Away from Orthonormal Basis: Sparsity Meets Redundancy

Mathematical Models and Methods for Image Processing
Giacomo Boracchi https://boracchi.faculty.polimi.it/

March $5^{\text {th }} 2024$

Assignment

The limitations of sparsity

Generate a sparse 1D signal w.r.t. D

Idea:

1. Randomly define sparse coefficients x_{0} of size M
2. Synthesis w.r.t. a DCT dictionary, i.e. compute $s_{0}=D x_{0}$
3. Add white Gaussian noise $\eta: s=s_{0}+\eta$

Rmk:

s might not look very realistic, but this is truly sparse w.r.t. D

Generate a truly sparse signal w.r.t. D

Generate a trulv sparse signal w.r.t. D

Even when you can recover the support of $\boldsymbol{s}_{\mathbf{0}}$

Generate a truly sparse signal w.r.t. D

When the noise is large, HT might fail even at recovering the support of $\boldsymbol{x}_{\mathbf{0}}$

Now, assume your signal is sparse w.r.t. $[D, C]$

Idea:

1. Randomly define sparse coefficients x_{0}
2. Synthesis w.r.t. a DCT dictionary, i.e. compute $s_{0}=D x_{0}$
3. Add a spike δ_{c} at location c, which is a sparse element w.r.t. C

$$
s_{0}=s_{0}+\lambda \delta_{c}
$$

where λ and c are randomly defined
4. Add noise: $s=s_{0}+\eta$

Truly sparse signals w.r.t. $[D, C]$

Assignment

Uniqueness of Representation

A Simple Proof

Proof that if a set of vectors $\left\{\boldsymbol{e}_{\boldsymbol{i}}\right\}, \boldsymbol{e}_{i} \in \mathbb{R}^{M}$ are linearly independent and if

$$
\boldsymbol{v}=\sum_{i} x_{i} \boldsymbol{e}_{\boldsymbol{i}}, x_{i} \in \mathbb{R}
$$

Then the representation $\left\{x_{i}\right\}$ is unique

