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Nonlinear Filters



Nonlinear Filters

Non Linear Filters are such that the relation
H[Af(@©) +ug®] = 2AH[f] () + u Hlg] ()
does not hold, at least for some value of A, u, f, g or point t.

Examples of nonlinear filter are
« Median Filter (Weighted Median)
* Ordered Statistics based Filters
e Threshold, Shrinkage

There are many others, such as data adaptive filtering procedures (e.g LPA-ICI)



Blockwise Median

Block-wise median: replaces each pixel with the median of its neighborhood. It is still
a local spatial transformation!

This is edge-preserving and robust to outliers!
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Salt-and-pepper noise

Salt and Pepper (Impulsive) noise



Denoisng using local smoothing 3x3




Denoisng with median 3x3

Salt and Pepper (Impulsive) noise



Histogram matching and median
filtering are useful! landslide
monitoring
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Median image + histogram equalization







Good to know, but optional
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Morphological Operations

Ordered Statitiscs



Binary images

A binary image is defined as I € {0,1}f*¢
Each pixel can be either true (1) / false (o)

Typically binary images are the result of pre-processing
operations including thresholding




An overview on morphological operations

Erosion, Dilation
Open, Closure

We assume the image being processed is binary, as these operators are typically
meant for refining “mask” images.



Boolean operations on binary images I € {0,1}¢*¢

True 1/ false 0
A NOT(A)

L

NOT A=A == 0



Union of binary images

Equivalent to the OR operation
A B AUB

AUB =A+ B >0



Intersection of Binary Images

Equivalent to the AND operation
A B ANB

ANB =A+ B >1



On binary images it is possible to define XOR

A B XOR(A,B)

y

XOR(AB)=AUB — ANB



What do we use this for?



Intersection over the Union (loU, Jaccard Index)

~ i

- Ground-truth bounding box"
e LR
. Predicted bounding box

By Adrian Rosebrock http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=57718561



Intersection over the Union (loU, Jaccard Index)

IOU = Area of intersection / Area of

overlap




Intersection over the Union (loU, Jaccard Index)

loU: 0.4034 loU: 0.7330 loU: 0.9264

L

Poor Good Excellent

By Adrian Rosebrock http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=57718559



Jaccard Index (loU)

It is a statistical measure of similarity between two sets, being in case of images the
coordinates of the pixels set to true
|A N B

](A'B):|AUB|

It ranges between [0,1] being J(4, B) = 0 when A and B are disjoint, and J(4,B) =
1, when the two sets coincides.

It is a standard reference measure for detection performance



Jaccard Index (loU)

It is not necessarily defined for bounding boxes (even though most of deep learning
networks for detections provide bb as outputs)

Credits Barozzi — Guidi IACV project 2017



Jaccard Index (loU)
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Jaccard Index (loU)

miscela di caffé macinato
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Jaccard Index (loU)

A B

Ground Truth
(annotated region)

Detection Output




Jaccard Index (loU)

AN B
|A U B|

J(A,B) =




Filters on binary images

It is possible to define filtering operations between binary images
Consider also binary filters, i.e. spatial filters having binary weights.

In the context of object detection, these can be used to refine the detection
boundaries



Erosion 0 0 1
0 1 1 mmp ?
General definition: 0 1 1

Nonlinear Filtering procedure that replaces each pixel value, with the minimum on a

given neighbor

As a consequence on binary images, it is equivalent to the following rule:
E(x)=1 iff the image in the neighbor is constantly 1

This operation reduces thus the boundaries of binary images

It can be interpreted as an AND operation of the image and the neighbour overlapped
at each pixel



Erosion

ERODE(A, U)




Erosion

ERODE(A, U)

The gray area corresponds
to the input



Erosion

Erosion removes half size of the structuring element used as filter




Erosion

ERODE(A, U)




Erosion

ERODE(A, U)




Dilation 0 0 1
0 1 1 # ?
General definition: 0 1 1

Nonlinear Filtering procedure that replaces to each pixel value, with the maximum on

a given neighbor

As a consequence on binary images, it is equivalent to the following rule:
E(x)=1 iff at least a pixel in the neighbor is 1

This operation grows fat the boundaries of binary images

It can be interpreted as an OR operation of the image and the neighbour overlapped at
each pixel



Dilation

DILATE(A, U)




Dilation

DILATE(A, U)

The brighter area now
corresponds to the input



Dilation
Dilation expands half size of the structuring element used as filter




Dilation

DILATE(A, U)




Dilation

DILATE(A, U)




Open and Closure

Open Erosion followed by a Dilation

Closure Dilation followed by an Erosion —




Open

Open Erosion followed by a Dilation
* Smooths the contours of an object
 Typically eliminates thin protrusions



Open

= ERODE(A, U) 0 = DILATE(O, U)




Open

= ERODE(A, U) 0 = DILATE(O, U)




Open

= ERODE(A, U) 0 = DILATE(O, U)

The gray area corresponds
to the input




Closure

Closure Dilation followed by an Erosion
* Smooths the contours of an object, typically creates bridges
 Generally fuses narrow breaks



Close

O = DILATE(A, U) = ERODE(O, U)




Close

O = DILATE(A, U) = ERODE(O, U)

The gray spot was «false»
in the input




There are several other Non Linear Filters

Ordered Statistic based

* Median Filter
« Weight Ordered Statistic Filter (being erosion and dilation special cases)

 Trimmed Mean
e Hybrid Median

Ordered statistics filters (including erosion and dilation) can be applied to grayscale
images as well, as their definition is general

In Python: skimage .morphology



Extraction of connected components

Extract subsets of pixels that are connected according to 4-pixel connectivity or 8-pixel
connectivity

input image




Connected components

Extract subsets of pixels that are connected according to 4-pixel connectivity or 8-pixel
connectivity




Connected components

This allows to identify different objects or target in the scene

labeled imge

Here, each color
denotes a
different number,
l.e. a label.
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Connected components

Here, each color denotes a different number, i.e. a label.

labeled imge

Here, each color
denotes a
different number,
l.e. a label.
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Connected components

Extract subsets of pixels that are connected according to 4-pixel connectivity or 8-pixel
connectivity




Two Pass Algorithm: First Pass

Iterate through each pixel (7, ¢)
If [(r,c) ==
Get a neighbor U ¢y of (7, ¢)
If I(u,v) == 0 V(u,v) € Uy
Assign a new label L(r,c)
Else L(r,¢) = min(L(u, v)) over Ug o
If there are different labels in U
Record they are equivalent in a table

In Python skimage .measure.label



Binary input image

Pixel info: (X Y) Intensity

By Dhulloo3 - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=10166860



Iterations of the first pass
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L = {1}




Iterations of the first pass

File Edit Window Help
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Iterations of the first pass

File Edit Window Healp a

S—
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L = {1,2,3}




Iterations of the first pass
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L = {1,2,3,4} store 1 =2




Output of the first pass

File Edit Window Help
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= {1,2,3,4,5,6,7} equivalence sets {1,2}, {3,4,5,6,7}

Pizeal infor (4 1) Intensity




Two Pass Algorithm: Second Pass

Iterate through each pixel (7, ¢)
If I(r,c) ==
Relabel the element with the lowest equivalent label



Output of the Second Pass

Eile Edit Window Help

—
Ba ?

1 1 1 1 .. ..
-. 1 1 1 ... 3 ...
- 1 1 ... 3 3 .. 3 3 .

By Dhull003 - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=10166888

Fiwel infoi (1, 21 0



Output of the Second Pass

Conected Region Extraction Example

R Mumbers

10 12 14 16

2 4 4] g
Column Mumbers

By Dhull003 - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=10166888



Bounding Box vs Axis

These provide information about size and orientation of the object

Too small, can
be removed
analyzing the
area




Bounding Box vs Axis

These provide information about size and orientation of the object

Bounding box allow
to crop separate
images for each

component

(these are defined
as the range of
values for each

coordinate)




Bounding Box vs Axis

These provide information about size and orientation of the object

Blob axis are computer as
axis the of the ellipse that
has the same second-
moments as the region.

In Python: skimage .measure.regionprops



Boundary Extraction - Morphological Gradient

The simplest way to extract boundaries of an image is to subtract from a binary image
its eroded version

thresholded image

T=1>T

5 10 15 20 25 30 35 40



Boundary Extraction - Morphological Gradient

The simplest way to extract boundaries of an image is to subtract from a binary image
its eroded version

boundary image

B=T 6h
| Fp - oet?)
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Agenda for today: edges corners ¢t features in images

Su%e/ahwl nmdvvmé/

« Edge detection: derivative filters Szeliski R.
« The problem of geometric matching COM?AA.JF@\" \/ision
* Corner detection:
* Moravec C‘n ?“
* Harris

« Scale Invariant Feature Transform (a milestone in Computer Vision)




Derivatives Estimation



Differentiation and convolution

Recall the definition of derivative

af (xo) i f(xo+ €)= f(x0)
0x €0 €

Now this is linear and shift invariant.
Therefore, in discrete domain, it will be represented as a convolution

A




Differentiation and convolution

Recall the definition of derivative We could approximate this as
0f(xo) _ . (f(xo+€) = f(x0)
Ox -0 € 0f (xn) _ [ One1) = f(Xn)

dx Ax
Now this is linear and shift invariant.

Therefore, in discrete domain, it will be

represented as a convolution which is obviously a convolution

against the Kernel [1 -1];




Finite Differences in 2D (discrete) domain

of (x,y) _ lim( flx+e,y)-f(x, y)j

ax e—0 E

= lim

c—0

5f(ayx,y) (f(x,yﬂ‘ —f(x,y)j

E

af(xn» ym) ~ f(xn+1: :Vm) — f(xn» ym)

0x Ax
af(xn» ym) ~ f(xn: ym+1) _ f(xn» ym)
dy Ay

Discrete Approximation

Horizontal

1]

Vertical

K

Convolution Kernels



Think of an image as a 2d, real-valued function




A 1D Example

Take a line on a grayscale image




A 1D Example (II)

Filter the image values by a convolution against the filter [1 -1]

9 . -0 -9 -9

= +— 1solated point !

E" 5 "‘*'\\ “:, lJ

E j x_\\/_ Ramp ;I HIL Thin lineﬁ\ Step —\;,

E' é ".‘\. : '11Flat segment ;"’\\\ '
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Image strip| 5|54 |3[2|110(0|0|16(0]0(0(0|1|3(1|010(0|0O 7|77 |7
| [ T O O O O O
First Derivative —1-1-1-1-10 0 6 =60 0 0 1 2-2-10 0 0 7 0 0 0

Gonzalez and Woods «Digital image Processing», Prentice Hall;, 3° edition



Derivatives

Derivatives are used to highlight intensity discontinuities in an image and to
deemphasize regions with slowly varying intensity levels

ed J= L O =]

Gray level profile

=l

+— Isolated point

- -9 -»
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Gonzalez and Woods «Digital image Processing», Prentice Hall;, 3° edition




Differentiating Filters

The derivatives can be also computed using centered filters:

fr) =flx—=1) = f(x+1)

Such that the horizontal derivative is:

While the vertical derivativef'x =f ®

f=f ®|1]0]-1




Classical Operators: Prewitt

Horizontal derivative

p—
.l
=

I
—

I

ek
| I

1
s = |1
_1 —

Smooth Differentiate

Vertical derivative

1 1 1
s = d
L 1 1} ’

|l
1
l —
U
L 1




Classical Operators: Sobel

Horizontal derivative

SERE
s = 12 2

Smooth

Vertical derivative

L2
T o2 g W

dx

-]

Differentiate

Py

s () dx

0 -1
0 -2
0 -1




Another famous test image - cameraman

CV & IP Boracchi Magri



Horizontal Derivatives using Sobel
Vi, = (I ®dy)

VL. (r,c)

Vi(r,c) = [
VL - oo iy (1. c)

9/ )
L (T;C} VIX (HCJ

CV & IP Boracchi Magri

>




Vertical Derivatives using Sobel

Vi, = (1 ® dy)
d,= d)

VI.(r,c)
Vi(r,c) = [Vly (r,c)

CV & IP Boracchi Magri



Gradient Magnitude

V]| = \[(1 ®dy)?2+ (I ® dy)z

VI.(r,c)
ZCLR M




The Gradient Orientation

Like for continuous function, the gradient in each pixel points at the steepest
growth/decrease direction.

VIy(r,c)\ _ N (I®d,)(rc)

LVI (7‘, C) = atand VIx (T‘, C) (I @ dx)(ri C)

The gradient norm indicates how strong is the
intensity variation in the gradient direction |

X ’\"v‘
9




Think of an image as a 2d, real-valued function
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The Image Gradient
Image Gradient is the gradient of a real-valued 2D function

d
VI(r,c) = [; g d;] (r,c)

where principal derivatives are computed through convolution against the derivative
filters (e.g. Prewitt)

1 0 -1

dx = [1 0 —1], dy = dx'
1 0 -1

Image gradient behaves like the gradient of a function:

|VI(r,c)| is large where there are large variations
2VI(r,c) is the direction of the steepest variation



Think of an image as a 2d, real-valued function
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Think of an image as a 2d, real-valued function

0.9 —

0:8:==

0.7 —

0.6 —

0.5 —

0.4 —

[iym—

0.2 —

04 —

CV & IP Boracchi Magri

DR Rz (s

A
A AN
A

‘ 7z
il
f

| *
) T T
}I U s, /”r’.‘)“’.“’\ ,: :

I i

11\

I
I
|

|

il“\ M

\| U A

| RS

M \ R EHT)
[

L

' [ " Y G :‘\‘l ji 7 7 7 ===
fm o R o2t s / o
(I “““\‘ M ‘é‘gﬁf ) '5. 27 et
[t ) s
[ /"?{""Aff._
DN S,

‘k'\\! b

' B 5 ORI
MY bt s
“ TR N

[

160 180

200

What about the gradient in this neighborhood?




Think of an image as a 2d, real-valued function
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Think of an image as a 2d, real-valued function
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Higher Order Derivatives

CV & IP Boracchi Magri



Derivatives

Derivatives are used to highlight intensity discontinuities in
deemphasize regions with slowly varying intensity levels

an image and to

% g - Isolated point ;"'_*"-
E-' S e-e R :1-. St IJ
0 ‘. am I T cp '
E j » P . Thin llne_\ _\;
gﬂé N ' Flat segment ;’H\ '
C N b \ PR :f
0 \‘-——-——-r —-0--o-o N — - -
Image strip| 5|54 |3 |2{1[0]0|0[6[0][0|0[0]|1][3|1|0[0]0]0|7]|7]7]|7
U T (O
First Derivative —1—-1-1-1-10 0 6 =60 0 0|1 2-2-1/0 0 0 7 0 0 0
o A 1t T [ IR O O
Second Derivative [0 0 0|1 0 6-126] 0 0 1|1 —41 1 0 of7-7¢ 0 0

Gonzalez and Woods «Digital image Processing», Prentice Hall;, 3° edition




Second Order Derivatives

The Laplacian of the second order derivative is defined as

V2] = o1 + o’
~ 0x2  0y?
where
021
afgz:](x+1,:y)-I—I(X—].,Y)_21(5’5;3’)
041
a_y2=1(x,y—1)+1(x,y+1)—21(x,y)
Thus,

Vel=1(x+1,y)+I(x—1,y)+I1(x,y—1) +I1(x,y + 1) —4I(x,y)
It’s a linear operator -> it can be implemented as a convolution
TODO: prove that the second order derivatve is like this



Filter for Digital Laplacian

CV & IP Boracchi Magri

The Laplacian of the second order derivative is defined as

O/ 110

1 -4 1

O/1]0
Standard

definition, inviariant
to 90° rotation

0°1

dy?
11111
1 (-8 1
11111
Alternative

definition, inviariant
to 45° rotation




The Laplacian: Image Sharpening

The Laplacian of an image have grayish edge lines and other discontinuities, all
superimposed on a dark, featureless background.

CV & IP Boracchi Magri



The Laplacian: Image Sharpening

The Laplacian of an image have grayish edge lines and other discontinuities, all
superimposed on a dark, featureless background.
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The Laplacian: Image Sharpening

Background features can be “recovered” simply by adding the Laplacian image to the
original (provided suitable rescaling)
G(r,c) =1(r,c) + k[V?I(r, )]

CV & IP Boracchi Magri



The Laplacian: Image Sharpening

Background features can be “recovered” simply by adding the Laplacian image to the
original (provided suitable rescaling)
G(r,c) =1(r,c) + k[V?I(r, )]

CV & IP Boracchi Magri



Edges in Images
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Edge Detection in Images

Goal: Automatically find the contour of objects in a scene.

What For: Edges are significant for scene understanding, enhancement compression...

Edge image

L&y | Typically the edge
! \:& mask is «flipped», 1
at edges and 0
elsewhere




Edges in Images

Depth
discontinuities




Edges in Images

Shadows




Edges in Images

Discontinuities in
the surface color,
Color changes




Edges in Images

Discontinuities in
the surface
normal




What is an Edge

Lets define an edge to be a discontinuity in image intensity function.

Several Models
e Step Edge

e Ramp Edge f
e Roof Edge

* Spike Edge

They can be
thus detected as
discontinuities
of image
Derivatives




Edge Detection
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Gradient Magnitude and edge detectors

Gradient Magnitute is not a binary image

We can see edges but we cannot identify them,
yet

VI = \/(1 ® dy)?* + (I ® dy)z




Detecting Edges in Image

Sobel Edge Detector

Discrete Derivatives Gradient Norms Threshold
) —1 d
1 O 1 a
2 0 —2|- dx

/ S \/(%Ij2+[diylj2 Edges
> Threshold ——

Image |




Canny Edge Detector Criteria

Good Detection: The optimal detector must minimize the probability of false
positives as well as false negatives.

Good Localization: The edges detected must be as close as possible to the true
edges.

Single Response Constraint: The detector must return one point only for each
edge point. similar to good detection but requires an ad-hoc formulation to
get rid of multiple responses to a single edge

True Edge Poor singnal-to-noise ratio Poor localization =~ Too many responses




Canny Edge Detector

It is characterized by 3 important steps
« Convolution with smoothing Gaussian filter before computing image derivatives
* Non-maximum Suppression
* Hysteresis Thresholding

J. Canny “A Computational Approach to Edge Detection” IEEE PAMI vol 8, no. 6, Nov. 1986 http://perso.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf



http://perso.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf

Canny Edge Detector

Smooth by Gaussian (smoothing regulated by o)

1 _x2+)2/2
= * G_= e *°
S=G,*I  Go=—
Compute x and y derivatives !
as=|Zs Zs|=[s. 5]
Ox oy
Compute gradient magnitude and orientation
2 2 -1 Sy
AS|=/S? +S? 0=tan™ 2



Canny Edge Operator (derivatives)

AS =AG.*I)=AG_ *I

0G.  6G. T

AG_ =
{ Ox oy

T
AS — GGG*I GGU*]
Ox oy




Convolution is associative

I®(g®dx)

AL A “1\\“-1
erry i YA
IO

2D-Gaussian

0'4‘

QAN et
N
X 3" rrrise

bt

X - derivative



Gaussian Derivative Filters
The amount of smoothing is regulated by a parameter o

o eX~direction y-direction



Canny Edge Detector
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Canny Edge Detector

AS|=/S2 + 57

Gradient Magnitude

‘AS‘ > Threshold =25

Thresholded Gradient
Magnitude




Non-Maximum Suppression: The Idea

We wish to determine the points along the curve where the gradient magnitude is
largest.

Non-maximum suppression: we look for a maximum along a slice orthogonal to the
curve. These points form a 1D signal.

L/

Original Image Gradient Magnitude Segment orthogonal
(before thresholding)



Non-Maximum Suppression
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Non-Maximum Suppression: The Idea

There are two issues:
i. which slice to select to extract the maximum?/
ii. once an edge pixel has been found, which pixel to test next’

L/

Original Image Gradient Magnitude Segment orthogonal
(after thresholding)



Non-Maximum Suppression - Idea (ll)
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In each pixel, the gradient indicates the direction The intensity profile along the segment.
of the steepest variation: thus, the gradient is We can easily identify the location of the

orthogonal to the edge direction (no variation maximum.
along the edge). We have to consider pixels on a
segmrent'feilowing the gradient direction




Non-Maximum Suppression - Threshold

Suppress the pixels in ‘Gradient Magnitude Image’ which are not local maximum

( if ‘AS (x,y) > ‘AS‘(X’,)/')
M(x y):<‘AS(x’y) &‘AS( "non
) x,y)>‘AS(x,y)
0 otherwise

(x’, y’) and (x", y") are the
neighbors of (x,y) in |AS|

".y") These have to be taken on a line

along the gradient direction in (x,y)



Non-Maximum Suppression: Quantize Gradient Directions

In practice the gradient directions are quantized according to 4 main directions, each

covering 45° (orientation is not considered)

e Thus, only diagonal, horizontal, vertical line segments are considered

We consider 4 quantized directions o0,1,2, 3

9/ 1(x0) ;

1
0(xg) = atan .
a/ax I(xo) \

oot
% 2e
e®

Orientation is irrelevant since this is meant for segment extracfioy




Tracking the edge direction

The direction orthogonal to the gradient follows the
edge )

Once a local maxima is found, we consider the
direction orthogonal to the gradient in that pixel,

The direction is quantized as for extracting the 1D
segment for nonmaximum suppression

We move one step in the quantized direction to
determine another point where to extract 1D
segments




Tracking the edge direction

The direction orthogonal to the gradient follows the
edge )

Once a local maxima is found, we consider the
direction orthogonal to the gradient in that pixel,

The direction is quantized as for extracting the 1D
segment for nonmaximum suppression

We move one step in the quantized direction to
determine another point where to extract 1D
segments




Non-Maximum Suppression

AS| = /S% +S?

Results from
nonmaximum
suppression

M > Threshold =25




Hysteresis Thresholding

Use of two different threshold High and Low for
e For new edge starting point
e For continuing edges

In such a way the edges continuity is preserved
&

Crradient

magnitude U
.




Hysteresis Thresholding

If the gradient at a pixel is above ‘High’ threshold,
e declare it an ‘edge pixel’.

If the gradient at a pixel is below ‘Low’ threshold
e declare it a ‘non-edge-pixel’.
If the gradient at a pixel is between ‘Low’ and ‘High’ thresholds

* then declare it an ‘edge pixel’ if and only if can be directly connected to an
‘edge pixel” or connected via pixels between ‘Low” and ‘ High’.



Hysteresis Thresholding

High=35 |
Low =15 |
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Hysteresis Thresholding

M > Threshold =25




Hysteresis Thresholding




Canny Edge Detection

Original Lena

CV & IP Boracchi Magri



Canny Edge Detection
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Canny Edge Detection




Canny Edge Detection - changing hysteresis thresholds

Canny Edge Detection T: [0.1 0.2] S: 1.4142

Threshold: [Low, High], Sigma




Canny Edge Detection - changing hysteresis thresholds

Canny Edge Detection T: [0.005 0.2] S: 1.4142

Decreasing the low threshold extends the
length of existing edges



Canny Edge Detection - changing hysteresis thresholds

Thresholds: [0.1 0.2] sigma: 1.4142

Reference thresholds

x“
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Canny Edge Detection - changing hysteresis thresholds

Thresholds: [0.15 0.2] sigma: 1.4142

Increasing the low threshold shorten edges




Canny Edge Detection - changing hysteresis thresholds

Thresholds: [0.1 0.2] sigma: 1.4142

Reference thresholds

x“

I":I‘-\III h:: \/I



Canny Edge Detection - changing hysteresis thresholds

Thresholds: [0.1 0.3] sigma: 1.4142

Increasing the high threshold reduces the
number of edges




https://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

CV & IP Boracchi Magri
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