Salient Point and Features Giacomo Boracchi Image Analysis and Computer Vision, Polimi https://boracchi.faculty.polimi.it/ giacomo.boracchi@polimi.it 1. Find a set of distinctive keypoints - 1. Find a set of distinctive keypoints - 2. Define a region around each keypoint - 1. Find a set of distinctive key-points - 2. Define a region around each keypoint - 3. Extract and normalize the region content - 1. Find a set of distinctive key-points - 2. Define a region around each keypoint - 3. Extract and normalize the region content - 4. Compute a local descriptor from the normalized region - 1. Find a set of distinctive keypoints - 2. Define a region around each keypoint - 3. Extract and normalize the region content - 4. Compute a local descriptor from the normalized region - 5. Match local descriptors #### Separately on each image - 1. Find a set of distinctive key-points - 2. Define a region around each keypoint - 3. Extract and normalize the region content - 4. Compute a local descriptor from the normalized region - 5. Match local descriptors Robust fitting stacked in vectors Effective features have to be invariant w.r.t. photometric and geometric transformation of the image Features can be # Object Recognition by Feature Extraction Consider an Image Patch Consider an Image Patch **Keypoint:** The coordinates of a point where the image content is sort of relevant #### A Feature could be • an Keypoint neighbor #### A Feature could be - an Keypoint neighbor - some measures computed in an image neighbor: - mean - variance - principal directions - • stacked in a vector, thus yielding a descriptor ### Object Recognition by Computer Vision Features **Keypoint detection:** identifying coordinates where the image is considered meaningful for addressing some task **Design Criteria:** Keypoints have to be repeatable ### Object Recognition by Computer Vision Features **Descriptor computation**: compute a vector that describes the content of an image in a region around the keypoint Design Criteria: Features have to be stable ## Object Recognition by Computer Vision Features **Descriptor computation**: compute a vector that describes the content of an image in a region around the keypoint Design Criteria: Features have to be stable There is a vector in \mathbb{R}^{128} associated to each of these regions # Keypoint Detection: The Rationale The principle underpinning many corner detection algorithms # **Keypoint Properties** Keypoints are expected to be in regions where the image is: - **Well-defined**: i.e. distinctive, neighboring points should all be different. - **Stable** across views: same scene point should be extracted when the viewpoint slightly changes These are necessary properties to achieve repeatable keypoints # **Keypoint Detection** A point is *interesting* when the image content around there is dissimilar from the neighboring ones. • We need a measure to assess local similarity / dissimilarity in images The typical **figures of merit** to extract keypoints are: - Gradient Based (ex Harris, Hessian) - Phase Based (Kovesi) - Entropy Based (Zisserman) and the Keypoints are located as **local maxima** of these figure of merit over the whole image. # Comparing image regions Dissimilarity Measure: the Sum of Squared Distances (SSD) $$E_{x,y}(r,c) = \sum_{(u,v) \in U_{r,c}} [I(u,v) - I(u-x,v-y)]^{2}$$ $$\{I(u,v), (u,v) \in U_{r,c}\}$$ $$r + y$$ $$\{I(u-x,v-y), (u,v) \in U_{r,c}\}$$ Giacomo Boracchi #### The SSD as the norm of a vector The SSD is the ℓ^2 norm of the vector given by the difference of two image patches #### The SSD as the norm of a vector The SSD is the ℓ^2 norm of the vector given by the difference of two image patches $$E_{x,y}(r,c) = \left\| \begin{array}{c} - & - & - \\ - & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & - \\ 2 & - & -$$ The pixel-wise difference among these two patches is likely to be very close to zero Giacomo Boracchi #### The SSD as the norm of a vector The SSD is the ℓ^2 norm of the vector given by the difference of two image patches $$E_{x,y}(r,c) = \left| \begin{array}{c} - & - & - \\ - & - & - \\ \end{array} \right|_{2}$$ The pixel-wise difference among these two patches is likely to be very close to zero ..the same holds for many orange alternatives centered in (r + x, c + y) along that road. Thus, (r, c) is not a keypoint Giacomo Boracchi $$E_{x,y}(r,c)\gg 0, \qquad \forall (x,y)$$ These are the locations we want to select as keypoints Giacomo Boracchi #### The SSD as the norm of a vector The SSD is the ℓ^2 norm of the vector given by the difference of two image patches If the pixel-wise difference among - the yellow patch in (r,c) and - any orange alternative in patch (r + x, c + y) is likely to be large, then (r, c) is then a good candidate for becoming a keypoint # The rationale behind many corner detectors Compute the Sum of Square Distances between the image values on the green square at different position "flat" region: no change in all directions "edge": no change along the edge direction "corner": significant change in all directions # Keypoint Detection: Harris Corner A meaningful example to be found in many other algorithms # Setting up the stage - (r,c) point where to compute the output response (candidate keypoint) - $U_{r,c}$ neighborhood identifying the blue area - $E_{x,y}(r,c)$ difference between the green square centered in (r,c) and the square centered in (r-x,c-y) - The pixels inside $U_{r,c}$ are indexed by (u,v) # Moreavec (80) - Corner Detection Corner measure as the SSD over a fixed set of displacements $$E_{x,y}(r,c) = \sum_{(u,v)\in U_{r,c}} w_{r,c}(u,v)[I(u,v) - I(u-x,v-y)]^2$$ $$(x,y) \in \{(1,0), (0,1), (-1,0), (0,-1)\}$$ $w_{r,c}$ is a window centered in (r,c), which defines each pixel neighbor $U_{r,c}$ (e.g., the green square in the previous slides) # Moreavec (80) - Corner Detection **Corners == Keypoints** At corners values of $E_{x,y}$ "are always big", even for the less significant displacements (x,y) $$HM(r,c) = T_{\gamma} \left(\min_{(x,y)} \left(E_{x,y}(r,c) \right) \right)$$ where T_{γ} is the **hard thresholding operator** having threshold γ **Corner Detection**: Look for local maxima of HM(r,c), as corners maximizes this measure The response may be **noisy** $$E_{x,y}(r,c) = \sum_{(u,v)\in U_{r,c}} w_{r,c}(u,v)[I(u,v) - I(u-x,v-y)]^2$$ **Solution**: take $w_{r,c}$ as Gaussian distributed weights. The response **is anisotropic** since only a finite set of displacements (x, y) is considered $$E_{x,y}(r,c) = \sum_{(u,v)\in U_{r,c}} w_{r,c}(u,v)[I(u,v) - I(u-x,v-y)]^2$$ therefore, the same corner rotated may yield different responses. **Solution:** Expand I(u-x,v-y) in Taylor series $$I(u - x, v - y) = I(u, v) + xI_x(u, v) + yI_y(u, v) + O(x^2, y^2)$$ where $$I_x(\cdot) = \frac{\partial}{\partial x} I(\cdot)$$ and $I_y(\cdot) = \frac{\partial}{\partial y} I(\cdot)$, then $$E_{x,y}(r,c) = \sum_{u,v \in U_{m,c}} w_{r,c}(u,v) \left(x I_x(u,v) + y I_y(u,v) + O(x^2,y^2) \right)^2$$ We approximate $E_{x,y}(r,c)$ by the first-order terms in the Taylor expansion $$E_{x,y}(r,c) \approx \sum_{u,v \in U_{r,c}} w_{r,c}(u,v) \left(x I_x(u,v) + y I_y(u,v) \right)^2$$ Basic calculus leads to $E_{x,y}(r,c)$ $$\approx \sum_{(u,v)\in U_{r,c}} w_{r,c}(u,v) \left(x^2 I_x^2(u,v) + y^2 I_y^2(u,v) + 2xy I_x(u,v) I_y(u,v) \right)$$ $$\approx x^2 \sum_{(u,v)\in U_{r,c}} w_{r,c}(u,v) I_x^2(u,v) + y^2 \sum_{(u,v)\in U_{r,c}} w_{r,c}(u,v) I_y^2(u,v) +$$ $$+2xy \sum w_{r,c}(u,v) I_x(u,v) I_y(u,v)$$ Which is an expression that admits the following matrix notation $$E_{x,y}(r,c) \approx [x,y] M_{r,c} \begin{bmatrix} x \\ y \end{bmatrix}$$ where $$M_{r,c} = \begin{bmatrix} (I_x^2 \circledast w)(r,c) & (I_x I_y \circledast w)(r,c) \\ (I_x I_y \circledast w)(r,c) & (I_y^2 \circledast w)(r,c) \end{bmatrix}$$ $$\dot{=} \begin{bmatrix} I_x^2 \circledast w & I_x I_y \circledast w \\ I_x I_y \circledast w & I_y^2 \circledast w \end{bmatrix} (r,c)$$ #### Note that: - I_x and I_y denotes **image derivatives**, which can be pre-computed with on the entire image, using any derivative filters (Sobel, Previtt, Gaussian). - [x, y] always denotes the displacement vector. Thus, $E_{x,y}(r,c)$ can be computed at any pixel (r,c), w.r.t. any displacement vector (x,y) $$E_{x,y}(r,c) \approx [x,y] \begin{bmatrix} (I_x^2 \circledast w)(r,c) & (I_x I_y \circledast w)(r,c) \\ (I_x I_y \circledast w)(r,c) & (I_y^2 \circledast w)(r,c) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ The response $E_{x,y}(r,c)$ w.r.t. any displacement (x,y) can be approximated by the quadratic expression involving the matrix $M_{r,c}$ in any pixel (r,c). Obtaining the matrix $M_{r,c}$ is straightforward, as it involves only computing (few) image derivatives. # Matrix M values in different image regions The "analytical behavior" of the matrix $M_{r,c}$ in different locations r,c ### Corner Detection Goal Corner Detection: Find points for which the following is maximum $$\min_{[x,y]} [x,y] M \begin{bmatrix} x \\ y \end{bmatrix}$$, given $||[x,y]||_2 = 1$ i.e. maximize smallest eigenvalue of M ### Corner Detection Goal Corner Detection: Find points for which the following is maximum $$\min_{[x,y]} \left[x,y\right] M \begin{bmatrix} x \\ y \end{bmatrix} \text{ given } ||[x,y]||_2 = 1$$ Considering the minimum of E is not a great deal, may give too ready responses, and might require many calculations, since many displacements (x, y) have to be considered. ### **Solution:** - consider the $SVD(M_{r,c})$ and require that the minimum eigenvalue of $M_{r,c}$ is large at corners - This means that $E_{x,y}(r,c)$ exhibits a large variation w.r.t. any displacement vector (x,y) Being λ_1 and λ_2 the eigenvalues of M Considering the minimum of E is not a great deal, may give too ready responses, and might require many calculations, since many displacements (x, y) have to be considered. ### **Solution:** - consider the $SVD(M_{r,c})$ and require that the minimum eigenvalue of $M_{r,c}$ is large at corners - This means that $E_{x,y}(r,c)$ exhibits a large variation w.r.t. any displacement vector (x,y) eigenvalues of M ### Harris – Stevens (88) The following relation holds $$Tr(M) = \lambda_1 + \lambda_2$$ $\det(M) = \lambda_1 \cdot \lambda_2$ And the function $$\det(M) - k Tr(M)$$ is large when both λ_1 and λ_2 are large, where k = 0.04. C. Harris and M. Stephens "A combined corner and edge detector", Proceedings of the 4th Alvey Vision Conference. 1988 ### Our Matrix Let us recall our matrix: $$M_{r,c} = \begin{bmatrix} (I_{\chi}^{2} \circledast w)(r,c) & (I_{\chi} I_{y} \circledast w)(r,c) \\ (I_{\chi} I_{y} \circledast w)(r,c) & (I_{y}^{2} \circledast w)(r,c) \end{bmatrix}$$ if we define, $$J_x^2 = I_x^2 \circledast w$$, $J_y^2 = I_y^2 \circledast w$, $J_{xy} = I_x I_y \circledast w$, where w is a Gaussian filter. The following relations hold: $$Tr(M_{r,c}) = J_x^2(r,c) + J_y^2(r,c) = ((I_x^2 + I_y^2) \circledast w)(r,c)$$ $$\det(M_{r,c}) = J_x^2 J_y^2(r,c) - J_{xy}^2(r,c)$$ # Harris - Stevens (88) The following relation holds $$Tr(M) = \lambda_1 + \lambda_2$$ $det(M) = \lambda_1 \cdot \lambda_2$ And the function $$\det(M) - k Tr(M)$$ is large when both λ_1 and λ_2 are large, where k=0.04. Let $$J_x^2 = I_x^2 \circledast w$$, $J_y^2 = I_y^2 \circledast w J_{xy} = I_x I_y \circledast w$ It is possible to avoid computing SVD(M) and the Harris measure becomes $$CIM = (J_x^2 J_y^2 - J_{xy}^2) - k (J_x^2 + J_y^2)$$ defined as in the previous slide # Harris – Stevens (88) The following relation holds $$Tr(M) = \lambda_1 + \lambda_2$$ $det(M) = \lambda_1 \cdot \lambda_2$ And the function $$\det(M) - k Tr(M)$$ is large when both λ_1 and λ_2 are large, where k = 0.04. Let $$J_x^2 = I_x^2 \circledast w$$, $J_y^2 = I_y^2 \circledast w$ $$J_{xy} = I_x I_y \circledast w$$ It is possible to avoid computing SVD(M) and the Harris measure becomes $$CIM = (J_x^2 J_y^2 - J_{xy}^2) - k (J_x^2 + J_y^2)$$ defined as in the previous slide Figure from Harris '88 C. Harris and M. Stephens "A combined corner and edge detector", Proceedings of the 4th Alvey Vision Conference. 1988 ## Harris - Stevens (88) Alternatively, Noble's variant which does not involve k: $$CM = \frac{\det(M)}{Tr(M) + \epsilon}$$ That can thus be computed from the image derivatives as: $$CM = \frac{\left(J_x^2 J_y^2 - J_{xy}^2\right)}{J_x^2 + J_y^2 + \epsilon}$$ Alison Noble, "Descriptions of Image Surfaces", PhD thesis, Department of Engineering Science, Oxford University 1989, p45. ### Extract Local Maxima of Harris Corner Measure Intermezzo: How to find local maxima? ### Local Maxima of Harris Corner Measure # Scale-Invariant Feature Transform Giacomo Boracchi CVPR USI, April 21 2020 # Histograms of Oriented Gradients (HOG) HOG: a Family of Image Features that are built upon orientation of image gradients around selected keypoints SIFT [Lowe 2004] is a prominent example of HOG features. SIFT features are invariant to: - image scale - Image rotation The cost of extracting SIFT is minimized by a **cascade approach**, in which the more expensive operations are applied only at locations that pass an initial test. ### SIFT: Scale Invariant Feature Transform SIFT that are shown to provide robust matching across a - substantial range of affine distortions, - change in 3D viewpoint, - addition of noise, - change in illumination. The **SIFT descriptors** are highly distinctive, relatively easy to extract and allow for correct object identification with low probability of mismatch. Scale invariance is provided by an ad-hoc keypoint extraction algorithm ### SIFT Outline SIFT generates large numbers of features that densely cover the image over the full range of scales and locations. It is composed of the following steps: - Scale-space extrema detection (a.k.a. keypoint detection) - Keypoint localization - Orientation assignment - Keypoint descriptor # Scale-space extrema detection SIFT Scale Invariant Feature Transform [Lowe 2004] ### SIFT Outline **Scale-space extrema detection**: search over all the scales and image locations for potential interest points that are invariant to scale and orientation. **Keypoint localization:** At each candidate location, a detailed model is fit to determine location and scale Orientation assignment: One or more orientations are assigned to each keypoint location based on local image gradient directions. Keypoint descriptor: The local image gradients are measured at the selected scale in the region around each keypoint SIFT generates large numbers of features that densely cover the image over the full range of scales and locations ### Detection of scale-space extrema Keypoint detection is the first stage of a cascade approach The goal is to identify locations and scales that can be repeatably assigned under differing views of the same object. **How:** search for **stable keypoints across all possible scales** of the image, i.e., in the **scale space** # Image Pyramid Unfortunately, **only a single** image from a single **scale is available**. How to extract information from "all possible scales"? By **generating an image pyramid**: Build different representations of the original image at different resolutions/zoom levels, by convolution - The highest resolution corresponds to the original image I - Lower resolutions are synthetically generated through blurring by convolution and resampling An image pyramid is obtained by **convolving the image** I with several **Gaussian kernels** G_{σ} having standard deviation σ . We define the layers of such pyramid as: $$L(x, y, \sigma) = (G_{\sigma} \circledast I)(x, y)$$ ## Keypoint Localization in the Scale Space Keypoints are detected as the local maxima in the difference between two adjacent representations in the scale space $$D(x, y, \sigma) = L(x, y, k\sigma) - L(x, y, \sigma)$$ That, thanks to convolution properties we have that: $$D(x, y, \sigma) = ((G_{k\sigma} - G_{\sigma}) \circledast I)(x, y)$$ What about $(G_{k\sigma} - G_{\sigma})$? It is the filter corresponding to a difference-of-Gaussians: it acts as a "blob" detector ## Keypoint Localization in the Scale Space **Keypoints** are detected as **the local maxima in the difference** between two adjacent **representations in the scale space** adjacent representations in the scale space $$(x, y, x, \sigma) = L(x, y, k\sigma) - L(x, y, \sigma)$$ That, thanks to convolution properties we have that: $$D(x,y,\sigma) = ((G_{k\sigma} - G_{\sigma}) \circledast I)(x,y)$$ What about $(G_{k\sigma} - G_{\sigma})$? It is the filter corresponding to a difference-of-Gaussians: it acts as a "blob" detector # An Image Pyramid # Let's look at a 1d-example # Let's look at a 1d-example #### Difference-of-Gaussian Responses w.r.t. to the DoG filter # Difference-of-Gaussian (DoG) ## DoG - Efficient Computation Computation in Gaussian scale pyramid ## Advantages of the Difference of Gaussian Why the Difference of Gaussian? - It is very efficient to compute since - Smoothed images in the pyramid can be computed in cascade, using smaller filters - Smoothed images are also used to define the descriptors - The **DoG approximates the scale-normalized Laplacian** of **Gaussian** [see Lowe 2004], whose local maxima and minima have been shown (experimentally) to provide the most stable image features. #### Local Extrema Detection Local maxima and minima are found by comparing the values of adjacent DoG of the scale space - Each point is compared to its 8 neighbors in the current DoG and 9 neighbors in the scale above and below - It is selected only if it is larger/smaller than all of these ### Local maxima in position-scale space of DoG K. Grauman, B. Leibe # Keypoint localization SIFT Scale Invariant Feature Transform [Lowe 2004] #### SIFT outline **Scale-space extrema detection**: search over all the scales and image locations for potential interest points that are invariant to scale and orientation. Get $\{(r, c, \sigma)_i\}$ **Keypoint localization:** At each candidate location, a detailed model is fit to determine location and scale Orientation assignment: One or more orientations are assigned to each keypoint location based on local image gradient directions. **Keypoint descriptor:** The local image gradients are measured at the selected scale in the region around each keypoint SIFT generates large numbers of features that densely cover the image over the full range of scales and locations #### The Issue It is necessary to analyze the nearby data of each candidate keypoint to estimate its: - location, - scale, - ratio of principal curvatures of the image These information are associated to each keypoint and are used for: - building the descriptor - rejecting many keypoints that have low contrast or are poorly localized along an edge. #### The issue To build meaningful feature descriptors, we need to associate each keypoint to its intrinsic scale (the layer in the pyramid) The descriptor refers to a reference scale of each keypoint, this guarantees scale invariance K. Grauman, B. Leibe #### Automatic Scale Selection: Maximizing Function Response K. Grauman, B. Leibe K. Grauman. B. Leibe K. Grauman, B. Leibe K. Grauman, B. Leibe K. Grauman. B. Leibe K. Grauman. B. Leibe K. Grauman. B. Leibe K. Grauman, B. Leibe #### The issue The intrinsic scale of a keypoint can be identified as a local maxima in the scale space The approach is indeed general and different functions responses could be considered in principle (e.g. naively the average intensity) #### Scale Invariance - To each keypoint (r,c) we associate the scale $\hat{\sigma}$ of the scale-space corresponding to the local maxima - The descriptor is computed from the image in the selected scale $L(\cdot,\cdot,\hat{\sigma})$ - This provides scale-invariance to the SIFT descriptor # SIFT Keypoint Detector: Lowe ('99) In particular the following operations are performed: - Fitting a **3D** quadratic function in r, c, σ to interpolate the location of the maximum in the scale-space. This associates to each extrema the 3D-fitted location $(\hat{r}, \hat{c}, \hat{\sigma})$ - Remove low-contrast features by thresholding $D(\hat{r}, \hat{c}, \hat{\sigma})$, e.g., $|D(\hat{r}, \hat{c}, \hat{\sigma})| < 0.3$ - Remove edges responses, preserving only pixels where D has two large eigenvalues of the Hessian Matrix $$H = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix}$$ It is possible to **follow an approach similar to Harris detector** to avoid computing the SVD. Figure from [Lowe 2004] value threshold ratio of principle curvatures #### Scale Invariance The features are built from the same pyramid used to locate the scale-invariant keypoints The scale associated to each keypoint (r, c) determines the Gaussian smoothed image, $L(\cdot, \cdot, \sigma)$, that is used to build the descriptor at (r, c) Thus, each keypoint is associated to a scale of the scale-space Scale-invariance to the SIFT descriptor is achieved by the **scale-invariance** property of the keypoint # Orientation Assignment SIFT Scale Invariant Feature Transform [Lowe 2004] #### SIFT outline **Scale-space extrema detection**: search over all the scales and image locations for potential interest points that are invariant to scale and orientation. Get $\{(r, c, \sigma)_i\}$ **Keypoint localization:** At each candidate location, a detailed model is fit to determine location and scale. Get refined $\{(\hat{r}, \hat{c}, \hat{\sigma})_i\}$ **Orientation assignment:** One or more orientations are assigned to each keypoint location based on local image gradient directions. **Keypoint descriptor:** The local image gradients are measured at the selected scale in the region around each keypoint SIFT generates large numbers of features that densely cover the image over the full range of scales and locations #### Rotation Invariance: The Basic Idea Assigning a principal orientation for each keypoint Each descriptor can be represented relative to this orientation This yields invariance with respect to image rotations #### How to Assign an Orientation to Each Keypoint? **Goal:** compute the **principal orientation** in a neighborhood of the keypoint (r,c) in $L(\cdot,\cdot,\hat{\sigma})$ (at the selected scale) - 1. For (x, y) in a 16 x 16 neighborhood of (r, c) compute: - $\theta(x,y)$ the orientation of the gradient - m(x, y) the magnitude of the gradient - 2. Compute a histogram of the orientations over 36 bins, each bin covering 10 degrees. - 3. Weigh each orientation by: - the gradient magnitude - a Gaussian weight to give more relevance to estimates that are close to (r,c) **The idea**: peaks in the orientation histogram correspond to dominant directions of local gradients # Local Descriptors: Image Gradients **The idea:** peaks in the orientation histogram correspond to dominant directions of local gradients ## Local Descriptors: the Orientation Histogram #### Weight each orientation according to: - the gradient magnitude (orientation at pixels in high-contrast regions are more relevant) - the distance from the keypoint location. This weight is assigned by a Gaussian function having standard deviation 1.5 $\hat{\sigma}$, where $\hat{\sigma}$ is the keypoint selected scale Scaling due to the gradient magnitude is indicated by the length of the arrow. Gaussian weights are indicated by the circle. # Weighting Scheme ## Local Descriptors: Orientation Assignment The highest peak in the histogram is detected ## Local Descriptors: Orientation Assignment The **highest peak** in the histogram is detected, and then any other local peak that is within 80% of the highest peak is used to also create a keypoint with that orientation ## Local Descriptors: Orientation Assignment A parabola is fit to the 3 histogram values closest to each peak to interpolate the peak position for better accuracy. ## Local Descriptors: Orientation Assignment Thus, at few locations (about 15% in the experiments in [Lowe 2004]) multiple keypoints might be created at the same location and scale but different orientations These contribute significantly to the stability of matching. ## Keypoint Descriptor SIFT Scale Invariant Feature Transform [Lowe 2004] #### SIFT Outline **Scale-space extrema detection**: search over all the scales and image locations for potential interest points that are invariant to scale and orientation. **Keypoint localization:** At each candidate location, a detailed model is fit to determine location and scale **Orientation assignment:** One or more orientations are assigned to each keypoint location based on local image gradient directions. **Keypoint descriptor:** The local image gradients are measured at the selected scale in the region around each keypoint SIFT generates large numbers of features that densely cover the image over the full range of scales and locations ## The Descriptor [Lowe 2004] #### The previous operations have assigned an - image location \hat{x} , \hat{y} - scale $\hat{\sigma}$ - orientation $\hat{\theta}$ (and possibly more orientations) #### to each keypoint. Descriptors are built on images transformed w.r.t. the assigned location, orientation, and scale: this assignment **provides invariance with respect to these transformations**. The **SIFT descriptor** is then extracted from local image region around each keypoint to be **highly distinctive** and **invariant** as much as possible to **other photometric and geometric transformations**, such as change in **illumination** or 3D **viewpoint changes**. SIFT descriptors are built from the image gradients. #### Preprocessing: - the image gradient magnitudes and orientations are sampled around \hat{x} , \hat{y} , from the layer $\hat{\sigma}$ of the pyramid (i.e. using the selected scale). - the gradient orientations are rotated relative to $\widehat{\boldsymbol{\theta}}$ (i.e., the keypoint orientation). ## Local Descriptors: SIFT Descriptor As for orientation assignment, the gradient orientation are weighted w.r.t. the magnitude and the distance from the center (this guarantees robustness to small changes in the position of the window) Four histograms of weighed orientations are created over 8 directions each. The length of each arrow indicates the height of corresponding bin. The descriptor is a vector stack of these histograms In the typical implementation, the region is divided in 4x4 regions, each containing an 8-bin histogram. This yields a descriptor v having $4 \times 4 \times 8 = 128$ -dimensions In the typical implementation, the region is divided in 4x4 regions, each containing an 8-bin histogram. [Lowe 2004] Lowe "Distinctive Image Features from Scale-Invariant Keypoints" IJCV 2004 An example of few SIFT selected scale and orientations (the larger the square, the larger the corresponding scale in the scale-space) An example of few SIFT selected scale and orientations The keypoint was found at an high level of the pyramid, that's why there is a large region around. Lena' eye is likely to be preserved even by heavy blur in the scale space Image have been rescaled An example of few SIFT selected scale and orientations The keypoint was found at an high level of the pyramid, that's why there is a large region around. Lena' eye is likely to be preserved even by heavy blur in the scale space Image have been rescaled An example of few SIFT selected scale and orientations The keypoint was found at a low level of the pyramid, that's why there is a small region around. Such a texture pattern is likely to be suppressed by blur at lower levels Image have been rescaled ## Robustness to Illumination Changes SIFT is invariant to affine changes in illumination - Gradients are themselves invariant to additive shifts, thus SIFT are invariant to «additive illumination changes» - To achieve invariance to intensity scaling, each descriptor is normalized to yield unitary length i.e. $v \to \frac{v}{\|v\|_2}$ Nonlinear illumination changes might affect SIFT, introducing gradients having large magnitude. To increase the robustness to nonlinear illumination changes, the components of v are clipped to 0.2 and then v is normalized again. # Other Descriptors BRISK, SURF, FREAK, HOG ## Other approaches Lowe has inspired many research works in the following years Further developments aimed at designing descriptors that are - more robust to viewpoint changes and artifacts - easier to extract - faster to match # SIFT 128 vector fletig 36 vector #### Example are: - **PCA-SIFT reduces the descriptor vector** from 128 to 36 dimension using principal component analysis - Speed-up Robust Feature (SURF): relies on local gradient histograms computed by the Haar-wavelet that are efficiently computed using integral images (64 dimensional) #### **SURF** Surf replaces derivative filters used in gradient computation with "flat filters" that assume integer values **Fig. 1.** Left to right: the (discretised and cropped) Gaussian second order partial derivatives in y-direction and xy-direction, and our approximations thereof using box filters. The grey regions are equal to zero. Convolution against these filters can be efficiently computed by means of the *integral image* ## Integral Image The integral image S is defined from an image I as follows $$S(x,y) = \sum_{r \le y,c \le x} I(r,c)$$ ## Using the Integral Image The integral image allows fast computation of the sum (average) of any rectangular region in the image $$\sum_{\substack{y_1 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c) = S(x_2, y_2) - S(x_2, y_1) - S(x_1, y_2) + S(x_1, y_1)$$ $$\sum_{\substack{y_1 \le r \le y_2, \\ y_1 = 1 \\ y_2 = 1}} I(r,c)$$ $$\sum_{\substack{y_1 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_1 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_1 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_1 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_1 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_1 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_1 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_2 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_1 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_2 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_2 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_2 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_2 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_2 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_2 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_2 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_2 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_2 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_2 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_2 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ $$\sum_{\substack{y_2 \le r \le y_2, \\ x_1 \le c \le x_2}} I(r,c)$$ ## **Binary Descriptors** Latest research is devoted to descriptors that are faster to compute, even though less accurate than SIFT. Freak (fast retina keypoint) is a binary descriptor that encodes the sign of the difference in «receptive fields» around a keypoint #### FREAK sampling pattern ## **Binary Descriptors** Latest research is devoted to descriptors that are faster to compute, even though less accurate than SIFT. Freak (fast retina keypoint) is a binary descriptor that encodes the sign of the difference in «receptive fields» around a keypoint ## FREAK Desctiptor The descriptor encodes the sign of the difference over pairs of receptive field ## **Binary Descriptors** Latest research is devoted to descriptors that are faster to compute, even though less accurate than SIFT. BRISK (Binary robust invariant scalable keypoints) is a binary descriptor that encodes the sign of the difference in «receptive fields» around a keypoint #### **BRISK sampling pattern** ## Histogram Of Oriented Gradients (HOG) Local object can be characterized rather well by the distribution of local intensity gradients or edge directions, even without precise knowledge of the corresponding gradient or edge positions. #### **HOG** provides - a dense descriptor based on gradient directions (while SIFT is a sparse descriptor) - overlapping local contrast normalization ## Histogram Of Oriented Gradients (HOG) **Key idea:** Object appearance and shape can often be characterized by the distribution of **local intensity gradients** or edge directions, even without precise knowledge of the corresponding gradient or edge positions Build a dense coverage of descriptors stacking gradient orientations (similar to SIFT) and use these descriptors to represent the whole image ## **HOG Computation** - Divide the image window into small cells (spatial regions over a grid) Two main block geometries: rectangular (R-HOG) blocks and circular (C-HOG) blocks. - Compute a weighted local 1-D histogram of gradient directions over the pixels of the cell. Weighting criteria similar to SIFT #### **HOG Normalization** For better invariance to illumination, shadowing, etc., it is also useful to contrast-normalize the local responses before using them. This can be done by accumulating a measure of local histogram "energy" over somewhat larger spatial regions ("blocks") and using the results to normalize all of the cells in the block. Radial Bins, Angular Bins Normalization is performed as in SIFT $v \to \frac{v}{\|v\|_2 + \epsilon}$ being v computer over a block ## HOG of an Image The HOG descriptor is the concatenation of all these histograms N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, pages 886-893, 2005 #### Differences between HOG and SIFT - HoG is meant to describe entire images. SIFT is used for key point matching - SIFT histrograms are oriented towards the dominant gradient. HoG is not. - HoG gradients are normalized using neighborhood bins. - SIFT descriptors use varying scales to compute multiple descriptors, Hog does not. ## A Few Opportunities... ## Option 0: IACV Projects Option 1: Join the Team for a Thesis #### The Team We are 3 faculties, 7 PhD students, 2 Research Assistants Giacomo Boracchi Luca Magri (Researcher) Federica Arrigoni (Researcher) Filippo Leveni Antonino Rizzo Michele Craighero Andrea Schillaci Diego Stucchi Loris Giulivi Andrea Porfiri Dal Cin Giuseppe Bertolini Edoardo Peretti Giacomo Boracchi #### **Research Collaborations** Major research collaborations: Major research projects: # The Team We are 3 faculties, 7 PhD students, 2 Research Assistants (Assegnista di Ricerca) ...on top of 20+ MSc students currently working with us #### **Research Collaborations** #### Major research collaborations: #### Major research projects: #### Thesis Information - We typically illustrate thesis opportunities in February and September - Thesis topics primarily concern Vision, including both Deep Learning, Image processing and Computer Vision. - Thesis are primarily research thesis, or thesis on industrial projects. - Sometimes we open internship with companies we are collaborating with. We are always interested in brilliant candidates and perspective PhD students #### Thesis Information We have sent a proposal for Honours Program in Research (for those of you interested in research perspectives). http://www.honours-programme.deib.polimi.it/2023-call.html • **Proposer:** Giacomo Boracchi • Topic: Object Detection Networks for Multiple Images and Point Clouds. While object detection networks are meant for single images, most vision systems in medicine, security, and autonomous vehicles are multiview or multimodal. Let's design new deep NN and training procedures to boost object detection in these systems. • **Proposer**: Luca Magri • Topic: Computer Vision and Pattern Recognition The aim of this thesis is to design new methodologies that exploit pattern recognition and geometric techniques to address relevant Computer Vision tasks, such as 3D reconstruction, motion segmentation, template detection,.. • **Proposer**: Federica Arrigoni • **Topic**: Quantum Computer Vision # Option 2: Mathematical Models and Methods for Image Processing Spring 2022, for Mathematical Engineering and Computer Science Engineering What is this course about? ### What is this course abou It is about **algorithms** for processing **images** and solving image-related problems. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K. "Image denoising by sparse 3-D transform-domain collaborative filtering" TIP 2007 #### What is this course abou It is about **algorithms** for processing **images** and solving image-related problems. ..like denoising Who cares about images? ## Who cares about images? Everybody! We will see algorithms solving problems customarily addressed in our phones, Denoising is a regression problem: given the noisy z, estimate \hat{y} close to the unknown y # Who cares about images? Quality Inspection # Who cares about images? Quality Inspection Carrera D., Manganini F., Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11 pages, doi:10.1109/TII.2016.2641472 Carrera D., Manganini F., Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11 pages, doi:10.1109/TII.2016.2641472 Who cares about images? visual recognition systems Robust Fit (RANSAC) Least squares This is a (robust) fitting problem $\hat{\theta} = \operatorname{argmin} \sum_{i}^{b} \rho(\operatorname{dist}(\mathbf{x}_{i}, \mathcal{M}_{\theta}))$ # Who cares about images? visual recognition systems (a) Input point cloud (b) Recovered structures #### This is a (robust) fitting problem #### Who cares about images! visual recognition cuctame 12:30 Mar 19 mar → 36% **ASPIRINA** ASPIRINA MOMENT **ASPIRINA Splendid** Classico **ASPIRINA** Cacao Cacao ASPIRINA **ASPIRINA** BONOMELI MISLONO mistora Splendid Splendid Budino Splendid Budino Ristretto Classico BONOMELLI Carno Cacao BONOMELL Splendid Splendid **Splendid** Budino Budino Cacao Cacao Classico Ristretto Splendid Classico #### Who cares about images! visual recognition