Patch Modeling and JPEG

Mathematical Models and Methods for Image Processing

Diego Carrera

https://boracchi.faculty.polimi.it/teaching/MMMIP.htm

February 27th 2024

Diego Carrera

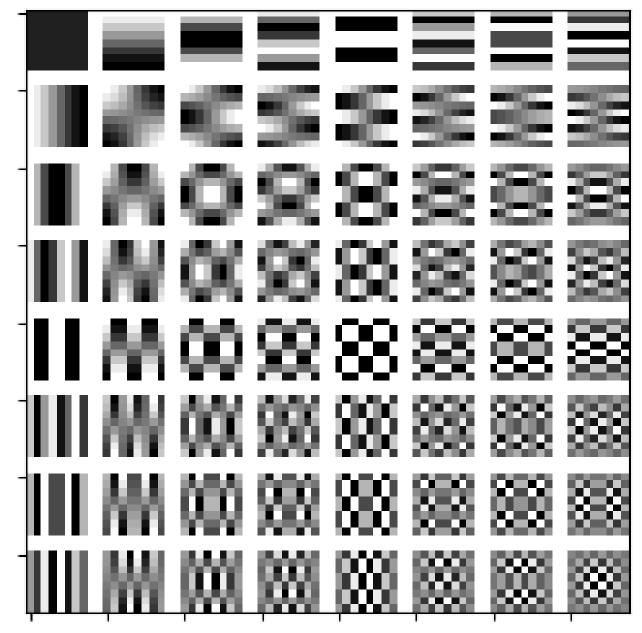
Mathematician (Università Statale degli Studi di Milano 2013),

PhD in Information Technology (DEIB, Politecnico di Milano 2019)

Researcher at STMicroelectronics since 2019

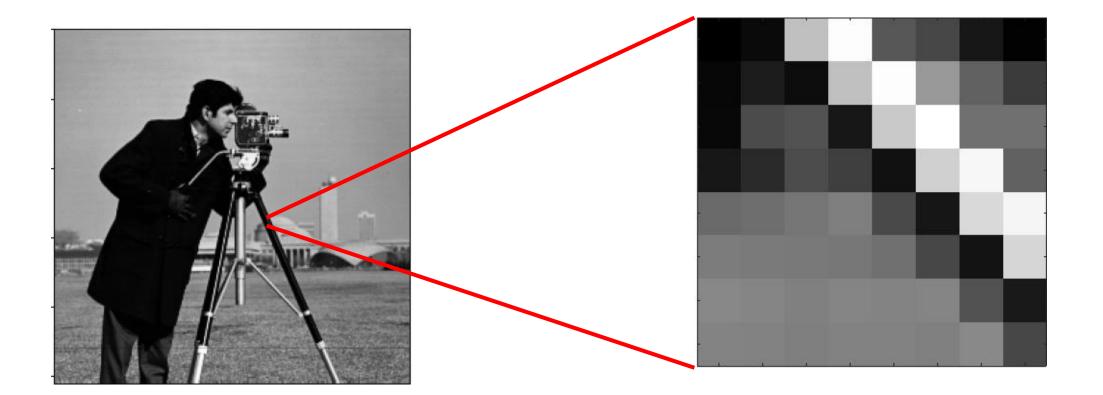
2D DCT

How the atoms in the 2D DCT dictionary look like

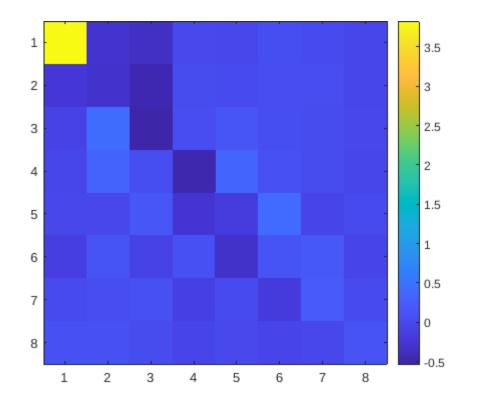


The JPEG Compression

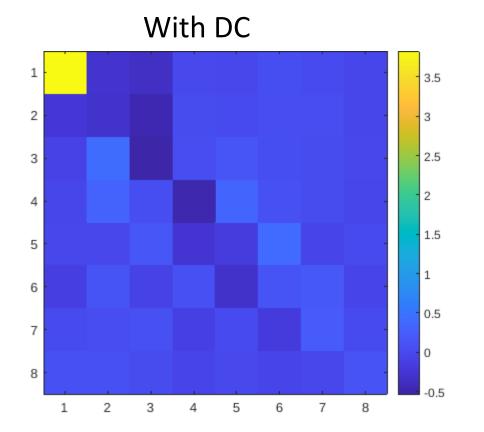
Let's extract a 8x8 patch from an image

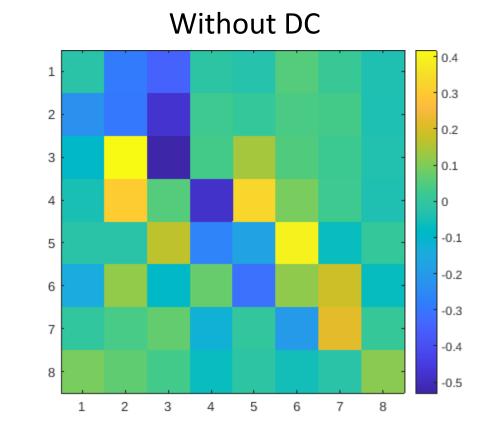


2D DCT of the patch



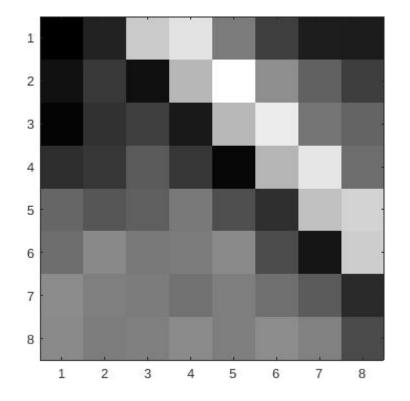
2D DCT of the patch





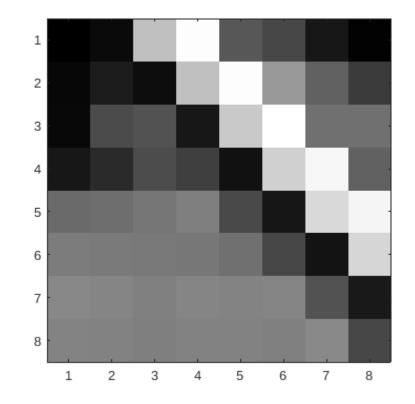
A lot of coefficients are closed to 0!

Reconstructed patch

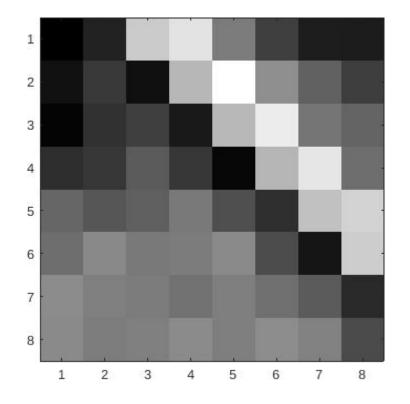


Original Patch

Reconstructed Patch

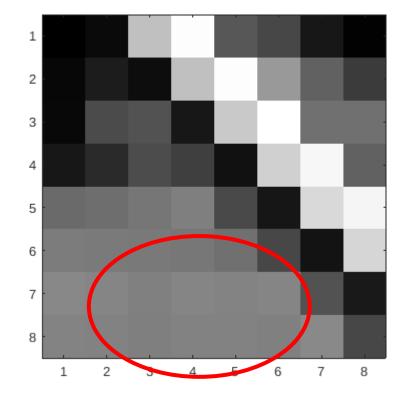


Reconstructed patch



Original Patch

Reconstructed Patch



Smooting in this area

Denoising

A Detail in Camera Raw Image S

Denoised \hat{Y}

D.Carrera

A Detail in Camera Raw Image S

Denoised \hat{Y}

Image Formation Model

Observation model is

 $z(x) = y(x) + \eta(x), \qquad x \in \mathcal{X}$

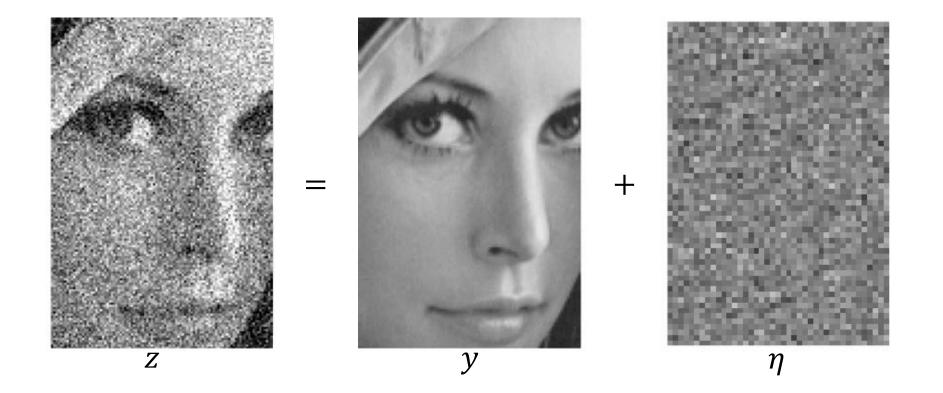


Image Formation Model

Observation model is

 $S(i) = Y(i) + \eta(i), \quad i \in \mathcal{X}$

Where

- *i* denotes the pixel coordinates in the domain $\mathcal{X} \subset \mathbb{Z}^2$
- Y is the original (noise-free and unknown) image, $y \in [0,1]$
- S is the noisy observation, $S \in [0,1]$ (clipping)
- η is the noise realization

For the sake of simplicity we assume Additive White Gaussian Noise (AWGN):

 $\eta \sim N(0, \sigma^2)$ and $\eta(x)$ are all independent realizations.

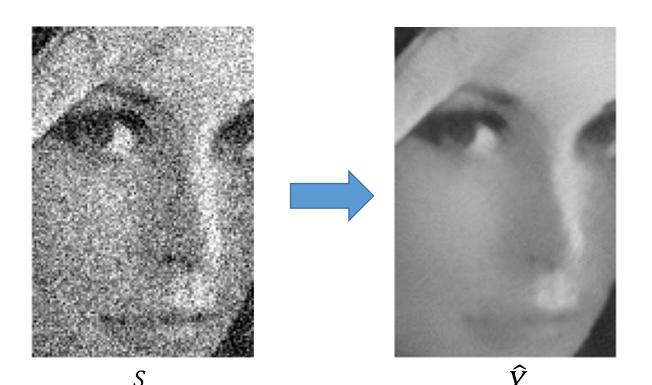
The noise standard deviation σ is also assumed as known.

Goal of Image Denoising

The goal of **image denoising** is to compute \hat{y} realistic estimate of the original image y, given the noisy observation z

Denoising is an **ill posed problem** and requires some form of **regularization** to promote outputs that are close to natural images.

Our Prior: Sparsity w.r.t. DCT basis!



D.Carrera

Image Denoising

Deniosing is a fundamental step in image processing pipelines

- Improves the quality of digital images to the standard we are used to
- Eases the following algorithms in imaging pipelines from those solving low-level (e.g., edge detection), till high-level (recognition) problems
- It is also a tool to quantitativelly assess the performance of a descriptive model for images.

Assignments

Last Time Assignment: Generate the Basis

• Generate the DCT basis according to the following formula (DCT type II) the *k*-th atom of the DCT basis in dimension *M* is defined as

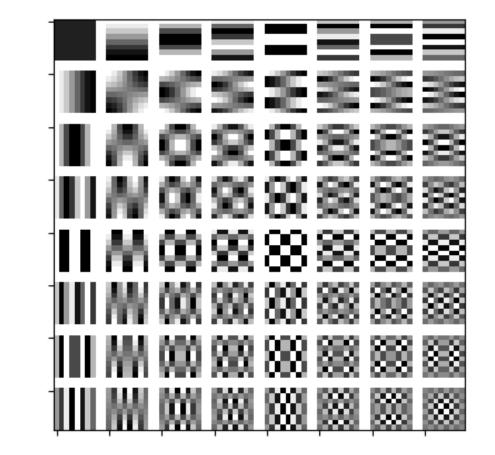
$$DCT_k(n) = c_k \cos\left(k\pi \frac{2n+1}{2M}\right) n, k = 0, ..., M-1$$

where $c_0 = \sqrt{1/L}$ and $c_k = \sqrt{2/L}$ for k = 0.

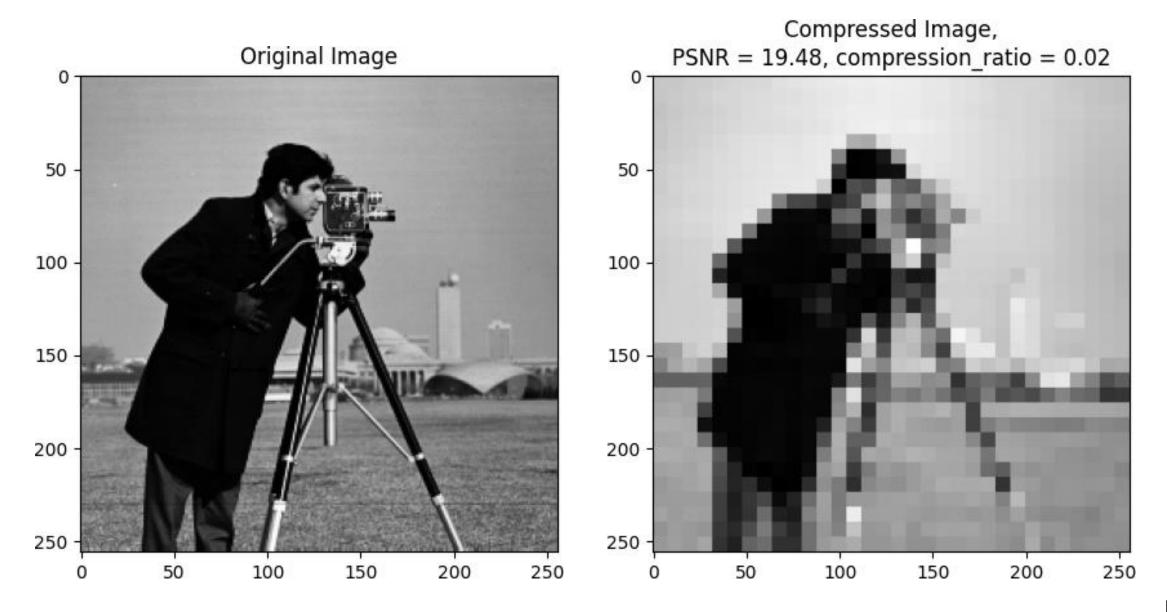
• How can you use the function dct and it's inverse idct to define the DCT matrix?

First Assignment: 2D DCT dictionary

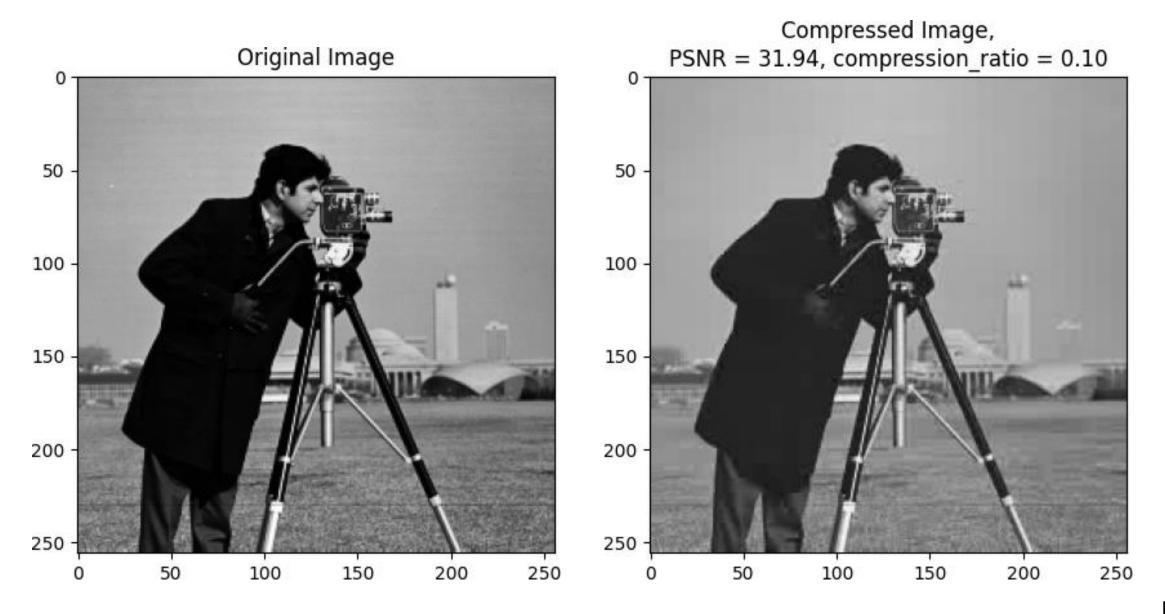
- Generate the 2D DCT dictionary using the dct2 and idct2 function
 - Use this dictionary to compute the representation of a patch
- Generate the 1D DCT dictionary using the dct and idct function
 - Use this dictionary to compute the separable 2D DCT of the same patch
- Verify that the coefficients of the two representations are the same

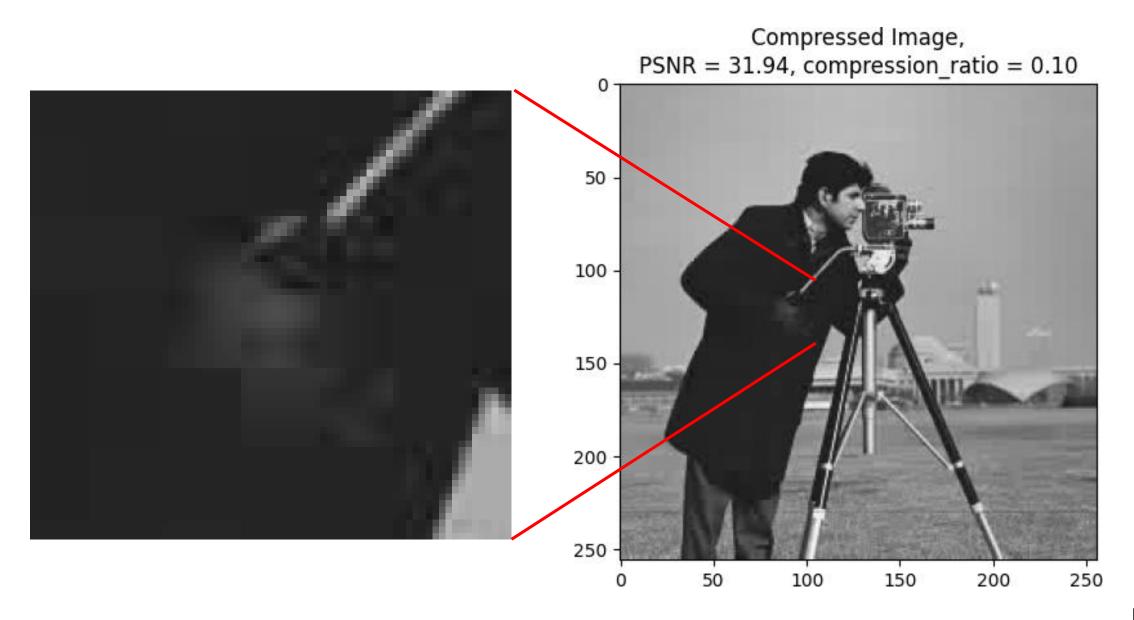


- Implement the JPEG compression algorithm
- Compute the PSNR of the compressed image
- Compute the compression ratio
- Try different thresholds: how the thresholds affect the compression?



D.Carrera





D.Carrera

Third Assignment: Denoising

- Implement the DCT fenoising algorithm
- Compute the PSNR of the compressed image

