the underlying deep feature mapping are optimized
in order to:

1) minimize the loss of the label classifier, and

2) to maximize (due to gradient reversal) the loss of the domain
classifier. This encourages domain-invariant features to emerge in
the course of the optimization.



Results & Datasets

MNIST SYN NUMBERS SYN SIGNS
SOURCE ,E 8 i
TARGET ﬂa ?Sl .k :
1 (70)%\
MNIST-M SVHN MNIST GTSRB
SOURCE ONLY 0749 8665 .5919 .7400
SA (FERNANDO ET AL., 2013) | .6078 (7.9%) 8672 (1.3%) 6157 (5.9%) 7635 (9.1%)
PROPOSED APPROACH 8149 (57.9%) .9048 (66.1%) .7107 (29.3%) .8866 (56.7%)
TRAIN ON TARGET 9891 9244 9951 9987
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Beyond Sharing Weights for
Deep Domain
Adaptation

2018
https://www.epfl.ch/labs/cvlab/research/do
main-adaptation/deep-domain-adaptation/

* Maintains that Deep Learning approaches
to Domain Adaptation should not focus
on learning features that are invariant to
the domain shift, which makes them less
discriminative.

* Instead, explicitly models the domain
shift using a two-stream CNN
architecture, where the weights of the
streams may or may not be shared. To
encode the fact that both streams should
be related, encoura§es the non-shared
weights to remain close to being linear
transformations of each other by
introducing an additional loss term.
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1 INTRODUCTION

Deep Neural Networks [1], [2] have emerged as powerful tools
that outperform traditional Computer Vision algorithms in a wide
variety of tasks, but only when sufficiently large amounts of
training data are available. This is a severe limitation in fields
in which obtaining such data is either difficult or expensive. For
example, this work was initially motivated by our need to detect
drones against complicated backgrounds with a view to developing
anti-collision systems. Because the set of possible backgrounds is
nearly infinite, creating an extensive enough training database of
representative real images has proven very challenging.

Domain Adaptation [3] and Transfer Learning [4] have long
been used to overcome this difficulty by making it possible to
exploit what has been learmed in one specific domain, for which
enough training data is available, to effectively train classifi
related but different domain, where only very small amounts of ad-
ditional annotations, or even none, can be acquired. Following the
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Fig. 1. Our two-stream architecture. One stream operates on the source
data and the other on the target one. Their weights are nor shared

Instead, we introduce loss functions that prevent corresponding weights
from being too differant from each other I
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Source (synthetic) Target (real)

Principle AF- bR | E-E-ETE

The weights should be related, yet different
for each of the two domains.

Allows the weights of the corresponding
layers to differ between the two streams, but
prevents them from being too far from each
other. This models the fact that the source
and target domains are related, and prevents
overfitting in the target stream, when only
very few labeled samples are available.

( Soft-max )

Fig. 1. Our two-stream architecture. One stream operates on the source
data and the other on the target one. Their weights are nor shared.
Instead, we introduce loss functions that prevent corresponding weights
from being too different from each other.
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Application: detecting UAVS

(semisupervised, classification)
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Application: face pose estimation

(unsupervised, regression)

Synthetic (source domain)




Which layers should be shared?
Depends on the task!

Source (synthetic) Target (real)

In all the experiments reported above, allowing the weights not to
be shared in some fraction of the layers of our two-stream archi-

tecture boosts performance. This validates our initial hypothesis

that explicitly modeling the domain shift is generally beneficial.
However, the optimal choice of which layers should or should

not share their weights is application dependent. In the UAV

- detection and facial pose estimation cases allowing the weights in
the first two layers to be different yields top performance, which

hared

we understand to mean that the domain shift is caused by low-level
changes that are best handled in the early layers. By contrast, for
the Office dataset, it is best to only allow the weights in the last
two layers to differ. This network configuration was determined
using Amazon and Webcam images, such as those shown in Fig. 8.
Close examination of these images reveals that the differences
between them are not simply due to low-level phenomena, such as
illumination changes, but to more complex variations. It therefore
seems reasonable that the higher layers of the network, which
encode higher-level information, should be domain-specific.
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4. Some first-hand experiences
with Domain Adaptation



Generalize across domains for our Mighty Thymio

Quantitative obstacle detection performance
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Generalize across domains for our Mighty Thymio
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Generalize across domains for our Mighty Thymio
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Domain Adaptation for proximity interaction

Source domain Target domain




Domain Adaptation for proximity interaction




Domain Adaptation: conclusions

e Sooner or later, domain shift will screw your plans

* Domain adaptation to the rescue!
e Semisupervised DA
* Unsupervised DA

e “Frustratingly simple” methods, standard or deep

* Main ideas:
* Align features across domains
* Maximize domain confusion
* Explicitly model domain shift



One interesting application of Domain
Adaptation

Please discuss one potential application of Domain Adaptation that you find interesting, either because you

N O W would like to apply the idea to your work/research, or because you found a paper about it that you find relevant
e 00

* Required

1. If you are describing a paper you found, write the link here. Otherwise write "my
own problem™ *

* Take another coffee!

2. Briefly describe the problem setting * [}

e Fill another form!

https://forms.office.com/Pages/ResponsePage.aspx?id=pDglg56TEk-VLUMS8-
eVonUcsmPZBUUVBgjoOf_0ZabpUN1ZHROXKNU5SVVhIQOZUM1ZLU1BYNzVBVS4u

Enter your answer

3. What are the inputs and outputs of the model?

Enter your answer

4, What are the domains for this problem? Is this a supervised or unsupervised domain adaptation?
Why would Demain Adapation be beneficial here?

Enter your answer

5. Would you like to briefly discuss this topic during the lecture? Just explain what you wrote above,
in a couple of minutes, and brainstorm.

) Yes!

) Maybe

/::' https://media.giphy.com/media/MN4xCVPenanVel /giphy.gif

e See you at for discussion =]

Never give out your password. Report abuss




Further discussion and
practical implications

https://www.nature.com/articles/
s42256-020-0185-2

Read this and discuss
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