# Local Polynomial Approximation

Mathematical Models and Methods for Image Processing

Giacomo Boracchi

https://boracchi.faculty.polimi.it/

May 14<sup>th</sup> 2024

#### https://webpages.tuni.fi/foi/Present/Anis\_Web.html



## Assignment 1: LPA Kernels

A. Foi, Anisotropic nonparametric image processing: theory, algorithms and applications, Ph.D. Thesis, Dip. di Matematica, Politecnico di Milano, April 2005.

#### Lez21\_A\_LPA

Define the LPA filters for a given polynomial order N and over a fixed support M to perform regression over noisy signals

## Noisy Signal

0.1

0

0.2

0.3

Input Signal noisy ٠ original I۱ 1.1 0.5 ۲. ٠. .۱ •1 0 -0.5 11 11 ŧ1 M . -1

0.5

0.6

0.7

0.4

G. Boracchi

8.0

0.9

1







## small M, comparable N



## Assignment 2: Weighted LPA Kernels

#### Lez21\_B\_weighted\_LPA

Define the **weighted LPA** filters for a given polynomial order N and over a fixed support M to perform regression over noisy signals

Use binary weights to compute centered, left and right estimates. See how these behave w.r.t. signal discontinuities

#### Example of binary weights to use



### Handling Discontinuities



### Handling Discontinuities: «centered weights»



## Handling Discontinuities: «left weights»



## Handling Discontinuities: «left weights»



## Handling Discontinuities: «right weights»



## Handling Discontinuities: «right weights»



### Handling Discontinuities: «right weights»

