Sliding DCT

Mathematical Models and Methods for Image Processing

Giacomo Boracchi

https://boracchi.faculty.polimi.it/teaching/MMMIP.htm

February 25th 2025

Sliding DCT

Original Checkerboard

In this case, all the 8x8 patches used in sliding DCT are entirely contained in a 16x16 tile of the checkerboard

Shift [1 row, 1 col]

Original Checkerboard

Shift [1 row, 1 col]

Uniform Weights

Sparsity-aware

Assignment

- 1. Implement the sliding-DCT denoising using
 - no aggregation (operate on non-overlapping tiles)
 - aggregation using uniform weights
 - aggregation using weights inversely proportional to patch sparsity in DCT domain.
- 2. Test the three algorithms on both chekerboard and cameraman image
- 3. Test how much the choice of the threshold τ influences the denoising performance. Observe the resulting image when:
 - $\tau \ll 3\sigma$
 - $\tau \gg 3\sigma$

This is very important to understand how important is the choice of the threshold

