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Denoising: The Issue

A Detail in Camera Raw Image 𝑧𝑧
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Image Formation Model

Observation model is
𝑧𝑧 𝑥𝑥 = 𝑦𝑦 𝑥𝑥 + 𝜂𝜂 𝑥𝑥 , 𝑥𝑥 ∈ 𝒳𝒳

𝑧𝑧 𝑦𝑦 𝜂𝜂
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Image Formation Model

Observation model is
𝑧𝑧 𝑥𝑥 = 𝑦𝑦 𝑥𝑥 + 𝜂𝜂 𝑥𝑥 , 𝑥𝑥 ∈ 𝒳𝒳

Where

• 𝑥𝑥 denotes the pixel coordinates in the domain 𝒳𝒳 ⊂ ℤ2

• 𝑦𝑦 is the original (noise-free and unknown) image,𝑦𝑦 ∈ [0,1]
• 𝑧𝑧 is the noisy observation, z ∈ [0,1] (clipping)

• 𝜂𝜂 is the noise realization

For the sake of simplicity we assume Additive White Gaussian Noise (AWGN):

𝜂𝜂 ∼ 𝑁𝑁(0,𝜎𝜎2) and 𝜂𝜂(𝑥𝑥) are all independent realizations.

The noise standard deviation 𝜎𝜎 is also assumed as known.
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Goal of Image Denoising

The goal of image denoising is to compute �𝑦𝑦 realistic estimate of the 
original image 𝑦𝑦, given the noisy observation 𝑧𝑧
Denoising is an ill posed problem and requires some form of 
regularization to promote outputs that are close to natural images.

Our Prior: Sparsity w.r.t. DCT basis!

𝑧𝑧 �𝑦𝑦
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Image Denoising

Deniosing is a fundamental step in image processing pipelines

• Improves the quality of digital images to the standard we are used to

• Eases the following algorithms in imaging pipelines from those solving
low-level (e.g., edge detection), till high-level (recognition) problems

• It is also a tool to quantitativelly assess the performance of a 
descriptive model for images.
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DCT Denoising Denoising by Convolution
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Image Denoising By Sparsity Priors
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Sliding DCT Denoising

A very powerful, yet simple denoising algorithm that can pair much more 
sophisticated alternatives

A description of the algorithm steps can be found here
Yu, Guoshen, and Guillermo Sapiro. "DCT image denoising: a simple and effective
image denoising algorithm." Image Processing On Line 1 (2011): 292-296.

https://www.ipol.im/pub/art/2011/ys-dct/article.pdf

https://www.ipol.im/pub/art/2011/ys-dct/article.pdf
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Assignment
Sliding DCT
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Implement DCT denoising on a natural image

• Load the cameraman image
• Add additive white Gaussian noise having standard deviation 𝜎𝜎
• For each patch over a tile, perform denoising in the DCT domain

use 𝜏𝜏 = 3𝜎𝜎 or 𝜏𝜏 = 𝜎𝜎 2 ln𝑝𝑝2 as in [Donoho & Johnstone]

• Remember not to threshold the 
DC coefficient, which contains
the average patch intensity

• Reconstruct the denoised patch 𝑠̂𝑠

D.L. Donoho, I.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage. Biometrika, vol. 83, pp. 425-455, 1994. http://dx.doi.org/10.1093/biomet/81.3.425
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Assess Denoising Performance

Measure the PSNR of the denoised image

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝑦𝑦,𝑦𝑦 = 10 log10
1

𝑀𝑀𝑀𝑀𝑀𝑀 �𝑦𝑦,𝑦𝑦
Where 1 stands for the signal peak (image is assumed to be in [0,1])

sigma_noise = 20/255; img = im2double(imread('cameraman.tif'));
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Assignment

Try the following

- Adopt no aggregation (take non-overlapping patches)

- Denoise a 16 × 16 checkerboard image

- Measure the PSNR

- Repeat the operation after shifting 1 right and 1 pixel down the 
checkerboard
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No shift Shift [1 row, 1 col]

DCT is not translation invariant
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Let’s investigate this further…

You might want to go back to the 1D signal and check what happens
when transforming in DCT domain a constant singal or a shifted version of 
it (thus including two different levels)
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A Very Sparse Signal
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A Shift breaks sparsity!
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A Shift breaks sparsity!
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Assignment: Move to Sliding DCT

Provide an estimate for each block centered in a pixel.

-> each pixel receives and aggregates 𝑝𝑝2 estimates

Adopt simple averaging for aggregation
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Aggregation

Aggregation considers all the possible shifts, thus make the DCT 
translation invariant

However, not all the shifted versions of the input are good at the same! 
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The Benefit of Aggregation
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Aggregation helps

Use Sliding DCT with 2 different types of aggregation weights

• Uniform
𝑤𝑤 𝑥𝑥 = 1

• Sparsity-aware

𝑤𝑤 𝑥𝑥 =
1
�𝑥𝑥 0

Make sure that when the DC coefficient is zero, �𝑥𝑥 0 is set to 1

Sparsity-aware weights are larger to those blocks that are sparser. As
these achieve superior performance
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Uniform Weights Sparsity-aware
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Assignment

Implement both forms of aggregation and 

- Test both on natural images

- Test both on checkerborard

Finally, test how much the choice of the threshold 𝜏𝜏 influences the 
denoising performance. Observe the resulting image when:

- 𝜏𝜏 ≪ 3𝜎𝜎
- 𝜏𝜏 ≫ 3𝜎𝜎
This is very important to understand how important is the choice of the 
threshold
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Noise Estimation
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Estimating 𝝈𝝈

The value of 𝜎𝜎 plays a crucial role in Sliding DCT denoising (and in 
sparsity promoting algorithms in general)

You can notice this when changing the threshold 𝜏𝜏

… but how to estimate the noise standard deviation, provided only a noisy
image?
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Noise estimation by filtering

Idea: bring all the flat areas of an image «around zero», and then
estimate the sample standard deviation.

𝑧𝑧 ⊛ −1 , 1 = (𝑦𝑦 + 𝜂𝜂) ⊛ −1 , 1 =
= 𝑦𝑦 ⊛ −1 , 1 + 𝜂𝜂 ⊛ −1 , 1

Now, the first term should be close to zero except at image boundaries. 
The second term corresponds to a random variable having distribution

𝜂𝜂 ⊛ −1 , 1 ∼ 𝒩𝒩 0, 2𝜎𝜎2

Therefore

�𝜎𝜎 =
std 𝑧𝑧 ⊛ −1 , 1

2
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Noise Estimation by Filtering + Robust Statistics

Using the sample variance std{} might be heavily affected by outliers, 
which can result from the term 𝑦𝑦 ⊛ −1 , 1

�𝜎𝜎 =
std 𝑧𝑧 ⊛ −1 , 1

2

A better estimate is provided by a robust estimator of the sample 
variance, namely the Median of Absolute Deviation

�𝜎𝜎 =
MAD 𝑧𝑧 ⊛ −1 , 1

0.67449 ∗ 2
Being MAD X = median 𝑋𝑋 − median{𝑋𝑋}
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Assignment

Implement the noise estimation formula and use this in the denoising
framework
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Convolutional Sparse Coding
Gobal Optimization vs Aggregation of Partial Estimates
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Global Optimization vs Partial Aggregation, ell1 
regularization, natural images

[SPARS 2017] D. Carrera, G. Boracchi, A. Foi and B. Wohlberg , “Sparse denoising: aggregation 
versus global optimization“ SPARS 2017
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Global Optimization vs Partial Aggregation, ell1 
regularization, synthetic and very sparse images
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Global Optimization vs Partial Aggregation, ell 0 
regularization, natural images
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Global Optimization vs Partial Aggregation, ell0 
regularization, synthetic and very sparse images
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Image Inpainting
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Image Inpainting

Jam, Jireh, et al. "A comprehensive review of past and present image inpainting methods." Computer vision and image understanding 203 (2021): 103147.
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Image Formation Model
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Image Inpainting
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Assignment
Image Inpainting Enforcing Sparsity
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Denoising via Sparse Coding

Take the setup of Assignment 3 (denoising via DCT)

• Load the dictionary provided (learned from natural images)
• Add a constant atom and avoid average subtraction

• Replace the analisys and the thresholding of patch 𝑠𝑠𝑖𝑖 with the sparse 
coding using the OMP with respect to the inpainted dictionary 𝑃𝑃𝑖𝑖𝐷𝐷. Use 
as a threshold for residual

𝛿𝛿𝑖𝑖 = 1.15 ⋅ 𝑝𝑝 ⋅ 𝜎𝜎 ⋅
𝑝𝑝2 − 𝑚𝑚
𝑝𝑝2

being 𝑚𝑚 the number of zero entries in 𝑠𝑠𝑖𝑖
• Perform the synthesys of each patch using the original dictionary 𝐷𝐷
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The Dictionary from KSVD

+ remember to add a constant atom!
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Anomaly Detection
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The anomaly detection problem
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The anomaly detection problem
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The anomaly mask
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Normal Patches Learned Dictionary
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Detections



G. Boracchi

The Typical approach

Most of the considered methods 
1. Estimate a model describing normal data (background model)
2. Use the background model to provide, for each test signal/patch, an 

anomaly score, or measure of rareness
3. Apply a decision rule to the anomaly score to detect anomalies 

(typically thresholding)
4. [optional] Perform post-processing operations to enforce smooth 

detections and avoid isolated pixels that are not consistent with 
neighbourhoods 

Remark: Statistical-based approaches seen before uses as background 
model the statistical distribution �𝜙𝜙0 and a statistic as anomaly score
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The Typical approach

Most of the considered methods 
1. Estimate a model describing normal data (background model)
2. Use the background model to provide, for each test signal/patch, an 

anomaly score, or measure of rareness
3. Apply a decision rule to the anomaly score to detect anomalies 

(typically thresholding)
4. [optional] Perform post-processing operations to enforce smooth 

detections and avoid isolated pixels that are not consistent with 
neighbourhoods 

Remark: Statistical-based approaches seen before uses as background 
model the statistical distribution �𝜙𝜙0 and a statistic as anomaly score

The background model is used to 
bring an image patch into the 

“random variable world”
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The Typical approach

Most of the considered methods 
1. Estimate a model describing normal data (background model)
2. Use the background model to provide, for each test signal/patch, an 

anomaly score, or measure of rareness
3. Apply a decision rule to the anomaly score to detect anomalies 

(typically thresholding)
4. [optional] Perform post-processing operations to enforce smooth 

detections and avoid isolated pixels that are not consistent with 
neighbourhoods 

Remark: Statistical-based approaches seen before uses as background 
model the statistical distribution �𝜙𝜙0 and a statistic as anomaly score

Once “having applied“ the background 
model, one can use anomaly detection 

methods for the “random variable world”.
This might require fitting an 

additional model
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The Typical approach

Most of the considered methods 
1. Estimate a model describing normal data (background model)
2. Use the background model to provide, for each test signal/patch, an 

anomaly score, or measure of rareness
3. Apply a decision rule to the anomaly score to detect anomalies 

(typically thresholding)
4. [optional] Perform post-processing operations to enforce smooth 

detections and avoid isolated pixels that are not consistent with 
neighbourhoods 

Remark: Statistical-based approaches seen before uses as background 
model the statistical distribution �𝜙𝜙0 and a statistic as anomaly scoreAnd it is important to control the 

False Positive Rate 
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The three major ingredients

Most detection algorithms have three major ingredients:

• The background model ℳ, learned from normal data

• The statistic / anomaly score: err 𝒔𝒔 ,ℒ 𝒔𝒔 ,𝒜𝒜 𝒔𝒔 , …
• Decision rule to detect, e.g. err 𝒔𝒔 ≷ 𝛾𝛾 possibly controlling the FPR, as

in other statistical detection methods
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A Dictionary learned from normal patches
Example of training patches Few learned atoms (BPDN-based learning)
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SPARSE REPRESENTATIONS AS FEATURE EXTRACTORS

To assess the conformance of 𝒔𝒔𝑐𝑐 with 𝐷𝐷 we solve the following

Sparse coding:
𝒙𝒙𝑐𝑐 = argmin

𝒙𝒙∈ℝ𝑛𝑛
𝐷𝐷𝒙𝒙 − 𝒔𝒔𝑐𝑐 𝟐𝟐

𝟐𝟐 + 𝜆𝜆 𝒙𝒙 1, 𝜆𝜆 > 0

which is the BPDN formulation and we solve using ADMM.

The penalized ℓ1 formulation has more degrees of freedom in the reconstruction, the 
conformance of 𝒔𝒔 with 𝑫𝑫 have to be assessed monitoring both terms of the functional

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein. "Distributed optimization and statistical learning via the alternating direction method of multipliers" 2011
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Features extracted from sparse coding

Features then include both the reconstruction error
err 𝒔𝒔𝑐𝑐 = 𝐷𝐷𝒙𝒙𝑐𝑐 − 𝒔𝒔𝑐𝑐 𝟐𝟐

𝟐𝟐

and the sparsity of the representation
𝒙𝒙𝑐𝑐 𝟏𝟏

Thus obtaining a data-driven feature vector 

𝒇𝒇𝒄𝒄 = 𝐷𝐷𝒙𝒙𝑐𝑐 − 𝐬𝐬 𝟐𝟐
𝟐𝟐

𝒙𝒙𝑐𝑐 1



G. Boracchi

Density-based monitoring

Normal data 

Anomalies
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FEATURES EXTRACTED FROM SPARSE CODING

Training:

• Learn from 𝑆𝑆 the dictionary 𝐷𝐷

• Compute the sparse representation w.r.t. 𝐷𝐷, thus features 𝒙𝒙 over the validation set 
𝑉𝑉, such that 𝑉𝑉 ∩ 𝑆𝑆 = ∅

• Learn from 𝑉𝑉, the distribution �𝜙𝜙0 of normal features vectors 𝒙𝒙 and the threshold 𝛾𝛾.

The model for anomaly detection is (𝐷𝐷, �𝜙𝜙0, 𝛾𝛾)

Testing:

• Perform sparse coding of a test signal 𝒔𝒔, thus get the feature vector 𝒙𝒙

• Detect anomalies when 𝒜𝒜 𝒔𝒔 = �𝜙𝜙0 𝒙𝒙 < 𝛾𝛾

D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11 
pages, doi:10.1109/TII.2016.2641472 
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FEATURES EXTRACTED FROM SPARSE CODING

Training:

• Learn from 𝑆𝑆 the dictionary 𝐷𝐷

• Compute the sparse representation w.r.t. 𝐷𝐷, thus features 𝒙𝒙 over the validation set 
𝑉𝑉, such that 𝑉𝑉 ∩ 𝑆𝑆 = ∅

• Learn from 𝑉𝑉, the distribution �𝜙𝜙0 of normal features vectors 𝒙𝒙 and the threshold 𝛾𝛾.

The model for anomaly detection is (𝐷𝐷, �𝜙𝜙0, 𝛾𝛾)

Testing:

• Perform sparse coding of a test signal 𝒔𝒔, thus get the feature vector 𝒙𝒙

• Detect anomalies when 𝒜𝒜 𝒔𝒔 = �𝜙𝜙0 𝒙𝒙 < 𝛾𝛾

D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11 
pages, doi:10.1109/TII.2016.2641472 

This is rather a flexible solution and can be adapted when
operating conditions changes (e.g. heartrate changes, images are 

acquired at different zooming level) 
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Convolutional Sparsity

Convolutional sparse models are a recent development of sparse 
representations

𝒔𝒔 ≈�
𝑖𝑖=1

𝑛𝑛

𝒅𝒅𝒊𝒊 ⊛ 𝜶𝜶𝒊𝒊 , s. t. 𝜶𝜶𝒊𝒊 is sparse

where a signal 𝒔𝒔 is entirely encoded as the sum of 𝑛𝑛 convolutions
between a filter 𝒅𝒅𝒊𝒊 and a coefficient map 𝜶𝜶𝒊𝒊
Pros:

• Translation invariant representation
• Few small filters are typically required
• Filters exhibit very specific image structures
• Easy to use filters having different size

Collaboration with Los Alamos National Laboratory, NM, USA
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Example of Learned Filters
Training Image Learned Filters



G. Boracchi

Convolutional Sparsity for Anomaly Detection

If we consider the convolutional sparse coding

�𝜶𝜶 = argmin
𝜶𝜶 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝒅𝒅𝒊𝒊 ⊛ 𝜶𝜶𝒊𝒊 − 𝐬𝐬
𝟐𝟐

𝟐𝟐

+ 𝜆𝜆�
𝑖𝑖=1

𝑛𝑛

𝜶𝜶 1

we can build the feature vector as:

𝒙𝒙𝑐𝑐 =

�
𝒄𝒄

�
𝑖𝑖=1

𝑛𝑛

𝒅𝒅𝒊𝒊 ⊛ �𝜶𝜶𝒊𝒊 − 𝐬𝐬
𝟐𝟐

𝟐𝟐

�
𝑖𝑖=1

𝑛𝑛

�
𝒄𝒄

�𝜶𝜶
𝟏𝟏

…but unfortunately, detection performance are rather poor
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Sparsity is too loose a criterion for detection

The two (normal and anomalous) patches
exhibit same sparsity and reconstruction error

Coefficientm
aps

norm
alpatch

Coefficientm
aps

anom
alouspatch
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Convolutional Sparsity for Anomaly Detection

Contributions:
• Design a feature vector that accounts for the number of filters that are activated

within each region

𝑥𝑥𝑐𝑐 =

�
𝒄𝒄

�
𝑖𝑖=1

𝑚𝑚

𝒅𝒅𝒊𝒊 ⊛ �𝜶𝜶𝒊𝒊 − 𝐬𝐬
𝟐𝟐

𝟐𝟐

�
𝑖𝑖=1

𝑚𝑚

�
𝒄𝒄

�𝜶𝜶
1

�
𝑖𝑖=1

𝑚𝑚

�
𝒄𝒄

�𝜶𝜶
2

[IJCNN 2015] D. Carrera, G. Boracchi, A. Foi and B. Wohlberg , “Detecting Anomalous Structures 
by Convolutional Sparse Models “  IEEE IJCNN 2015
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Convolutional Sparsity for Anomaly Detection

Contributions:
• Design a feature vector that accounts for the number of filters that are activated

within each region
• Design an efficient sparse coding algorithm that includes a term penalizing the 

local group sparsity

�𝜶𝜶 = argmin
𝜶𝜶 𝑚𝑚

�
𝑖𝑖=1

𝑚𝑚

𝒅𝒅𝒊𝒊 ⊛ 𝜶𝜶𝒊𝒊 − 𝐬𝐬
𝟐𝟐

𝟐𝟐

+ 𝜆𝜆�
𝑖𝑖=1

𝑚𝑚

𝜶𝜶 1 + 𝜉𝜉�
𝒄𝒄

�
𝑖𝑖=1

𝑚𝑚

�
𝒄𝒄

𝜶𝜶
2

[IJCNN 2015] D. Carrera, G. Boracchi, A. Foi and B. Wohlberg , “Detecting Anomalous Structures 
by Convolutional Sparse Models “  IEEE IJCNN 2015
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Counteracting Domain Shift
in Anomaly Detection

Adaptation Strategies
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NEED FOR ADAPTATION

A challenge often occurring when performing online monitoring
Test data might differ from training data: need of adaptation, otherwise anomaly 
detection methods would be ineffective

Defects have to be detected at different zooming levels, 
that might not be present in the training set.
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NEED FOR ADAPTATION

A challenge often occurring when performing online monitoring
Test data might differ from training data: need of adaptation, otherwise anomaly 
detection methods would be ineffective

The heartbeats get transformed when the heart rate changes: 
learned models have to be adapted according to the heart rate.
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MODEL ADAPTATION

In the machine-learning literature these problems go under the name of transfer 
learning / domain adaptation

Transfer Learning (TL): adapt a model learned in the source domain (e.g. heartbeats at 
a given heartrate / fibers at a certain zoom level) to a target domain (e.g. heartbeats 
at an higher heartrate / fibers zoomed in or out)

Many TL methods have been designed for supervised / semi-supervised / unsupervised 
methods, depending on the availability of (annotated) data in the source and target 
domains.

In most anomaly detection settings, no labels in the target data are provided (typically 
they are not even provided in the source domain)

S. J. Pan and Q. Yang "A survey on transfer learning“ IEEE TKDE 2010
S. Shekhar, V. M. Patel, H. V. Nguyen, & R. Chellappa, “Generalized domain-adaptive dictionaries,” CVPR 2013
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DOMAIN ADAPTATION ON QUALITY INSPECTION

SEM images can be acquired at different zooming levels

Solution: 

• Synthetically generate training images at different zooming levels

• Learn a dictionary 𝐷𝐷𝑖𝑖 at each scale

• Combine the learned dictionaries in a multiscale dictionary 𝐷𝐷

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016

𝐷𝐷 = [ 𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 𝐷𝐷4 ]
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DOMAIN ADAPTATION ON QUALITY INSPECTION

SEM images can be acquired at different zooming levels

Solution: 

• Synthetically generate training images at different zooming levels

• Learn a dictionary 𝐷𝐷𝑖𝑖 at each scale

• Combine the learned dictionaries in a multiscale dictionary 𝐷𝐷

• Sparse-coding including a penalized, group sparsity term

𝜶𝜶 = argmin
𝒂𝒂∈ℝ𝑛𝑛

1
2

𝒔𝒔 − 𝐷𝐷𝒂𝒂
2

2
+ 𝜆𝜆 𝒂𝒂 𝟏𝟏 + 𝜇𝜇�

𝒊𝒊

𝒂𝒂 2

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016
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DOMAIN ADAPTATION ON QUALITY INSPECTION

SEM images can be acquired at different zooming levels

Solution: 

• Synthetically generate training images at different zooming levels

• Learn a dictionary 𝐷𝐷𝑖𝑖 at each scale

• Combine the learned dictionaries in a multiscale dictionary 𝐷𝐷

• Sparse-coding including a penalized, group sparsity term

• Monitor a tri-variate feature vector

𝒙𝒙 =

𝒔𝒔 − 𝐷𝐷𝜶𝜶 𝟐𝟐
𝟐𝟐

𝜶𝜶 1

�
𝒊𝒊

𝜶𝜶𝒊𝒊 2

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016
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DOMAIN ADAPTATION ON QUALITY INSPECTION

Performance on SEM image dataset acquired at 4 different zooming levels (A,B,C,D). It 
is important to include group-sparsity regularization also in the sparse coding stage

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING

We propose to design linear transformations 𝐹𝐹𝑟𝑟1,𝑟𝑟0 to adapt user-specific dictionaries 
𝐷𝐷𝑢𝑢,𝑟𝑟1 = 𝐹𝐹𝑟𝑟1,𝑟𝑟0 ⋅ 𝐷𝐷𝑢𝑢,𝑟𝑟0 , 𝐹𝐹𝑟𝑟0,𝑟𝑟1 ∈ ℝ

𝑚𝑚×𝑚𝑚

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Domain Adaptation for Online ECG Monitoring” ICDM 2017,
D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING

We propose to design linear transformations 𝐹𝐹𝑟𝑟1,𝑟𝑟0 to adapt user-specific dictionaries 
𝐷𝐷𝑢𝑢,𝑟𝑟1 = 𝐹𝐹𝑟𝑟1,𝑟𝑟0 ⋅ 𝐷𝐷𝑢𝑢,𝑟𝑟0 , 𝐹𝐹𝑟𝑟0,𝑟𝑟1 ∈ ℝ

𝑚𝑚×𝑚𝑚

Surprisingly these transformations can be learned from a publicly available dataset 
containing ECG recordings at different heart rates from several users.

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Domain Adaptation for Online ECG Monitoring” ICDM 2017,
D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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LEARNING TRANSFORMATIONS

For each pair of heartrates (𝑟𝑟0, 𝑟𝑟1) we learn 𝐹𝐹𝑟𝑟0,𝑟𝑟1 by solving the following optimization 
problem (involving data from 𝐿𝐿 users of the LS-ST Dataset)

𝐹𝐹𝑟𝑟1,𝑟𝑟0 = argmin
𝐹𝐹,{𝑋𝑋𝑢𝑢}

1
2
�
𝑢𝑢=1

𝐿𝐿

𝑆𝑆𝑢𝑢,𝑟𝑟1 − 𝐹𝐹 𝐷𝐷𝑢𝑢,𝑟𝑟0 𝑋𝑋𝑢𝑢 𝐹𝐹
2

+ 𝜇𝜇�
𝑢𝑢=1

𝐿𝐿

𝑋𝑋𝑢𝑢 1 +
𝜆𝜆
2
𝑊𝑊⊙𝐹𝐹 2

2 + 𝜉𝜉 𝑊𝑊 ⊙ 𝐹𝐹 1

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Domain Adaptation for Online ECG Monitoring” ICDM 2017,
D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019

Data-fidelity for heartbeats
transformed by 𝐹𝐹, computed

over all the 𝐿𝐿 users

Sparsity Weighted elastic net 
regularization to add stability

and steer 𝐹𝐹 towards 
desirable properties

The matrix 𝑊𝑊 is penalyzing less values 
along the diagonal of 𝐹𝐹, thus assuming 

transformation to be local, i.e., 
involging only neighbouring samples
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING

We adapt user-specific dictionaries through 𝐹𝐹𝑟𝑟1,𝑟𝑟0
𝐷𝐷𝑢𝑢,𝑟𝑟1 = 𝐹𝐹𝑟𝑟1,𝑟𝑟0 ⋅ 𝐷𝐷𝑢𝑢,𝑟𝑟0 , 𝐹𝐹𝑟𝑟0,𝑟𝑟1 ∈ ℝ

𝑚𝑚×𝑚𝑚

User-independent transformations enable accurate mapping of user-specific 
dictionaries

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Domain Adaptation for Online ECG Monitoring” ICDM 2017,
D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019

�𝐷𝐷𝑢𝑢,𝑟𝑟1

= �

𝐷𝐷𝑢𝑢,𝑟𝑟0𝐹𝐹𝑟𝑟1,𝑟𝑟0
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING

We adapt user-specific dictionaries through 𝐹𝐹𝑟𝑟1,𝑟𝑟0
𝐷𝐷𝑢𝑢,𝑟𝑟1 = 𝐹𝐹𝑟𝑟1,𝑟𝑟0 ⋅ 𝐷𝐷𝑢𝑢,𝑟𝑟0 , 𝐹𝐹𝑟𝑟0,𝑟𝑟1 ∈ ℝ

𝑚𝑚×𝑚𝑚

User-independent transformations enable accurate mapping of user-specific 
dictionaries

Carrera D., Rossi B., Fragneto P., and Boracchi G. "Domain Adaptation for Online ECG Monitoring” ICDM 2017,

�𝐷𝐷𝑢𝑢,𝑟𝑟1

= �

𝐷𝐷𝑢𝑢,𝑟𝑟0𝐹𝐹𝑟𝑟1,𝑟𝑟0
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DICTIONARY ADAPTATION PERFORMANCE

The proposed domain adaptation solution achieves:

• lowest signal reconstruction error

• best anomaly detection performance (AUC)

Among alternative methods for dictionary adaptation

Carrera D., Rossi B., Fragneto P., and Boracchi G. "Domain Adaptation for Online ECG Monitoring” ICDM 2017,
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Assignments & References
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Assignments

• Implement the anomaly detection based on l1 sparse coding
• Use 15x15 patches
• You can improve the results by fine tuning all the parameters

• Implement the classification based on sparse representation
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