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Denoising: The Issue

A Detail in Camera Raw Image z
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Denoising: The Issue
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Denoising: The Issue
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Image Formation Model

Observation model is
z(x) = y(x) + n(x), x€E€X
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Image Formation Model

Observation model is
z(x) =yx)+nkx), x€X
Where
 x denotes the pixel coordinates in the domain X < Z?
* y is the original (noise-free and unknown) image,y € [0,1]
* 7z is the noisy observation,z € [0,1] (clipping)
* 7 is the noise realization
For the sake of simplicity we assume Additive White Gaussian Noise (AWGN):
n ~ N(0,0%) and n(x) are all independent realizations.

The noise standard deviation o is also assumed as known.
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Goal of Image Denoising

The goal of image denoising is to compute y realistic estimate of the
original image y, given the noisy observation z

Denoising is an ill posed problem and requires some form of
regularization to promote outputs that are close to natural images.

Our Prior: Sparsity w.r.t. DCT basis!
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Image Denoising

Deniosing is a fundamental step in image processing pipelines

Improves the quality of digital images to the standard we are used to

Eases the following algorithms in imaging pipelines from those solving
low-level (e.g., edge detection), till high-level (recognition) problems

It is also a tool to quantitativelly assess the performance of a
descriptive model for images.
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DCT Denoising Denoising by Convolution

Estimated Image, PSNR : 29.160 ., =] © 7} Estimated Image (conv), PSNR : 22.093
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Image Denoising By Sparsity Priors



Sliding DCT Denoising

A very powerful, yet simple denoising algorithm that can pair much more
sophisticated alternatives

A description of the algorithm steps can be found here

Yu, Guoshen, and Guillermo Sapiro. "DCT image denoising: a simple and effective
image denoising algorithm." Image Processing On Line 1 (2011): 292-296.

https://www.ipol.im/pub/art/2011/ys-dct/article.pdf
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Assignment
Sliding DCT
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Implement DCT denoising on a natural image

* Load the cameraman image
* Add additive white Gaussian noise having standard deviation o

* For each patch over a tile, perform denoising in the DCT domain
use T = 30 or T = 0/2 Inp? as in [Donoho & Johnstone]

e Remember not to threshold the
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DC coefficient, which contains ase S (2 D)
the average patch intensity s — [ seasiprig | B3 x
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Reconstruct the denoised patch § S e fiese |

D.L. Donoho, I.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage. Biometrika, vol. 83, pp. 425-455, 1994. http://dx.doi.org/10.1093/biomet/81.3.425



Assess Denoising Performance

Measure the PSNR of the denoised image

PSNR(y,y) = 10 1 =
(y y) 0810 MSE(y, y)

Where 1 stands for the signal peak (image is assumed to be in [0,1])

sigma noise = 20/255; img = im2double (imread('cameraman.tif'));

File Edit View Insert Tools Desktop Window Help | File Edit View Insert Tools Desktop Window Help = File Edit View Insert Tools Desktop Window Help
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Assignment

Try the following

Adopt no aggregation (take non-overlapping patches)
Denoise a 16 X 16 checkerboard image

Measure the PSNR

Repeat the operation after shifting 1 right and 1 pixel down the
checkerboard

G. Boracchi



No shift Shift [1 row, 1 col]

Estimated Image, PSNR : 35.747 Estimated Image, PSNR : 23.645
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Let’s investigate this further...

You might want to go back to the 1D signal and check what happens
when transforming in DCT domain a constant singal or a shifted version of
it (thus including two different levels)
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A Very Sparse Signal

original signal DCT Coefficients

2 T T T T T T T T
1.8 - ol |
1.6 7
1.4 1 8 -
1.2 7
6 - -
*{ 5 S S
0.8 r .
4 - .
0.6 1
0.4 -
2 - -
0.2 r 1
0 L L L L L L .. __________________________________________]
20 40 60 80 100 120 20 40 60 80 100 120

G. Boracchi



A Shift breaks sparsity!

original signal DCT Coefficients
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A Shift breaks sparsity!
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Assignment: Move to Sliding DCT

Provide an estimate for each block centered in a pixel.
-> each pixel receives and aggregates p? estimates

Adopt simple averaging for aggregation



Aggregation
Aggregation considers all the possible shifts, thus make the DCT

translation invariant

However, not all the shifted versions of the input are good at the same!
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The Benefit of Aggregation

1 s N
d -4

Estimated Image, PSNR : 26.158 Estimated Image, PSNR : 29.212
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Aggregation helps

Use Sliding DCT with 2 different types of aggregation weights

e Uniform
w(x) =1
e Sparsity-aware
1
w(x) = -
121l

Make sure that when the DC coefficient is zero, ||X]|y is set to 1

Sparsity-aware weights are larger to those blocks that are sparser. As
these achieve superior performance

G. Boracchi



Uniform Weights Sparsity-aware

Estimated Image, PSNR : 30.582 Estimated Image, PSNR : 35.656
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Assignment

Implement both forms of aggregation and
Test both on natural images

Test both on checkerborard

Finally, test how much the choice of the threshold 7 influences the
denoising performance. Observe the resulting image when:

- 17K 30
- T> 30

This is very important to understand how important is the choice of the
threshold

G. Boracchi



Noise Estimation



Estimating o

The value of o plays a crucial role in Sliding DCT denoising (and in
sparsity promoting algorithms in general)

You can notice this when changing the threshold 7

.. but how to estimate the noise standard deviation, provided only a noisy
image’

G. Boracchi



Noise estimation by filtering

Idea: bring all the flat areas of an image «around zero», and then
estimate the sample standard deviation.

(z®[-1,1D=(+n ®[-1,1]) =

Now, the first term should be close to zero except at image boundaries.
The second term corresponds to a random variable having distribution

n®[-1,1] ~N(0,20%)

Therefore

std{z ®» [—-1,1]}
V2

o =

G. Boracchi



Noise Estimation by Filtering + Robust Statistics

Using the sample variance std{} might be heavily affected by outliers,
which can result from the termy ® [—1,1]

std{z ®» [—-1,1]}
V2

o =

A better estimate is provided by a robust estimator of the sample
variance, namely the Median of Absolute Deviation
MAD{z ® [-1,1]}

0.67449 *+/2
Being MAD(X) = median{|X — median{X}|}

o =
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Assignment

Implement the noise estimation formula and use this in the denoising
framework
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Convolutional Sparse Coding

Gobal Optimization vs Aggregation of Partial Estimates
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Filters

Feature maps
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Global Optimization vs Partial Aggregation, ell1
regularization, natural images

Results on Natural Images
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[SPARS 2017] D. Carrera, G. Boracchi, A. Foi and B. Wohlberg , “Sparse denoising: aggregation

versus global optimization” SPARS 2017 G. Boracchi



Global Optimization vs Partial Aggregation, ell1

regularization, synthetic and very sparse images
Results under Extreme Sparsity
SNR(¥giob) — SNR(yagr)
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Global Optimization vs Partial Aggregation, ell o
regularization, natural images

Results on Natural Images
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Global Optimization vs Partial Aggregation, ello
regularization, synthetic and very sparse images

Results under Extreme Sparsity
SNR(Yglnb) — SNR(yaggr)
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Image Inpainting



Image Inpainting

(a) Masked-Image (b) Inpainted-Image

Jam, Jireh, et al. "A comprehensive review of past and present image inpainting methods." Computer vision and image understanding 203 (2021): 103147. C. Boracchi



Image Formation Model

Original Image Dead pixels
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Image Inpainting

29.6359

Estimated Image, PSNR

Dead pixels
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Assignment

Image Inpainting Enforcing Sparsity

G. Boracchi



Denoising via Sparse Coding

Take the setup of Assignment 3 (denoising via DCT)

* Load the dictionary provided (learned from natural images)
 Add a constant atom and avoid average subtraction

* Replace the analisys and the thresholding of patch s; with the sparse
coding using the OMP with respect to the inpainted dictionary P;D. Use

as a threshold for residual

p?—m
N P

5;=115p-0 -

being m the number of zero entries in s;

* Perform the synthesys of each patch using the original dictionary D

G. Boracchi



The Dictionary from KSVD

+ remember to add a constant atom!
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Anomaly Detection



The anomaly detection problem
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The anomaly detection problem
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The anomaly mask
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Normal Patches Learned Dictionary
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The Typical approach

Most of the considered methods

1.

2.

Estimate a model describing normal data (background model)

Use the background model to provide, for each test signal/patch, an
anomaly score, or measure of rareness

Apply a decision rule to the anomaly score to detect anomalies
(typically thresholding)

[optional] Perform post-processing operations to enforce smooth
detections and avoid isolated pixels that are not consistent with
neighbourhoods

Remark: Statistical-based approaches seen before uses as background
model the statistical distribution ¢y and a statistic as anomaly score

G. Boracchi



The Typical approach

Most of the considered methods

1. Estimate a model describing normal data (background model)

2. Use the background model to provide, for each test signal/patch, an
anomaly score, or measure of rareness

3. Apply a decision rule to the anomaly score to detect anomalies
(typically thresholding)

4. [optional] Perform post-processing operations to enforce smooth
detections and ave The background model is used to  sistent with

neighbourhoods bring an image patch into the

. “random variable world”
Remark: Statistical-bascu appruaciies seenr ueiuie uses as background

model the statistical distribution ¢, and a statistic as anomaly score
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The Typical approach

Most of the considered methods

1.

Estimate a model describing normal data (background model)

2.

Use the background model to provide, for each test signal/patch, an
anomaly score, or measure of rareness

Apply a decision rule to the anomaly score to detect anomalies
(typically thresholding)

[optional] Perform post-processing operations to enforce smooth
detections and Once “having applied” the background ‘ent with
neighbourhoods model, one can use anomaly detection

methods for the “random variable world”.

Remark: Statist.ica}l- This might require fitting an yackground
model the statistic additional model naly score

G. Boracchi



The Typical approach

Most of the considered methods
1. Estimate a model describing normal data (background model)

2. Use the background model to provide, for each test signal/patch, an
anomaly score, or measure of rareness

3. Apply a decision rule to the anomaly score to detect anomalies
(typically thresholding)

4. [optional] Perform post-processing operations to enforce smooth
detections and avoid isolated pixels that are not consistent with
neighbourhoods

Remark: Statistical-based aporoaches seen before uses as background

model the statistic: And it is important to control the naly score
False Positive Rate

G. Boracchi



The three major ingredients

Most detection algorithms have three major ingredients:
* The background model M, learned from normal data
* The statistic / anomaly score: err(s), L(s), A(S), ...

 Decision rule to detect, e.g. err(s) = y possibly controlling the FPR, as
in other statistical detection methods

G. Boracchi



Byl
A Dictionary learned from normal patches b e

Example of training patches Few learned atoms (BPDN-based learning)
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SPARSE REPRESENTATIONS AS FEATURE EXTRACTORS

To assess the conformance of s, with D we solve the following

Sparse coding:

x. = argmin||Dx — s.||5 + Allx|l1, A>0
x€ERM

which is the BPDN formulation and we solve using ADMM.

The penalized ¢ formulation has more degrees of freedom in the reconstruction, the
conformance of s with D have to be assessed monitoring both terms of the functional

S. Boyd, N. Parikh, E. Chu, B. Peleato, ). Eckstein. "Distributed optimization and statistical learning via the alternating direction method of multipliers" 2011



Features extracted from sparse coding

Features then include both the reconstruction error
err(s.) = |IDx; — scll3
and the sparsity of the representation
x4
Thus obtaining a data-driven feature vector

2
P2 S||2]
C
[EAR
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Density-based monitoring

Anomalies
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FEATURES EXTRACTED FROM SPARSE CODING

Training:
e Learn from S the dictionary D

 Compute the sparse representation w.r.t. D, thus features x over the validation set
V,suchthatVnNnS =0

« Learn from V, the distribution ¢, of normal features vectors x and the threshold y.
The model for anomaly detection is (D, ¢g,¥)

Testing:

e Perform sparse coding of a test signal s, thus get the feature vector x

* Detect anomalies when A(s) = ¢o(x) <y

D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11
pages, doi:10.1109/TI1.2016.2641472



FEATURES EXTRACTED FROM SPARSE CODING

Training:
e Learn from S the dictionary D

 Compute the sparse representation w.r.t. D, thus features x over the validation set
V,suchthatVnNnS =0

e Learn T ’ " - reshold y.

The mod This is rather a flexible solution and can be adapted when

Testing: operating conditions changes (e.g. heartrate changes, images are

e Perfor acquired at different zooming level)

d Detecl- CAlTIVIITWVIIV Y Vviin 11 Ulr\uj \lJU\II’j ~ ,

D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11
pages, doi:10.1109/TI1.2016.2641472
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Convolutional Sparsity

Convolutional sparse models are a recent development of sparse
representations

n
S~ z d; ® «a;, s.t. a; is sparse
i=1

where a signal s is entirely encoded as the sum of n convolutions
between a filter d; and a coefficient map «;

Pros:
* Translation invariant representation
* Few small filters are typically required

* Filters exhibit very specific image structures
* Easy to use filters having different size a

Collaboration with Los Alamos National Laboratory, NM, USA s Los Alamos

chi



Example of Learned Filters

Learned Filters

Training Image
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Y s

3 TIRURRTS L L4 BAF _ gE¥P™—N§ [ Ly
R R A T
I _I

AUARRRRRSE Y} ted iniohnnt e

ingman gaAPEEEER L s iEEN]
e et
UDiapnasssis HH

-
. “--'- BPIRE mrr~mgggFun
e
1) geall 17 g pm
R e T

I

o st
THA _mm.“.“ U P e O A T



Convolutional Sparsity for Anomaly Detection

If we consider the convolutional sparse coding

{atn

n 2 n
{a} = argmin Edi ®a;—s +/12||a||1
=1 2 =1

we can build the feature vector as:

1 0as)
-

¢ 1

o)
a
|

o~
Il
p—

..but unfortunately, detection performance are rather poor

2_
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Sparsity is too loose a criterion for detection

Normal Anomalous
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exhibit same sparsity and reconstruction error
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Convolutional Sparsity for Anomaly Detection

Contributions:

* Design a feature vector that accounts for the number of filters that are activated

within each region
i 5

geons

2
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N

[IJICNN 2015] D. Carrera, G. Boracchi, A. Foi and B. Wohlberg , “Detecting Anomalous Structures
by Convolutional Sparse Models “ 1EEE 1JCNN 2015 chi



Convolutional Sparsity for Anomaly Detection

Contributions:

* Design a feature vector that accounts for the number of filters that are activated
within each region

* Design an efficient sparse coding algorithm that includes a term penalizing the

local group sparsity
m 2 m m
Ydi@a—s|| +A)llal+¢) ([ |a
i=1 2 =1 c =1

{a} = argmin
{a}m C

2

[IJICNN 2015] D. Carrera, G. Boracchi, A. Foi and B. Wohlberg , “Detecting Anomalous Structures
by Convolutional Sparse Models “ 1EEE 1JCNN 2015 chi



Counteracting Domain Shift
in Anomaly Detection

Adaptation Strategies

G. Boracchi



NEED FOR ADAPTATION P 4"

A challenge often occurring when performing online monitoring

Test data might differ from training data: need of adaptation, otherwise anomaly
detection methods would be ineffective
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Defects have to be detected at different zooming levels,
that might not be present in the training set.

G. Boracchi
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NEED FOR ADAPTATION LT LIS

A challenge often occurring when performing online monitoring

Test data might differ from training data: need of adaptation, otherwise anomaly
detection methods would be ineffective

60 bpm 90 bpm 120 bpm 60 bpm 90 bpm 120 bpm

R R R

T T

;uw P T P

The heartbeats get transformed when the heart rate changes:
learned models have to be adapted according to the heart rate.

G. Boracchi




MODEL ADAPTATION

In the machine-learning literature these problems go under the name of transfer
learning / domain adaptation

Transfer Learning (TL): adapt a model learned in the source domain (e.g. heartbeats at

a given heartrate / fibers at a certain zoom level) to a target domain (e.g. heartbeats
at an higher heartrate / fibers zoomed in or out)

Many TL methods have been designed for supervised / semi-supervised / unsupervised

methods, depending on the availability of (annotated) data in the source and target
domains.

In most anomaly detection settings, no labels in the target data are provided (typically
they are not even provided in the source domain)

S. J. Pan and Q. Yang "A survey on transfer learning“ |IEEE TKDE 2010
S. Shekhar, V. M. Patel, H. V. Nguyen, & R. Chellappa, “Generalized domain-adaptive dictionaries,” CVPR 2013
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DOMAIN ADAPTATION ON QUALITY INSPECTION -‘ "

SEM images can be acquired at different zooming levels

Solution:

» Synthetically generate training images at different zooming levels
* Learn a dictionary D; at each scale

 Combine the learned dictionaries in a multiscale dictionary D
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D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016
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DOMAIN ADAPTATION ON QUALITY INSPECTION

SEM images can be acquired at different zooming levels

Solution:

» Synthetically generate training images at different zooming levels
* Learn a dictionary D; at each scale

 Combine the learned dictionaries in a multiscale dictionary D

* Sparse-coding including a penalized, group sparsity term

1
a = argmin —||S —Da|| +/1||a|| +,uZ||a||

acRn

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016



DOMAIN ADAPTATION ON QUALITY INSPECTION

SEM images can be acquired at different zooming levels

Solution:

Synthetically generate training images at different zooming levels
Learn a dictionary D; at each scale

Combine the learned dictionaries in a multiscale dictionary D
Sparse-coding including a penalized, group sparsity term

Monitor a tri-variate feature vector
] ,-
lIs — Dat||2

|leel|,

Z““i”z

- l

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016
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RIS
DOMAIN ADAPTATION ON QUALITY INSPECTION -- Al

Performance on SEM image dataset acquired at 4 different zooming levels (A,B,C,D). It
is important to include group-sparsity regularization also in the sparse coding stage

1 1
0.8 / 0.8
0.6 - 0.6
fas oc
o o
= =
0.4 0.4
. — Oracle Scale
— Multis. Group-Sparse Cod. & Ind. — Oracle Scale (Adler)
’ Multis. Group-Sparse Ind. , Single Scale Series A
().2 Multis. All-in-one-bag 0.2 = = Single Scale Series B

— Multiscale (Adler)
Others - see Figure (b)

Single Scale Series C
Single Scale Series D

| | | | | | | | | | | | | Others - see Figure (a) |
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING L it

We propose to design linear transformations F. . to adapt user-specific dictionaries

— . mXxXm
Du,'rl — Frl,T'O Du,ro’ FTO,Tl E ]:R

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "“Domain Adaptation for Online ECG Monitoring” ICDM 2017,
D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019



DOMAIN ADAPTATION FOR ONLINE ECG MONITORING -

L]

We propose to design linear transformations F. . to adapt user-specific dictionaries

— . mXxXm
Du,'rl — Frl,T'O Du,ro’ FTO,Tl E ]:R

Surprisingly these transformations can be learned from a publicly available dataset

containing ECG recordings at different heart rates from several users.

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "“Domain Adaptation for Online ECG Monitoring” ICDM 2017,

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019




LEARNING TRANSFORMATIONS L a?

For each pair of heartrates (rp, ;) we learn E, ;. by solving the following optimization
problem (involving data from L users of the LS-ST Dataset)

Fy

1

L L

1 2 A

To — all;g{;m}n EE”Su,rl _FDu,rO Xy ”F +.UZ”Xu”1 +§”W®F“% + &[lW O Fll4
Sy u=1 u=1

Data-fidelity for heartbeats Sparsity Weighted elastic net
transformed by F, computed regularization to add stability
over all the L users and steer F towards

desirable properties

W 1
0.8 The matrix W is penalyzing less values
0.6 along the diagonal of F, thus assuming
e transformation to be local, i.e.,
involging only neighbouring samples
0.2
0

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Domain Adaptation for Online ECG Monitoring” ICDM 2017,
D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING LJ‘—LJ”L

We adapt user-specific dictionaries through F. .

— . mXxXm
Du,rl — Frl,T'O Du,ro’ FTO,Tl E R

User-independent transformations enable accurate mapping of user-specific
dictionaries

W
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING L]

We adapt user-specific dictionaries through F. .

— . mXxXm
Du;rl _ FrllTO DuJTO, FT'(),T'l E ]:R

User-independent transformations enable accurate mapping of user-specific
dictionaries
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DICTIONARY ADAPTATION PERFORMANCE -

O
R
3 D

The proposed domain adaptation solution achieves:
* |owest signal reconstruction error
« best anomaly detection performance (AUC)

Among alternative methods for dictionary adaptation

Reconstruction Error AUC
—&— Proposed 1
DTW 0.95
Cut
—=— SDDL ) 091 J
—¢— Oracle 0.85 |
S0 100 120 &0 100 120
Heart Rate (bpm) Heart Rate (bpm)

Carrera D., Rossi B., Fragneto P, and Boracchi G. "Domain Adaptation for Online ECG Monitoring” ICDM 2017,



Assignments & References



Assignments

 Implement the anomaly detection based on |1 sparse coding
e Use 15x15 patches
* You can improve the results by fine tuning all the parameters

 Implement the classification based on sparse representation

G. Boracchi
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