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The General Picture

Features can be
stacked in vectors

Effective features have to
be invariant w.r.t.
photometric and

geometric transformation

of the image




Object Recognition by Feature Extraction
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Features and Keypoints

Consider an Image Patch
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Features and Keypoints

Consider an Image Patch

Keypoint: The coordinates of a point
where the image content is sort of
relevant
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Features and Keypoints

A Feature could be
 an Keypoint neighbor
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Features and Keypoints

A Feature could be
 an Keypoint neighbor

e some measures computed in an
image neighbor:

* mean
* variance
e principal directions

stacked in a vector, thus yielding a
descriptor
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Object Recognition by Computer Vision Features

Keypoint detection: identifying coordinates where the image is considered
meaningful for addressing some task

Design Criteria: Keypoints have to be repeatable
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Object Recognition by Computer Vision Features

Descriptor computation: compute a vector that describes the content of an
image in a region around the keypoint

Design Criteria: Features have to be stable
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Object Recognition by Computer Vision Features

Descriptor computation: compute a vector that describes the content of an
image in a region around the keypoint

Design Criteria: Features have to be stable

There is a vector in R128
associated to each of
these regions




Keypoint Detection: The
Rationale

The principle underpinning many
corner detection algorithms
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Keypoint Properties

Keypoints are expected to be in regions where the image is:

» Well-defined: i.e. distinctive, neighboring points should all be
different.

e Stable across views: same scene point should be extracted when the
viewpoint slightly changes

These are necessary properties to achieve repeatable keypoints
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Keypoint Detection

A point is interesting when the image content around there is dissimilar
from the neighboring ones.

* We need a measure to assess local similarity / dissimilarity in images

The typical figures of merit to extract keypoints are:
* Gradient Based (ex Harris, Hessian)
 Phase Based (Kovesi)
 Entropy Based (Zisserman)

and the Keypoints are located as local maxima of these figure of merit
over the whole image.
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Comparing image regions

Dissimilarity Measure: the Sum of Squared Distances (SSD)
Eyy(r,c) = z [I(w,v) —I(u—x,v—y)]?

(u,v)€Uy ¢

{I(U, U), (u' ’U) € UT,C} \

r+y---

{I(u — X,V —}’)» (u;v) € UT,C} /




NaE f br*ﬂ w @' ,-«/-
d Let s go back to our |mage to better understand SSD /‘4

-, d g o WL W T §
b LR WRNRENY - ]
» . fe b " ~ - h “y ~‘.‘ ‘.'
. ] - . . '. : g ._‘I )

Giacomo Boracchi



The SSD as the norm of a vector

The SSD is the £2 norm of the vector given by the difference of two image
patches 2

Ex,y (T', C) —
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The SSD as the norm of a vector

The SSD is the £2 norm of the vector given by the difference of two image

patches 2

Ex,y (T) C) =

The pixel-wise difference among these two
patches is likely to be very close to zero
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The SSD as the norm of a vector

The SSD is the £2 norm of the vector given by the difference of two image

patches 2

Ex,y (T, C) —

The pixel-wise difference among these two
patches is likely to be very close to zero

..the same holds for many orange :
alternatives centered in (r + x,c +y) ( ol b5

along that road. /R {.ﬁ
Thus, (7, c) is not a keypoint {
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1‘.-1&/‘ % i L Lty ﬂ_gr_ixc_-l—y) for many (x,y)

" There are locations (r, c) yielding a patch that is very different from all
3 the neighboring ones, thus which is almost unique:
Ey,(r,c) >0, vV (x,y)

These are the locations we want to select as keypoints

i
d
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The SSD as the norm of a vector

The SSD is the £2 norm of the vector given by the difference of two image
patches

Ex,y (T, C) =

If the pixel-wise difference among
* the yellow patch in (r,c) and

e any orange alternative in patch
(r+x,c+vy)

is likely to be large, then (7, c) is then a
good candidate for becoming a keypoint
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The rationale behind many corner detectors

Compute the Sum of Square Distances between the image values on the
green square at different position

o~

“flat” region: “edge”: “corner”:
no change in no change along significant change
all directions the edge direction in all directions

Ao
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Keypoint Detection: Harris
corner

A meaningful example to be found in many other
algorithms
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Setting up the stage

* (7,c) point where to compute the output
response (candidate keypoint)

* U, . neighborhood identifying the blue area

 E,,(r, c) difference between the green U,
square centered in (r, ¢) and the square ol %rx
centered in (r —x,c —y) ) |~

o
* The pixels inside U, . are indexed by (u, v) (’”‘x'c‘-N
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Moreavec (80) - Corner Detection

Corner measure as the SSD over a fixed set of displacements

Bry(o) = ) wewv)lI@wv) - 1—2v -y

(WVv)EUy ¢
(X, y) € {(110)1 (0,1), (_110)1 (O, _1)}

W, . is a window centered in (7, ¢), which defines each pixel neighbor
U, . (e.g., the green square in the previous slides)
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Moreavec (80) - Corner Detection

Corners == Keypoints

At corners values of E, , “are always big”, even for the less significant
displacements (x,y)

HM(r,c) =T, <gcuyr% (Ex,y (r, c)))

where T, is the hard thresholding operator having threshold y

Corner Detection: Look for local maxima of HM (7, c), as corners
maximizes this measure
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Moravec Drawbacks - Solutions

The response may be noisy

Ex,y(r; c) = Z Wy (U, v) I(w,v) —I(u—x,v— 3’)]2

(W, v)EUY ¢

Solution: take w,. . as Gaussian distributed weights.
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Moravec Drawbacks - Solutions

The response is anisotropic since only a finite set of displacements (x,y)
is considered

By )= ) wie(u,n)[I(,v) = 1w —x,v = y)]?
(WVv)EUy ¢
therefore, the same corner rotated may yield different responses.
Solution: Expand I(u — x,v — y) in Taylor series
I(u—x,v—y) =1wv) +xL,uv)+yL,wv)+ 0(x?y?)

where L,.(+) = aa—xl(-) and I,,(-) = %I(-), then

Eyy(r,c) = 2 Wy (U, v) (xlx(u, v) +yl,(u,v) + 0(x2,yz))2

u,ve Ur,c
Giacomo Boracchi



Moravec Drawbacks - Solutions

We approximate Ex,y(r, c) by the first-order terms in the Taylor expansion

Eyy(r,c) = 2 Wy (U, v) (xlx(u, v) +yl,(u, v))2

W VEUy ¢

Basic calculus leads to E, ,, (7, ¢)

~ ) e w) (VPR v) + YA v) + 20y v, (u,v) )

(w,v)€Uy ¢
~ x2 2 wy . (u, V)£ (u, v) + y? z wy,c(u, v)I5(u, v) +
(u,v)EUy ¢ (WV)EUy

+2xy Z wy (u, v) L, (u, v) 1, (u, v)

(W, v)EUy ¢
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Moravec Drawbacks - Solutions

Which is an expression that admits the following matrix notation

X
Ex,y(r» c) = |x, y] Mr,c [y]

where _
o (L®Ww)T,c) UL, ®w)(rc)
Uy L ® w)(r, ) I Ow)rc)
2w I, L, ® W
= (r,c)
L L, ®w I®w |
Note that:

* I, and I, denotes |mage derivatives, which can be pre-computed with on
the entlre image, using any derivative filters (Sobel, Previtt, Gaussian).

* [x,y] always denotes the displacement vector.
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Moravec Drawbacks - Solutions

Thus, E, (7, c) can be computed at any pixel (7, c), w.r.t. any
displacement vector (x,y)

o |
Exy(r,c) = [x,y] FOwW)(r.o) (L1, ®w)(r,c) H

L L, ®w)(r,c)  (ZF®w)r,o) |V

The response E, (1, ¢) w.r.t. any displacement (x,y) can be

approximated by the quadratic expression involving the matrix M, . in any
pixel (7, c).

Obtaining the matrix M,. . is straightforward, as it involves only computing
(few) image derivatives.
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Matrix M values in different image regions |*

homogeneous

The “analytical fc
behavior” of the
matrix M, . in
different
locations r, ¢
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Corner Detection Goal

Corner Detection: Find points for which the following is maximum

[} x ]
min [x,y] M || given lIlx, I, = 1
[x,7] Y

i.e. maximize smallest eigenvalue of M

Giacomo Boracchi



Corner Detection Goal

Corner Detection: Find points for which the following is maximum

. '-__ x n
min | x, y] M[ ] given ||[x, y]ll, = 1
[, ] Y

¢
! L r(f,:. ,\,S'ao‘_ i.e. maximize smallest eigenvalue of M

L,
L @ Corners are those points r,c where 4; > A,

- OV 2/ 42]
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Moravec Drawbacks - Solutions

Considering the minimum of E is not a great deal, may give too ready
responses, and might require many calculations, since many
displacements (x,y) have to be considered.
Ay

Solution:
* consider the SVD (M, . ) and require

that the minimum eigenvalue of M,. .

is large at corners

* This means that E, ,,(r, ¢) exhibits a
large variation w.r.t. any displacement

vector (x,y) Being A, and A, the M
eigenvalues of M
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Harris — Stevens (88)

The following relation holds A,
Tr(M) =21 + 4,
det(M) = 4, - A,
And the function
det(M) — k Tr(M)
is large when both A; and A, are large, where
k = 0.04.

C. Harris and M. Stephens "A combined corner and edge detector”", Proceedings of the 4th Alvey Vision Conference. 1988



Our Matrix

Let us recall our matrix:
IZ®w)(r,c) (I L, ®w)(r,c)

M, . =
TG Lew(r o (Few)iro)

if we define,
PZ=2@w, J=LEOw, |y=L,®w,
where w is a Gaussian filter.
The following relations hold:
Tr(M,.) = J2(r,c) + J2(r,c) = ((I,% + 1) ® W) (,¢)
det(My.c) = JZ J5(r, ) = % (r, )

Giacomo Boracchi



Harris - Stevens (88)

The following relation holds
Tr(M) = A + A, A
det(M) = 4, - 4,
And the function
det(M) — k Tr(M)
is large when both A, and A, are large, where k = 0.04.
LE'[],% — 19% ® w, ]32/ — 1321 ® W]xy — ley ®w

It is possible to avoid computing SVD(M) and the Harris measure N
becomes

CIM = (J]5 —J%y) —k (% +J5)
defined as in the previous slide



Harris - Stevens (88)

iSO-I'CSpOﬂSC contours

The following relation holds
Tr(M) =214 + A,
det(M) =1, - 4,
And the function
det(M) — k Tr(M)
is large when both A; and A, are large, where k = 0.04.
letJf =L ®w, J;=1;®w

UK=L STV

amplitude of response function

]xy = ley @ w P
It is possible to avoid computing SVD(M) and the Harris measure becomes Figure from
CIM = (]3%]32/ _]J%y) — k (]3% _|_]32]) Harris ‘88

defined as in the previous slide

C. Harris and M. Stephens "A combined corner and edge detector”", Proceedings of the 4gth Alvey Vision Conference. 1988



Harris - Stevens (88)

Alternatively, Noble’s variant which does not
involve k:
det(M) 2

CM =
Tr(M) + €

That can thus be computed from the image
derivatives as:

- UHE -T%)

CM =
Ji+]; +e

Alison Noble, "Descriptions of Image Surfaces”, PhD thesis, Department of Engineering Science, Oxford University 1989, p45.



Extract Local Maxima of Harris Corner

0.1 —

0.08 —

Measure

— 0.08

— 0.07

= 0.05

0.01
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Intermezzo: How to find local maxima/?
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Local Maxima of Harris Corner Measure




Scale-Invariant Feature
Transform

Giacomo Boracchi
CVPR USI, April 21 2020
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Histograms of Oriented Gradients (HOG)

HOG: a Family of Image Features that are built upon orientation of image
gradients around selected keypoints

SIFT [Lowe 2004] is a prominent example of HOG features. SIFT features are
Invariant to:

e image scale
* Image rotation

The cost of extracting SIFT is minimized by a cascade approach, in which
the more expensive operations are applied only at locations that pass an
initial test.

Giacomo Boracchi



SIFT: Scale Invariant Feature Transform

SIFT that are shown to provide robust matching across a
 substantial range of affine distortions,
e change in 3D viewpoint,
e addition of noise,
* change in illumination.

The SIFT descriptors are highly distinctive, relatively easy to extract and
allow for correct object identification with low probability of mismatch.

Scale invariance is provided by an ad-hoc keypoint extraction algorithm

[Lowe 2004] Lowe "Distinctive Image Features from Scale-Invariant Keypoints" 1JCV 2004



SIFT Qutline

SIFT generates large numbers of features that densely cover the
image over the full range of scales and locations.

It is composed of the following steps:
* Scale-space extrema detection (a.k.a. keypoint detection)
* Keypoint localization
* Orientation assignment
e Keypoint descriptor

Giacomo Boracchi



Scale-space extrema
detection

SIFT Scale Invariant Feature Transform [Lowe 2004]

Giacomo Boracchi



SIFT Qutline

Scale-space extrema detection: search over all the scales and image
locations for potential interest points that are invariant to scale and
orientation.

Giacomo Boracchi



Detection of scale-space extrema

Keypoint detection is the first stage of a cascade approach

The goal is to identify locations and scales that can be repeatably
assigned under differing views of the same object.

How: search for stable keypoints across all possible scales of the image,
l.e., in the scale space

Giacomo Boracchi



Image Pyramid

Unfortunately, only a single image from a single scale is available. How to
extract information from “all possible scales”?

By generating an image pyramid: Build different representations of the
original image at different resolutions/zoom levels, by convolution
* The highest resolution corresponds to the original image I
* Lower resolutions are synthetically generated through blurring by
convolution and resampling

An image pyramid is obtained by convolving the image I with several
Gaussian kernels G, having standard deviation o.
We define the layers of such pyramid as:

L(x:y» o) = (G ® D(x,y)

Giacomo Boracchi



An Image Pyramid
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An Image Pyramid
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An Image Pyramid
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Keypoint Localization in the Scale Space

Keypoints are detected as the local maxima in the difference between two
adjacent representations in the scale space

D(x,y,0) = L(x,y,ko) — L(x,y,0)
That, thanks to convolution properties we have that:

D(x,y,0) = (Grs —G5) ® (x,y)
What about (G, —G,)?
It is the filter corresponding to a

difference-of-Gaussians:
it acts as a “blob” detector

Giacomo Boracchi



Keypoint Localization in the Scale Space

Keypoints are detected as the local maxima in the difference between two
adjacent representations in the scale space (4 T )
k6

@(x,y, U)Jé L(x,y,ko) — L(x,y,0)— 4o =L

That, thanks to convolution properties we have that:

D (X, y, O') — ((GRO' _GO_) @ 1) (.X', y) Maximum magnitude response at
What about (Grs —Ggs)? . ’;O

It is the filter corresponding to a
difference-of-Gaussians:

it acts as a “blob” detector ‘» Z@?

Giacomo Boracchi




An Image Pyramid

L(-, 8) é_b'%
C
L(:I:Il) A
[(-}‘/9 1 - ) 5’
\ :}b(:r:/') =/ PRI Z'(z ") < B
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Let’s ook at a 1d-example

<1073 Gaussians

' §
sigma =
sigma =5.

3.5+

2.5
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Let’s ook at a 1d-example

Difference of Gaussians

‘N
’ \/ \/
2 1 | _ | -
5 10 15 20 25 30
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0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8

DoG filter as a Blob detector

I

!

ﬂ

n \

|

|

—chirp tone
—convn(chirp, 100*(f1-f2))
Ga _ Gka

I ———— —

25 30
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DoG filter as a Blob detector
A A T \ ;—chnptone |

—convn(chirp, 100*(f1-f2))
Ga _ Gka

I ———— —

10 15 20 25 30
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Convolution achieve its maximum

where the filter matches at best i filter as a Blob detector

the width of sinusoid in the

!

ﬂ

|

|

|

—chirp tone

signal —convn(chiro, 100*(1 -f2))ﬁ
0.6 ~. Gg — Gyo 7
0.4 /\
i
0 A ava N RORH R
0.2} |
) |
0.6 I
U | iy +
0 5 10 15 25 30
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Difference-of-Gaussian

Responses w.r.t. to the DoG filter

K. Grauman, B. Leibe

Low Response in the scale space
resolution 1

>

>

High
é resolution

Filters used to compute the DoG

adewl
1nduj



Difference-of-Gaussian (DoG)

K. Grauman, B. Leibe



DoG - Efficient Computation

Computation in Gaussian scale pyramid

octave) /,/;}3
yg.——a

D
=4
Scale g »
e == =
=4

A

O Pk
= T
=
- = = =
P A4
> = = =
= = =
O A A L
= i =
= = s

T e

B L A A L

Scale
(first
octave)

T S 28

L S - 5

= -

I T A A A S S S

1
o=2

Original image

Difference of
Gaussian Gaussian (DOG)

[Lowe 2004]



Advantages of the Difference of Gaussian

Why the Difference of Gaussian?
* It is very efficient to compute since

* Smoothed images in the pyramid can be computed in cascade, using smaller
filters

* Smoothed images are also used to define the descriptors

* The DoG approximates the scale-normalized Laplacian of Gaussian [see Lowe
2004], whose local maxima and minima have been shown (experimentally) to
provide the most stable image features.
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Local Extrema Detection

Local maxima and minima are found by comparing the values
of adjacent DoG of the scale space

e Each point is compared to its 8 neighbors in the current DoG and 9 neighbors in
the scale above and below

* It is selected only if it is larger/smaller than all of these

Z
A 7
PP ]
e
T D(x,y,01)
i
z

[Lowe 2004]



Local maxima in position-scale space of DoG

T 7
4
L 4
s
.
| S AT S
ST
b {

=> List of keypoints
(r,c,s)

K. Grauman, B. Leibe e e



Keypoint localization

SIFT Scale Invariant Feature Transform [Lowe 2004]
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SIFT outline

Scale-space extrema detection: search over all the scales and image
locations for potential interest points that are invariant to scale and
orientation. Get {(r,c,0);}

Keypoint localization: At each candidate location, a detailed model is fit to
determine location and scale

Giacomo Boracchi



The Issue

It is necessary to analyze the nearby data of each candidate keypoint to
estimate its:

e [ocation,
e scale,
e ratio of principal curvatures of the image

These information are associated to each keypoint and are used for:
* building the descriptor

* rejecting many keypoints that have low contrast or are poorly
localized along an edge.

Giacomo Boracchi



The issue

D(r,c,0) = D(r',c’,0")

To build meaningful feature descriptors, we need to associate
each keypoint to its intrinsic scale (the layer in the pyramid)

The descriptor refers to a reference scale of each keypoint, this
guarantees scale invariance

K. Grauman, B. Leibe



Automatic Scale Selection: Maximizing Function Response

Function responses for increasing scale (scale signature)
1.

D(r',c', o)

15 T
o) o)

K. Grauman. B. Leibe



Automatic Scale Selection

Function responses for increasing scale (scale signature)

D(r',c' o)

: L
0} 0}
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Automatic Scale Selection

Function responses for increasing scale (scale signature)

D(r',c' o)

: L
0} 0}

K. Grauman, B. Leibe
K. Grauman. B. Leibe



Automatic Scale Selection

Function responses for increasing scale (scale signature)

D(r',c' o)

ke
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Automatic Scale Selection

Function responses for increasing scale (scale signature)
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Automatic Scale Selection

Function responses for increasing scale (scale signature)
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Automatic Scale Selection

Function responses for increasing scale (scale signature)

D(x',y',o)

K. Grauman. B. Leibe



The issue

D(r,c,0) = D(r',c',o")

The intrinsic scale of a keypoint can be identified as a local maxima in the scale space

The approach is indeed general and different functions responses could be considered
in principle (e.g. naively the average intensity)

K. Grauman. B. Leibe



Scale Invariance

* To each keypoint (7, c) we associate the scale ¢ of the scale-space
corresponding to the local maxima

* The descriptor is computed from the image in the selected
scale L(-,-,0)

* This provides scale-invariance to the SIFT descriptor

Giacomo Boracchi



SIFT Keypoint Detector: Lowe (‘99)

In particular the following operations are performed:

* Fitting a 3D quadratic function in 7, ¢, o to interpolate the location of the
maximum in the scale-space. This associates to each extrema the 3D-fitted
location (7#,¢,0)

* Remove low-contrast features by thresholding D(#, ¢, 6), e.g.,

|ID(#,¢,6)] < 0.3

* Remove edges responses, preserving only pixels where D has two large

eigenvalues of the Hessian Matrix

D D
H = XX Xy
ny DJ’ y

It is possible to follow an approach similar to Harris detector to avoid computing
the SVD.

Giacomo Boracchi



(a) 233x189 image

(b) 832 DOG extrema

(c) 729 left after peak
value threshold

(d) _5_3_._6_ left after testing
ratio of principle
curvatures

Vectors indicate
scale, orientation
and location.

Figure 5: This figure shows the stages of keypoint selection. (a) The 233x189 pixel original image.
(b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function.
Keypoints are displayed as vectors indicating scale. orientation. and location. (c) After applying
a threshold on minimum contrast. 729 keypoints remain. (d) The final 536 keypoints that remain
following an additional threshold on ratio of principal curvatures.

Figure from [Lowe 2004]



Scale Invariance

The features are built from the same pyramid used to locate the scale-
invariant keypoints

The scale associated to each keypoint (7, c¢) determines the Gaussian
smoothed image, L(:,-,0), that is used to build the descriptor at (7, ¢)

Thus, each keypoint is associated to a scale of the scale-space

Scale-invariance to the SIFT descriptor is achieved by the scale-invariance
property of the keypoint

Giacomo Boracchi



Orientation Assignment

SIFT Scale Invariant Feature Transform [Lowe 2004]

Giacomo Boracchi



SIFT outline

Scale-space extrema detection: search over all the scales and image

locations for potential interest points that are invariant to scale and
orientation. Get {(r,c,0);}

Keypoint localization: At each candidate location, a detailed model is fit to
determine location and scale. Get refined {(#, ¢, 6);}

Orientation assignment: One or more orientations are assigned to each
keypoint location based on local image gradient directions.

Giacomo Boracchi



Rotation Invariance: The Basic ldea

Assigning a principal orientation for each keypoint
Each descriptor can be represented relative to this orientation

This yields invariance with respect to image rotations

Giacomo Boracchi



How to Assign an Orientation to Each Keypoint/

Goal: compute the principal orientation in a neighborhood of the keypoint (r,c) in

N

L(-, &) (at the selected scale) (¢ 6

1. For (x,y) in a 16 x 16 neighborhood of (r,c) compute: T

* 8(x,y) the orientation of the gradient
 m(x,y) the magnitude of the gradient

2. Compute a histogram of the orientations over 36 bins, each bin covering 10
degrees.

3. Weigh each orientation by:
 the gradient magnitude
* a Gaussian weight to give more relevance to estimates that are close to (7, ¢)

The idea: peaks in the orientation histogram correspond to dominant directions of
local gradients

Giacomo Boracchi



Local Descriptors: Image Gradients

The idea: peaks in the orientation histogram correspond to
dominant directions of local gradients

The neighborhood (. ¢)




Local Descriptors: the Orientation Histogram

Imaae aradients

Weight each orientation according to:

* the gradient magnitude
(orientation at pixels in high-
contrast regions are more
relevant)

» the distance from the keypoint
location. This weight is assigned
by a Gaussian function having
standard deviation 1.5 &,
where & is the keypoint
selected scale

Scaling due to the gradient magnitude is
indicated by the length of the arrow. Gaussian
weights are indicated by the circle.



Weighting Scheme




Local Descriptors: Orientation Assignment

The highest peak in the histogram is detected

v

-~

~h
h\"‘:i

>y

Image gradients



Local Descriptors: Orientation Assignment

The highest peak in the histogram is detected, and then any other
local peak that is within 80% of the highest peak is used to also
create a keypoint with that orientation

Image gradients



Local Descriptors: Orientation Assignment

A parabola is fit to the 3 histogram values closest to each peak to
interpolate the peak position for better accuracy.

19

Image gradients



Local Descriptors: Orientation Assignment

Thus, at few locations (about 15% in the experiments in [Lowe 2004])
multiple keypoints might be created at the same location and scale but
different orientations

These contribute significantly to the stability of matching.

[Lowe 2004] 5 Boracchi
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Keypoint Descriptor

SIFT Scale Invariant Feature Transform [Lowe 2004]



SIFT Qutline

Scale-space extrema detection: search over all the scales and image
locations for potential interest points that are invariant to scale and
orientation.

Keypoint localization: At each candidate location, a detailed model is fit to
determine location and scale

Orientation assignment: One or more orientations are assigned to each
keypoint location based on local image gradient directions.

Keypoint descriptor: The local image gradients are measured at the
selected scale in the region around each keypoint

Giacomo Boracchi



The Descriptor [Lowe 2004]

The previous operations have assigned an
* image location X,y
e scale o
« orientation @ (and possibly more orientations)

to each keypoint.

Descriptors are built on images transformed w.r.t. the assigned location,
orientation, and scale: this assignment provides invariance with respect to
these transformations.

The SIFT descriptor is then extracted from local image region around each
keypoint to be highly distinctive and invariant as much as possible to
other photometric and geometric transformations, such as change in
illumination or 3D viewpoint changes.

Giacomo Boracchi



The SIFT Descriptor

SIFT descriptors are built from the image gradients.

Preprocessing:

* the image gradient magnitudes and orientations are sampled around
x,y, from the layer @ of the pyramid (i.e. using the selected scale).

- the gradient orientations are rotated relative to 0 (i.e., the keypoint
orientation).

Giacomo Boracchi



Local Descriptors: SIFT Descriptor

As for orientation assignment, the gradient orientation are weighted w.r.t.
the magnitude and the distance from the center (this guarantees
robustness to small changes in the position of the window)

I V4
‘(' [ 4

Image gradients



The SIFT Descriptor

Four histograms of weighed orientations are created over 8 directions
each. The length of each arrow indicates the height of corresponding bin.

The descriptor is a vector stack of these histograms

[Lowe 2004]
ﬁ 1

- T . L
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Image gradients Keypoint descriptor
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The SIFT Descriptor

In the typical implementation, the region is divided in 4x4 regions, each
containing an 8-bin histogram.

This yields a descriptor v having 4 X 4 X 8 = 128-dimensions

Image gradients



The SIFT Descriptor

In the typical implementation, the region is divided in 4x4 regions, each
containing an 8-bin histogram.

This yields a descriptor v having 4 X 4 128-dimensions

—




The SIFT Descriptor

The descriptor encodes the height of the
orientation histogram

Input region SIFT descriptor

[Lowe 2004] Lowe "Distinctive Image Features from Scale-Invariant Keypoints" 1JCV 2004



An Example

An example of
few SIFT selected
scale and
orientations

(the larger the
square, the
larger the
corresponding
scale in the
scale-space)

Giacomo Boracchi



An Example

An example of few SIFT
selected scale and
orientations

The keypoint was found
at an high level of the
pyramid, that’s why there
is a large region around.

Lena’ eye is likely to be
preserved even by heavy
blur in the scale space

Image have been rescaled

Giacomo Boracchi



An Example

An example of few SIFT
selected scale and
orientations

The keypoint was found
at an high level of the
pyramid, that’s why there
is a large region around.

Lena’ eye is likely to be
preserved even by heavy
blur in the scale space

Image have been rescaled

Giacomo Boracchi



An Example

An example of few SIFT
selected scale and
orientations

The keypoint was found
at a low level of the
pyramid, that’s why there
is a small region around.

Such a texture pattern is
likely to be suppressed by
blur at lower levels

Image have been rescaled

Giacomo Boracchi



Robustness to Illlumination Changes

SIFT is invariant to affine changes in illumination

e Gradients are themselves invariant to additive shifts, thus SIFT are
invariant to «additive illumination changes»

 To achieve invariance to intensity scaling, each descriptor is
normalized to yield unitary length i.e. v - —

Ivll>

Nonlinear illumination changes might affect SIFT, introducing gradients
having large magnitude.

To increase the robustness to nonlinear illumination changes, the
components of v are clipped to 0.2 and then v is normalized again.

Giacomo Boracchi



Other Descriptors

BRISK, SURF, FREAK, HOG



Other approaches

Lowe has inspired many research works in the following years

Further developments aimed at designing descriptors that are
e more robust to viewpoint changes and artifacts
* easier to extract

SIET A8 veda flky

e faster to match

Example are: 2. Vi
* PCA-SIFT reduces the descriptor vector from 128 to 36 dimension using principal

component analysis

« Speed-up Robust Feature (SURF): relies on local gradient histograms computed by
the Haar-wavelet that are efficiently computed using integral images (64
dimensional)

Giacomo Boracchi



SURF

Surf replaces derivative filters used in gradient computation
with "flat filters" that assume integer

Fig.1. Left to right: the (discretised and cropped) Tt sl order partial
derivatives in y-direction and ry-direction., and our approximations thereof using box
filters. The grey regions are equal to zero.

Convolution against these filters can be efficiently computed
by means of the integral image

Bay H., Ess A., Tuytelaars T., Van Gool L., "SURF: Speeded Up Robust Features", CVIU, 2008



Integral Image

The integral image S is defined from an image I as follows

S(x,y) = 2 I(r,c)

r<y,c<X

| S

X

3’|-

Giacomo Boracchi



Using the Integral Image

The integral image allows fast computation of the sum (average) of any
rectangular region in the image

z I(r,c) = 5(x3,y,) — S(x2,¥1) —S(xq,¥2) + S(x1,¥1)

Y1STrsY;
X1SCsX
1 2 X1 Xy X1 X2
S(xllyl)l_ S(leyl)
32 T I
S(x1,¥2) S(x2,¥2)
Y2l--mmmmmm e
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Binary Descriptors

Latest research is devoted to FREAK sampling pattern
descriptors that are faster to P
compute, even though less e
accurate than SIFT. LA

Freak (fast retina keypoint) is .

a binary descriptor that iaj
encodes the sign of the -
difference in «receptive ﬁ“"* \ﬁf

fields» around a keypoint

[FREAK] A. Alahi, R. Ortiz, and P. Vandergheynst, "Freak: Fast retina keypoint," in CVPR 2012



Binary Descriptors

Latest research is devoted to descriptors
that are faster to compute, even though

less accurate than SIFT. diSeutil
Freak (fast retina keypoint) is a binary VTN
descriptor that encodes the sign of the x|
difference in «receptive fields» around a gy gh o
keypoint TR LR

[FREAK] A. Alahi, R. Ortiz, and P. Vandergheynst, "Freak: Fast retina keypoint,” in CVPR 2012 Giacomo Boracchi



FREAK Desctiptor

The descriptor encodes the sign of the difference over pairs of receptive
field

Input region FREAK descriptor

sign(ry — 134)

sign(rys — 122)

x € {0,1}°12

Giacomo Boracchi



Binary Descriptors

Latest research is devoted to
descriptors that are faster to compute,
even though less accurate than SIFT.

BRISK (Binary robust invariant scalable
keypoints) is a binary descriptor that
encodes the sign of the difference in
«receptive fields» around a keypoint

15F

10F

-10F

-15F

BRISK sampling pattern

S. Leutenegger, M. Chli, and R. Y. Siegwart, "Brisk: Binary robust invariant scalable keypoints” ICCV 2011
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Histogram Of Oriented Gradients (HOG)

Local object can be characterized rather well by the distribution of local
intensity gradients or edge directions, even without precise knowledge of
the corresponding gradient or edge positions.

HOG provides

- a dense descriptor based on gradient directions (while SIFT is a sparse
descriptor)

- overlapping local contrast normalization

N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, pages 886-893, 2005



Histogram Of Oriented Gradients (HOG)

Key idea: Object appearance and shape can
often be characterized by the distribution of
local intensity gradients or edge directions,
even without precise knowledge of the
corresponding gradient or edge positions

Build a dense coverage of descriptors stacking
gradient orientations (similar to SIFT) and use
these descriptors to represent the whole image

N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, pages 886-893, 2005



HOG Computation

 Divide the image window into small cells (spatial regions over a grid)
Two main block geometries: rectangular (R-HOG) blocks and circular (C-
HOG) blocks.

 Compute a weighted local 1-D histogram of gradient directions over the
pixels of the cell. Weighting criteria similar to SIFT

N M ¥ e R >
e e — | - -
4
”/ - 3
\ o
4 :
0
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HOG Normalization

For better invariance to illumination, shadowing, etc., it is also useful to
contrast-normalize the local responses before using them.

This can be done by accumulating a measure of local histogram “energy”
over somewhat larger spatial regions (“blocks”) and using the results to

normalize all of the cells in the block.

Normalization is performed as in SIFT v —

block

— Block —

R-HOG

_ﬂ(‘ell}__

C-HOG

Center Bin

NN
S\ A\

Radial Bins. Angular Bins

being v computer over a
lvil2+ €
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HOG of an Image

The HOG descriptor
is the concatenation
of all these
histograms

N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, pages 886-893, 2005



Differences between HOG and SIFT

 HoG is meant to describe entire images. SIFT is used for key point
matching

* SIFT histrograms are oriented towards the dominant gradient. HoG is
not.

 HoG gradients are normalized using neighborhood bins.

e SIFT descriptors use varying scales to compute multiple descriptors,
Hog does not.

Giacomo Boracchi



A Few Opportunities...
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Option O: IACV Projects

Giacomo Boracchi



Option 1: Join the Team for a Thesis

Giacomo Boracchi



The Team

We are 3 faculties, 7 PhD students, 2 Research Assistants

Giacomo Boracchi Luca Magri Federica Arrigoni
(Researcher) (Researcher)

Michele Craighero

Andrea Schillaci Diego Stucchi Loris Giulivi Andrea Porfiri Giuseppe Bertolini Edoardo Peretti
Dal Cin Giacomo Boracchi



Research Collaborations

Major research collaborations:

- J Tampere University » Los Alamos m « I
q ISTITUTO DI RICERCHE @ Fondcmone
FARMACOLOGICHE
MARIO NEGRI - IRCCS > Don Carlo Gnocchi

Major research projects:
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National Research
Council of Italy




The Team

We are 3 faculties, 7 PhD students, 2 Research Assistants (Assegnista di Ricerca)

...on top of 20+ MSc students currently working with us



Research Collaborations

Major research collaborations:

- J Tampere University » Los Alamos m « I
q ISTITUTO DI RICERCHE @ Fondcmone
FARMACOLOGICHE
MARIO NEGRI - IRCCS > Don Carlo Gnocchi

Major research projects:

AN ety il Ay

iIk¢ nisys

National Research
Council of Italy




Thesis Information

« We typically illustrate thesis opportunities in February and September

* Thesis topics primarily concern Vision, including both Deep Learning, Image
processing and Computer Vision.

e Thesis are primarily research thesis, or thesis on industrial projects.

* Sometimes we open internship with companies we are collaborating with.

 We are always interested in brilliant candidates and perspective PhD students

Giacomo Boracchi



Thesis Information

in Information Technology

« We have sent a proposal for Honours Program in Research (for those of you interested in research
perspectives).

http://www.honours-programme.deib.polimi.it/2023-call.html

* Proposer: Giacomo Boracchi
* Topic: Object Detection Networks for Multiple Images and Point Clouds.

While object detection networRs are meant for single images, most vision systems in medicine, security,
and autonomous vehicles are multiview or multimodal. Let's design new deep NN and training
procedures to boost object detection in these systems.

* Proposer: Luca Magri
e Topic: Computer Vision and Pattern Recognition

The aim of this thesis is to design new methodologies that exploit pattern recognition and geometric
techniques to address relevant Computer Vision tasks, such as 3D reconstruction, motion segmentation,
template detection,..

* Proposer: Federica Arrigoni

* Topic: Quantum Computer Vision

Giacomo Boracchi


http://www.honours-programme.deib.polimi.it/2023-call.html

Option 2: Mathematical Models
and Methods for Image
Processing

Spring 2022, for Mathematical Engineering and
Computer Science Engineering



What is this course about?



What is this course abo

It is about algorithms for
processing images and solving
image-related problems.

i Gl R S e b
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K. “Image denoising by sparse 3-D transform-domain collaborative filtering” TIP 2007
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What is this course abo

It is about algorithms for
processing images and solving
image-related problems.

..like denoising

Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K. “Image denoising by sparse 3-D transform-domain collaborative filtering” TIP 2007



Who cares about images?



Who cares about images’

Everybody!
We will see algorithms solving problems customarily addressed in our
phones,

z=y+n, n~N(00%) yry

Denoising is a regression problem: given the noisy z, estimate y close to the unknown y

Giacomo Boracchi



Who cares about images? Quality Inspection




Who cares about images’ Quahty Inspectlon

ol Here regression is also crucial
‘ z= Ry +tn

0 Boracchi
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'Who cares about images? Quality Inspection ’
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Wno cares about images? visual recognition
systems

Robust Fit
o o o . (RANSAC)
® Least squares o
et <+ This is a (robust) fitting problem
6 = argminz p(dist(x;, My))
0
X



Wno cares about images? visual recognition
systems

______

(a) Input point cloud (b) Recovered structures

This is a (robust) fitting problem

Magri, Leveni, Boracchi “MultiLink: Multi-class Structure Recovery via Agglomerative Clustering and Model Selection”, CVPR 2021



Wno cares aoout images¢ visual recognition
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Wno cares aoout images¢ visual recognition
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