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The Broad Landscape of Computer Vision 
and Pattern Recognition
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In particular, we will see:
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Filtering / denoising

LASIP c/o Tampere University of Technology http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/%7Elasip/


Giacomo Boracchi

Edge detection
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Salient Point / Feature Extraction
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Restoration & Inverse Problems

Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. TIP 2007
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Restoration & Inverse Problems

Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. TIP 2007
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Photometric Image 
Formation

Colour Filter Array
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Colour Filter Arrays

Typical photosensors detect light intensity with little or no wavelength 
specificity, and therefore cannot separate colour information.

Colour Filters Array (CFA) are used to filter the light by wavelength range.  

Separate filtered intensities include information about the colour of light. 

For example, the Bayer filter gives information about the intensity of light 
in red, green, and blue (RGB) wavelength regions
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Colour Filter Arrays

By en:User:Cburnett - Own workThis W3C-unspecified vector image was 
created with Inkscape., CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=1496872
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Bayer Pattern

For example, the Bayer filter (RGGB) 
gives information about the intensity 
of light in red, green, and blue 
wavelength regions.

• Green colour is sampled twice

There are many different patterns, 
including RYYB which gives a better 
response in low-light conditions

By Cburnett - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=1496858



Giacomo Boracchi

The raw output of digital camera
Every pixel of the array is only sensitive to 
a single colour. 
 

The original uploader was Fibonacci at English Wikipedia., CC SA 1.0 <http://creativecommons.org/licenses/sa/1.0/>, via Wikimedia Commons
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The raw output of digital camera

The original uploader was Fibonacci at English Wikipedia., CC SA 1.0 <http://creativecommons.org/licenses/sa/1.0/>, via Wikimedia Commons
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Demosaicing

Demosaicing, a.k.a. CFA interpolation or Colour Reconstruction

Algorithm to reconstruct a full colour image (3 colours per pixel) from the 
incomplete colour output from an image sensor (CFA). 

This is a multivariate regression problem

The original uploader was Fibonacci at English Wikipedia., CC SA 1.0 <http://creativecommons.org/licenses/sa/1.0/>, via Wikimedia Commons
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Demosaicing

Issues:

• In Bayer pattern each pixel is sensitive to a single colour, while in the 
image each pixel portrays a mixture of 3 primary colours

Desiderata:

• Avoid colour artefacts

• Maximum preservation of the image resolution

• Low complexity or efficient in-camera hardware implementation

• Amenability to analysis for accurate noise reduction 
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Example of Demosaicing by bilinear interpolation

More sophisticated channel-wise interpolation include bicubic/spline interpolation, Lanczos resampling
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Demosaicing

Color-independent algorithms typically present artifacts in regions 
containing edges and textures

Lanlan Chang and Yap-Peng Tan “Hybrid color filter array demosaicking for effective artifact suppression“ JEI 2006

Zipper effects are unnatural changes of intensities over a 
number of neighboring pixels, manifesting as an “on-off” 
pattern in regions around edges

False colors are spurious colors which are not present in 
the original image scene […] They appear as sudden hue 
changes due to inconsistency among the three color 
planes and usually around fine image details and edges
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False Colors

Lanlan Chang and Yap-Peng Tan “Hybrid color filter array demosaicking for effective artifact suppression“ JEI 2006
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Demosaicing

Examples of priors to be exploited to improve demosaicing quality

• Channel-wise similarity / consistency (colour differences, colour ratio)

• Spatial correlation, the structure of images 

• Spectral correlation 

Post-processing can be employed to suppress typical demosaicing artifacts
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When we work channel-wise…
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Think of an image as a 2D, real-valued function
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Spatial-Domain Methods in Image Processing

A survey of most important operations in image processing:

• Spatial Intensity Transformations

• Spatial Local Transformations: convolution 

Spatial transformations (intensity or local) are direct manipulation of pixel 
intensities. Relevant examples of convolutional filters:

• Smoothing Filters (denoising)

• Differentiating Filters (edge detector)
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Bibliography

“Digital Image Processing”, 4th Edition Rafael C. Gonzalez, Richard E. 
Woods, Pearson 2017
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Intensity Transformations
Transformations that operate 

on each single pixels of an image
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Intensity Transformations

In general, these can be written as
𝐺𝐺 𝑟𝑟, 𝑐𝑐 = 𝑇𝑇 𝐼𝐼(𝑟𝑟, 𝑐𝑐)

Where 

• 𝐼𝐼 is the input image to be transformed

• 𝐺𝐺 is the output

• 𝑇𝑇 is a function, for instance
• 𝑇𝑇:  ℝ3 → ℝ (e.g. colour to grayscale conversion)

• 𝑇𝑇:  ℝ3 → ℝ3 (e.g. changing the colour encoding)

• 𝑇𝑇:  ℝ → ℝ (many channel-wise intensity transformation)

𝑇𝑇 operates independently on each single pixel.
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RGB → Grayscale Conversion

A linear transformation of pixel intensities 𝑇𝑇:  ℝ3 → ℝ
𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺 𝑟𝑟, 𝑐𝑐 = 0.299, 0.587, 0.114 ∗ [𝑅𝑅 𝑟𝑟, 𝑐𝑐 ,𝐺𝐺 𝑟𝑟, 𝑐𝑐 ,𝐵𝐵 𝑟𝑟, 𝑐𝑐 ]′

which corresponds to a linear combination of the 3 channels
𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺(𝑟𝑟, 𝑐𝑐) =  0.299 ∗  𝑅𝑅(𝑟𝑟, 𝑐𝑐) +  0.587 ∗  𝐺𝐺(𝑟𝑟, 𝑐𝑐) +  0.114 ∗  𝐵𝐵(𝑟𝑟, 𝑐𝑐)
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YCbCr color space

Color space conversion 𝑇𝑇:  ℝ3 → ℝ3 to map RBG to YCbCr

• 𝑌𝑌 is the luma signal, similar to grayscale 

• 𝐶𝐶𝐶𝐶 and 𝐶𝐶𝑟𝑟 are the chroma components 

Human eye is less sensitive to color changes than luminance variations. 
Thus,

• 𝑌𝑌 can be stored / transmitted at high resolution

• Cb and Cr can be subsampled, compressed, or otherwise treated 
separately for improved system efficiency

(e.g. in JPEG compression the chromatic components are encoded at a 
coarser level than luminance)
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RGB → YCbCr 

There are many variants

Where ′ denotes the intensities are in the 0,1  range
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Negative Transformation

Simple transformation that maps black to 
white and white to black, and all the 
intensity levels in between as:

𝐼𝐼 𝑟𝑟, 𝑐𝑐 → 255 − 𝐼𝐼 𝑟𝑟, 𝑐𝑐

This is a linear transformation of 
intensities

 𝐼𝐼

𝑇𝑇(
𝐼𝐼)

255

2550
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Negative Transformation

Simple transformation that maps black to 
white and white to black, and all the 
intensity levels in between as:

𝐼𝐼 𝑟𝑟, 𝑐𝑐 → 255 − 𝐼𝐼 𝑟𝑟, 𝑐𝑐

This is a linear transformation of 
intensities

 𝐼𝐼

𝑇𝑇(
𝐼𝐼)

255

2550

𝑇𝑇(⋅)
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Intensity Rescaling

In some cases images are conveniently 
mapped in the 0,255  range, covering 
such that 

• min 𝑇𝑇 𝐼𝐼 = 0 

• max 𝑇𝑇 𝐼𝐼 = 255

𝐼𝐼 𝑟𝑟, 𝑐𝑐 → 255 ∗
𝐼𝐼 𝑟𝑟, 𝑐𝑐 − min(𝐼𝐼)
max 𝐼𝐼 − min(𝐼𝐼)

This is a linear transformation of 
intensities

 
𝐼𝐼

𝑇𝑇(
𝐼𝐼)

255

2550



Giacomo Boracchi

Intensity Rescaling

In some cases images are conveniently 
mapped in the 0,255  range, covering 
such that 

• min 𝑇𝑇 𝐼𝐼 = 0 

• max 𝑇𝑇 𝐼𝐼 = 255

𝐼𝐼 𝑟𝑟, 𝑐𝑐 → 255 ∗
𝐼𝐼 𝑟𝑟, 𝑐𝑐 − min(𝐼𝐼)
max 𝐼𝐼 − min(𝐼𝐼)

This is a linear transformation of 
intensities

 

𝐼𝐼

𝑇𝑇(
𝐼𝐼)

255

2550

𝑇𝑇(⋅)

min 𝐼𝐼 max 𝐼𝐼
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Gray-level mapping

A transformation 𝑇𝑇:ℝ → ℝ that operates on gray-scale images or on each 
color-plane separately

𝐼𝐼
𝑇𝑇(
𝐼𝐼)

255

2550

𝑇𝑇(⋅)
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Gray-level mapping

A transformation 𝑇𝑇:ℝ → ℝ that operates on gray-scale images or on each 
color-plane separately

𝐼𝐼
𝑇𝑇(
𝐼𝐼)

255

2550

𝑇𝑇(⋅)

What does this 𝑇𝑇 do?
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Contrast increases in dark, decreases in bright

Input 𝐼𝐼 Output 𝐺𝐺 = 𝑇𝑇(𝐼𝐼)
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Gray-level mapping

A transformation 𝑇𝑇:ℝ → ℝ that operates on gray-scale images or on each 
color-plane separately

𝐼𝐼
𝑇𝑇(
𝐼𝐼)

255

2550

𝑇𝑇(⋅)

What does this 𝑇𝑇 do?
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Contrast increases in bright, decreases in dark

Input 𝐼𝐼 Output 𝐺𝐺 = 𝑇𝑇(𝐼𝐼)
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Gamma Correction

Power-low transformation that 
can be written as

𝐺𝐺 𝑟𝑟, 𝑐𝑐 = 𝐼𝐼 𝑟𝑟, 𝑐𝑐 𝛾𝛾
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Gamma Correction

Power-low transformation that 
can be written as

𝐺𝐺 𝑟𝑟, 𝑐𝑐 = 𝐼𝐼 𝑟𝑟, 𝑐𝑐 𝛾𝛾

Contrast Enhancement:

• Low values of 𝛾𝛾 stretch the 
intensity range at high-values 
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Gamma Correction

Power-low transformation that 
can be written as

𝐺𝐺 𝑟𝑟, 𝑐𝑐 = 𝐼𝐼 𝑟𝑟, 𝑐𝑐 𝛾𝛾

Contrast Enhancement:

• Low values of 𝛾𝛾 stretch the 
intensity range at high-values 

• High values of 𝛾𝛾 stretch the 
intensity range at low values
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Gray Level Mapping

A transformation 𝑇𝑇:ℝ → ℝ that operates on gray-scale images or on each 
color-plane separately

𝐼𝐼
𝑇𝑇(
𝐼𝐼)

255

2550

𝑇𝑇(⋅)

What does this 𝑇𝑇 do?
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Contrast Stretching

A transformation 𝑇𝑇:ℝ → ℝ that operates on gray-scale images or on each 
color-plane separately

𝐼𝐼
𝑇𝑇(
𝐼𝐼)

255

2550

𝑇𝑇(⋅)
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Contrast Stretching

Contrast stretching: increases the constant at values in the middle of intensity 
range, decreases contrast at bright and dark regions.

It is implemented by piecewise or parametric transformations
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Contrast Stretching

Can be defined by piecewise linear mapping…  

𝐼𝐼
𝑇𝑇(
𝐼𝐼)

255

2550

𝑇𝑇(⋅)
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Contrast Stretching

And there are also analytical 
expressions

𝐼𝐼 𝑟𝑟, 𝑐𝑐 →
1 + 𝑚𝑚𝑒𝑒

1 + 𝑚𝑚
𝐼𝐼(𝑟𝑟, 𝑐𝑐) + 𝜖𝜖

𝑒𝑒
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Contrast Stretching

And there are also analytical 
expressions

𝐼𝐼 𝑟𝑟, 𝑐𝑐 →
1 + 𝑚𝑚𝑒𝑒

1 + 𝑚𝑚
𝐼𝐼(𝑟𝑟, 𝑐𝑐) + 𝜖𝜖

𝑒𝑒
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Gray-level mapping

A transformation 𝑇𝑇:ℝ → ℝ that operates on gray-scale images or on each 
color-plane separately

𝐼𝐼
𝑇𝑇(
𝐼𝐼)

255

2550

𝑇𝑇(⋅)

What does this 𝑇𝑇 do?
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Thresholding

Thresholding binarizes images
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Thresholding

A transformation 𝑇𝑇:ℝ → ℝ that operates on gray-scale images or on each 
color-plane separately

𝐼𝐼
𝑇𝑇(
𝐼𝐼)

255

2550

𝑇𝑇(⋅)

𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 =  �255,  if 𝐼𝐼 𝑟𝑟, 𝑐𝑐 ≥ 𝛤𝛤
0,  if 𝐼𝐼 𝑟𝑟, 𝑐𝑐 < 𝛤𝛤

𝛤𝛤
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Thresholding

A transformation 𝑇𝑇:ℝ → ℝ that operates on gray-scale images or on each 
color-plane separately

𝐼𝐼
𝑇𝑇(
𝐼𝐼)

255

2550

𝑇𝑇(⋅)

𝛤𝛤

𝛤𝛤

What does this 𝑇𝑇 do?
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Thresholding
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Thresholding

A transformation 𝑇𝑇:ℝ → ℝ that operates on gray-scale images or on each 
color-plane separately

𝐼𝐼
𝑇𝑇(
𝐼𝐼)

255

2550

𝑇𝑇(⋅)

𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 =  �𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 ,  if 𝐼𝐼 𝑟𝑟, 𝑐𝑐 ≥ 𝛤𝛤
0,  if 𝐼𝐼 𝑟𝑟, 𝑐𝑐 < 𝛤𝛤

𝛤𝛤

𝛤𝛤This simple operation is one of the 
most frequently used to add 

nonlinearities in CNN: the ReLU Layers
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Local (Spatial) Transformations: 
Correlation and Convolution
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Local (Spatial) Transformation
In general, these can be written as

𝐺𝐺 𝑟𝑟, 𝑐𝑐 = 𝑇𝑇𝑈𝑈 𝐼𝐼 (𝑟𝑟, 𝑐𝑐)
Where 

• 𝐼𝐼 is the input image to be transformed

• 𝐺𝐺 is the output

• 𝑈𝑈 is a neighbourhood, identifies a region of the image that will concur in the 
output definition

• 𝑇𝑇𝑈𝑈:  ℝ3 → ℝ3 or 𝑇𝑇𝑈𝑈:  ℝ3 → ℝ is a function 

𝑇𝑇 operates on 𝐼𝐼 “around“ the pixel (𝑟𝑟, 𝑐𝑐) on a specific neighborhood 𝑈𝑈. In 
particular, 𝑇𝑇𝑈𝑈 𝐼𝐼  (𝑟𝑟, 𝑐𝑐) is computed from all the intensity values: {

}
𝐼𝐼 𝑢𝑢, 𝑣𝑣 ,

𝑢𝑢 − 𝑟𝑟, 𝑣𝑣 − 𝑐𝑐 ∈ 𝑈𝑈
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Local (Spatial) Filters

The dashed square represents 𝐼𝐼 𝑢𝑢, 𝑣𝑣 , 𝑢𝑢 − 𝑟𝑟, 𝑣𝑣 − 𝑐𝑐 ∈ 𝑈𝑈

(𝑟𝑟, 𝑐𝑐)

𝐼𝐼𝑇𝑇𝑈𝑈[𝐼𝐼]

(𝑟𝑟, 𝑐𝑐)

𝑈𝑈



Giacomo Boracchi

Local (Spatial) Filters

The dashed square represents 𝐼𝐼 𝑢𝑢, 𝑣𝑣 , 𝑢𝑢 − 𝑟𝑟, 𝑣𝑣 − 𝑐𝑐 ∈ 𝑈𝑈

(𝑟𝑟, 𝑐𝑐)

𝐼𝐼𝑇𝑇𝑈𝑈[𝐼𝐼]

(𝑟𝑟, 𝑐𝑐)

𝑈𝑈
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Local (Spatial) Filters
The dashed square represents 𝐼𝐼 𝑢𝑢, 𝑣𝑣 , 𝑢𝑢 − 𝑟𝑟, 𝑣𝑣 − 𝑐𝑐 ∈ 𝑈𝑈

• The location of the output does not change 

• Space invariant transformations are repeated for each pixel 

• 𝑇𝑇 can be either linear or nonlinear

(𝑟𝑟, 𝑐𝑐)

𝐼𝐼𝑇𝑇𝑈𝑈[𝐼𝐼]

(𝑟𝑟, 𝑐𝑐)

𝑈𝑈

(𝑟𝑟′, 𝑐𝑐′)(𝑟𝑟′, 𝑐𝑐′)

𝑈𝑈



Giacomo Boracchi

Local Linear Filters

Linear Transformation: Linearity implies that 

𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 =  �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤𝑖𝑖(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

Considering some weights 𝑤𝑤𝑖𝑖
and (𝑢𝑢, 𝑣𝑣) has to be interpreted as
a "displacement vector" w.r.t. the 
neighborhood center (𝑟𝑟, 𝑐𝑐), e.g., 

𝑢𝑢, 𝑣𝑣 ∈ { 1,−1 , 1,0 , (1,−1) … }
We can now think the neighborhood
𝑈𝑈 as set of displacement vectors.

𝑐𝑐

𝑟𝑟

𝐼𝐼
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Local Linear Filters

Linear Transformation: the filter weights can be assoicated to a matrix 𝒘𝒘

𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 =  �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)
𝑐𝑐

𝑟𝑟

𝑤𝑤(−1,−1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,1)

𝑤𝑤(0,−1) 𝑤𝑤(0,0) 𝑤𝑤(0,1)

𝑤𝑤(1,−11) 𝑤𝑤(1,0) 𝑤𝑤(1,1)

𝒘𝒘
𝐼𝐼

We can consider weights 
as an image, or a filter ℎ

The filter ℎ entirely defines 
this operation
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Local Linear Filters

Linear Transformation: the filter weights can be assoicated to a matrix 𝒘𝒘

𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 =  �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)
𝑐𝑐

𝑟𝑟

𝑤𝑤(−1,−1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,1)

𝑤𝑤(0,−1) 𝑤𝑤(0,0) 𝑤𝑤(0,1)

𝑤𝑤(1,−11) 𝑤𝑤(1,0) 𝑤𝑤(1,1)

𝒘𝒘
𝐼𝐼

We can consider weights 
as an image, or a filter ℎ

The filter ℎ entirely defines 
this operation

This operation is repeated for 
each pixel in the input image
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Local Linear Filters

Linear Transformation: Linearity implies that the output 𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐  is a 
linear combination of the pixels in 𝑈𝑈:

𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 =  �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤𝑖𝑖(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

Considering some weights {𝑤𝑤𝑖𝑖}

𝑟𝑟

𝑐𝑐

We can consider weights as an 
image, or a filter ℎ

The filter ℎ entirely defines this 
operation ℎ
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Local Linear Filters

Linear Transformation: the filter weights can be assoicated to a matrix 𝒘𝒘

𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 =  �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤𝑖𝑖(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

𝑤𝑤(−1,−1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,1)

𝑤𝑤(0,−1) 𝑤𝑤(0,0) 𝑤𝑤(0,1)

𝑤𝑤(1,−11) 𝑤𝑤(1,0) 𝑤𝑤(1,1)

This operation is 
repeated for each 
pixel in the input 

image

𝒘𝒘

𝑇𝑇 𝐼𝐼

𝐼𝐼 𝐼𝐼

𝐼𝐼

𝐼𝐼𝐼𝐼

𝐼𝐼
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Correlation

The correlation among a filter 𝑤𝑤 = {𝑤𝑤𝑖𝑖𝑖𝑖} and an image is defined as

𝐼𝐼 ⊗ 𝑤𝑤 (𝑟𝑟, 𝑐𝑐) = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

where the filter ℎ is of size (2𝐿𝐿 + 1) × (2𝐿𝐿 + 1) and contains the weights 
defined before as 𝑤𝑤. The filter 𝑤𝑤 is also sometimes called “kernel”

𝐼𝐼(𝑟𝑟, 𝑐𝑐)

∗

Point-wise
 product Sum

𝐼𝐼 ⊗ 𝑤𝑤 (𝑟𝑟, 𝑐𝑐)

𝑤𝑤

𝑤𝑤(−1,−1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,1)

𝑤𝑤(0,−1) 𝑤𝑤(0,0) 𝑤𝑤(0,1)

𝑤𝑤(1,−1) 𝑤𝑤(1,0) 𝑤𝑤(1,1)

𝐼𝐼(𝑟𝑟 + 0 𝑐𝑐 + 1)

𝑤𝑤 0,1 ∗ 𝐼𝐼(𝑟𝑟 + 0 𝑐𝑐 + 1)
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Correlation
acc = 0;

for i in np.arange(template_height)

 for j in np.aragne(template_width)

  acc = acc + image[y + i, x + j]*template[i,j]

image[x+ template_height//2, y + template_width//2] = acc x

y

x+i

y+j
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Correlation for BINARY target matching

=

Easy to understand with binary images

Target used as a filter

⊗

𝐼𝐼 𝑤𝑤
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⊗
𝐼𝐼 𝑤𝑤
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⊗
𝐼𝐼 𝑤𝑤
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⊗
𝐼𝐼 𝑤𝑤
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The maximum 
is here

⊗
𝐼𝐼 𝑤𝑤
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However…

* =

Each point in a white area is 
as big as the template 
achieve the maxium value 
(togheter with the perfect 
match)
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However…

* =

Each point in a white area is 
as big as the template 
achieve the maxium value 
(togheter with the perfect 
match)

Normalization is needed when using 
correlation for template matching!
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Normalized Cross Correlation
A very straightforward approach to template matching
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Normalized Cross Correlation

Normalized Cross Correlation 𝑁𝑁𝐶𝐶𝐶𝐶 𝐴𝐴,𝐵𝐵 ∈ [−1, 1] is defined as

𝑁𝑁𝐶𝐶𝐶𝐶 𝐴𝐴,𝐵𝐵 =
𝑁𝑁 𝐴𝐴,𝐵𝐵

𝑁𝑁 𝐴𝐴,𝐴𝐴 𝑁𝑁(𝐵𝐵,𝐵𝐵)

where

𝑁𝑁 𝐴𝐴,𝐵𝐵 =  �
𝑊𝑊

𝐴𝐴 𝑥𝑥,𝐺𝐺 − �̅�𝐴 𝐵𝐵 𝑥𝑥,𝐺𝐺 − �𝐵𝐵  𝑑𝑑𝑥𝑥 𝑑𝑑𝐺𝐺

and �̅�𝐴 represents the average image value on patch 𝐴𝐴, similarly �𝐵𝐵. 𝑊𝑊 is 
the support of 𝐴𝐴 or 𝐵𝐵.

Where in our case,
• 𝐴𝐴 is the region in the image, 
• 𝐵𝐵 is the filter
and they are comprable in size
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Normalized Cross Correlation

Remarks:
• NCC yields a measure in the range [-1,1] , 

• NCC is invariant to changes in the average intensity.

• While this seems quite computationally demanding, there exists fast 
implementations where local averages are computed by running sums (integral 
image)
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Integral Image

The integral image 𝑆𝑆 is defined from an image 𝐼𝐼 as follows

𝑆𝑆 𝑥𝑥,𝐺𝐺 =  �
𝑟𝑟≤𝑦𝑦,𝑐𝑐≤𝑥𝑥

𝐼𝐼(𝑟𝑟, 𝑐𝑐)

𝐺𝐺

𝑥𝑥

𝑆𝑆 𝑥𝑥,𝐺𝐺
�

𝑟𝑟≤𝑦𝑦,𝑐𝑐≤𝑥𝑥

𝐼𝐼(𝑟𝑟, 𝑐𝑐)
𝐺𝐺

𝑥𝑥𝐼𝐼 𝑆𝑆
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Using the Integral Image

The integral image allows fast computation of the sum (average) of any 
rectangular region in the image

�
𝑦𝑦1≤𝑟𝑟≤𝑦𝑦2,
𝑥𝑥1≤𝑐𝑐≤𝑥𝑥2

𝐼𝐼(𝑟𝑟, 𝑐𝑐) = 𝑆𝑆 𝑥𝑥2,𝐺𝐺2 − 𝑆𝑆 𝑥𝑥2,𝐺𝐺1 − 𝑆𝑆 𝑥𝑥1,𝐺𝐺2 + 𝑆𝑆(𝑥𝑥1,𝐺𝐺1)

𝐺𝐺2

𝑥𝑥2

�
𝑦𝑦1≤𝑟𝑟≤𝑦𝑦2,
𝑥𝑥1≤𝑐𝑐≤𝑥𝑥2

𝐼𝐼(𝑟𝑟, 𝑐𝑐)

𝑥𝑥1

𝐺𝐺1

𝐺𝐺2

𝑥𝑥2𝑥𝑥1

𝐺𝐺1

𝑆𝑆 𝑥𝑥2,𝐺𝐺2

𝑆𝑆 𝑥𝑥2,𝐺𝐺1

𝑆𝑆 𝑥𝑥1,𝐺𝐺2

𝑆𝑆(𝑥𝑥1,𝐺𝐺1)



Giacomo Boracchi

Disparity Map Estimation

There are different measures to compare a patch in 𝐼𝐼1 with all the candidate matches in 𝐼𝐼2

𝐼𝐼2𝐼𝐼1

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale

http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale
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Disparity Map Estimation

There are different measures to compare a patch in 𝐼𝐼1 with all the candidate matches in 𝐼𝐼2

𝐼𝐼2𝐼𝐼1

𝑁𝑁𝐶𝐶𝐶𝐶 𝐴𝐴,𝐵𝐵 =
𝑁𝑁 𝐴𝐴,𝐵𝐵

𝑁𝑁 𝐴𝐴,𝐴𝐴 𝑁𝑁(𝐵𝐵,𝐵𝐵)

Or sum of square differences

𝑆𝑆𝑆𝑆𝐷𝐷 𝐴𝐴,𝐵𝐵 =  �
𝑖𝑖=1

𝑁𝑁

𝐴𝐴𝑖𝑖 − 𝐵𝐵𝑖𝑖 2 

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale

http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale
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Stereo Pairs  http://vision.middlebury.edu/stereo/data/

http://vision.middlebury.edu/stereo/data/
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Stereo Pairs  http://vision.middlebury.edu/stereo/data/

http://vision.middlebury.edu/stereo/data/
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Stereo Pairs  http://vision.middlebury.edu/stereo/data/

http://vision.middlebury.edu/stereo/data/
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Convolution
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Correlation and Convolution

The correlation among a filter 𝒘𝒘 and an image is defined as

𝐼𝐼 ⊗ 𝒘𝒘 (𝑟𝑟, 𝑐𝑐) = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

where the filter 𝒘𝒘 is of size (2𝐿𝐿 + 1) × (2𝐿𝐿 + 1)
The convolution among a filter 𝒘𝒘 and an image is defined as

𝐼𝐼 ⊛ 𝒘𝒘 (𝑟𝑟, 𝑐𝑐) = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 − 𝑢𝑢, 𝑐𝑐 − 𝑣𝑣)

where the filter 𝒘𝒘 is of size (2𝐿𝐿 + 1) × (2𝐿𝐿 + 1)

There is just a swap in the filter before computing correlation!
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Convolution – and filter flip

Let 𝐼𝐼,𝑤𝑤 be two discrete 2D signals of (2𝐿𝐿 + 1) × (2𝐿𝐿 + 1)

𝐺𝐺 𝑟𝑟, 𝑐𝑐 = 𝐼𝐼 ⊛ 𝑤𝑤 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝐼𝐼 𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣 𝑤𝑤 −𝑢𝑢,−𝑣𝑣

w7 w8 w9

w4 w5 w6

w1 w2 w3

w9 w8 w7

w6 w5 w4

w3 w2 w1

w1 w2 w3

w4 w5 w6

w7 w8 w9

flipX −

y1 y2 y3

y4 y5 y6

y7 y8 y9

𝑤𝑤 =
flipY −

h9 h8 h7

h6 h5 h4

h3 h2 h1

⋅*

Point-wise product

h9y1 h8y2 h7y3

h6y4 h5y5 h4y6

h3y7 h2y8 h1y9

sum

𝑧𝑧5 = ℎ9𝐺𝐺1 + ℎ8𝐺𝐺2 + ℎ7𝐺𝐺3 + ℎ6𝐺𝐺4 + ℎ5𝐺𝐺5 + ℎ5𝐺𝐺6 + ℎ3𝐺𝐺7 + ℎ2𝐺𝐺8 + ℎ1𝐺𝐺9

In this particular case 𝐿𝐿 = 1 and both the image and 
the filter have size 3 × 3

The convolution is evaluated at 𝑟𝑟, 𝑐𝑐 = (0,0)
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Convolution – and filter flip

Let 𝐼𝐼,ℎ be two discrete 2D signals of (2𝐿𝐿 + 1) × (2𝐿𝐿 + 1)

𝐺𝐺 𝑟𝑟, 𝑐𝑐 = 𝐼𝐼 ⊛ 𝑤𝑤 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝐼𝐼 𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣 𝑤𝑤 −𝑢𝑢,−𝑣𝑣

I1 I2 I3

I4 I5 I6

I7 I8 I9

w9 w8 w7

w6 w5 w4

w3 w2 w1

⋅*

Point-wise product

w9I1 w8I2 w7I3

w6I4 w5I5 w4I6

w3I7 w2I8 w1I9

𝑧𝑧5 = ℎ9𝐺𝐺1 + ℎ8𝐺𝐺2 + ℎ7𝐺𝐺3 + ℎ6𝐺𝐺4 + ℎ5𝐺𝐺5 + ℎ5𝐺𝐺6 + ℎ3𝐺𝐺7 + ℎ2𝐺𝐺8 + ℎ1𝐺𝐺9

w7 w8 w9

w4 w5 w6

w1 w2 w3

w9 w8 w7

w6 w5 w4

w3 w2 w1

w1 w2 w3

w4 w5 w6

w7 w8 w9

flipX −

𝑤𝑤 =
flipY −

Point-wise product
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Convolution 

Let 𝐼𝐼,𝒘𝒘 be two discrete 2D signals of (2𝐿𝐿 + 1) × (2𝐿𝐿 + 1)

𝐺𝐺 𝑟𝑟, 𝑐𝑐 = 𝐼𝐼 ⊛ 𝒘𝒘 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝐼𝐼 𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣 𝑤𝑤 −𝑢𝑢,−𝑣𝑣

𝐺𝐺5 = 𝑤𝑤9𝐼𝐼1 + 𝑤𝑤8𝐼𝐼2 + 𝑤𝑤7𝐼𝐼3 + 𝑤𝑤6𝐼𝐼4 + 𝑤𝑤5𝐼𝐼5 + 𝑤𝑤5𝐼𝐼6 + 𝑤𝑤3𝐼𝐼7 + 𝑤𝑤2𝐼𝐼8 + 𝑤𝑤1𝐼𝐼9

sum

I1 I2 I3

I4 I5 I6

I7 I8 I9

w9 w8 w7

w6 w5 w4

w3 w2 w1

⋅*

Point-wise product

w9I1 w8I2 w7I3

w6I4 w5I5 w4I6

w3I7 w2I8 w1I9

w7 w8 w9

w4 w5 w6

w1 w2 w3

w9 w8 w7

w6 w5 w4

w3 w2 w1

w1 w2 w3

w4 w5 w6

w7 w8 w9

flipX −

𝒘𝒘 =
flipY −

Point-wise product
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Question

The filter (a.k.a. the kernel) yields the coefficients used to compute the 
linear combination of the input to obtain the output

1 3 0

2 10 2

4 1 1

Image

1 0 -1

1 0.1 -1

1 0 -1

Kernel

= ?

Filter Output

*
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Let’s have a look at 1D 
convolution 
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Let’s have a look at 1D Convolution

Let us consider a 1d signal 𝐺𝐺 and a filter 𝒘𝒘.
• Their convolution is also a signal 𝑧𝑧 = 𝐺𝐺 ⨂𝒘𝒘.

• For continuous-domain 1D signals and filters

𝑧𝑧 𝜏𝜏 = 𝐺𝐺 ⨂𝒘𝒘 𝜏𝜏 = �
ℝ
𝐺𝐺 𝑡𝑡 𝒘𝒘 𝜏𝜏 − 𝑡𝑡 𝑑𝑑𝑡𝑡

that is equivalent to 

𝑧𝑧 𝜏𝜏 = ℎ ⨂𝒘𝒘 𝜏𝜏 = �
ℝ
𝐺𝐺 𝜏𝜏 − 𝑡𝑡 𝒘𝒘 𝑡𝑡 𝑑𝑑𝑡𝑡

• For discrete signals and filters

𝑧𝑧 𝑛𝑛 = 𝐺𝐺 ⨂𝒘𝒘 𝑛𝑛 = �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝐺𝐺 𝑛𝑛 − 𝑚𝑚 𝒘𝒘(𝑚𝑚)

where the filter has (2𝐿𝐿 + 1) samples
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1D Convolution - example

𝑧𝑧 𝑛𝑛 = 𝐺𝐺⨂𝒘𝒘 𝑛𝑛 = �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝐺𝐺 𝑛𝑛 −𝑚𝑚 𝒘𝒘(𝑚𝑚)

𝐺𝐺 = sin 𝑥𝑥 ,𝒘𝒘 =
1
5

,
1
5

,
1
5

,
1
5

,
1
5

, 𝐿𝐿 = 2
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

𝐺𝐺
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1D Convolution - example

𝑧𝑧 𝑛𝑛 = 𝐺𝐺⨂𝒘𝒘 𝑛𝑛 = �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝐺𝐺 𝑛𝑛 −𝑚𝑚 𝒘𝒘(𝑚𝑚)

𝐺𝐺 = sin 𝑥𝑥 ,𝒘𝒘 =
1
5

,
1
5

,
1
5

,
1
5

,
1
5

, 𝐿𝐿 = 2

𝐺𝐺

0.766 ≈
1
5 ∗ 0.48 +

1
5 ∗ 0.84 +

1
5 ∗ 1 +

1
5 ∗ 0.91 +

1
5 ∗ 0.60

𝐺𝐺



Giacomo Boracchi

1D Convolution - example

𝑧𝑧 𝑛𝑛 = 𝐺𝐺⨂𝒘𝒘 𝑛𝑛 = �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝐺𝐺 𝑛𝑛 −𝑚𝑚 𝒘𝒘(𝑚𝑚)

 = �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝐺𝐺 𝑛𝑛 + 𝑚𝑚 𝒘𝒘(−𝑚𝑚)

𝐺𝐺

𝐺𝐺

The minus in the formula above  
indicates a flip. Flipping the filter ℎ
or the signal 𝐺𝐺 is actually the same.
Here there is no point of flipping ℎ
since it is symmetric w.r.t. its center
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What about an imupulse?
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What about an imupulse?
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What about noise?
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What about noise?



Giacomo Boracchi

Let’s go back to 
2D convolution now
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A well-known Test Image - Lena



Giacomo Boracchi

A Trivial example

0 0 0

0 1 0

0 0 0

* =
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Linear Filtering

1 1 1

1 1 1

1 1 1
9
1* = ?
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The original Lena image
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Filtered Lena Image
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25
1* =

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
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The original Lena image
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The filtered Lena image
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What about normalization?
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…what about

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2
25

̇⨂ =
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… convolution is linear



Giacomo Boracchi

…what about

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2
25

̇ ⨂ =
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… convolution is linear
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2D Gaussian Filter
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Continuous Function

Discrete kernel: assuming 𝐺𝐺 is a (2𝑘𝑘 + 1) × 2𝑘𝑘 + 1  filter

That is then normalized such that ∑𝑖𝑖=−𝑘𝑘𝑘𝑘 ∑𝑖𝑖=−𝑘𝑘𝑘𝑘 𝐺𝐺 𝑖𝑖, 𝑗𝑗  = 1
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Weighted local averaging filters: Gaussian Filter

* =
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Weighted local averaging filters: Gaussian Filter
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Gaussian Smoothing vs Averaging Filters

Gaussian Smoothing 
Support 7x7

Smoothing by Averaging 
On 7x7 window 
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Convolution Properties
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Properties of Convolution: Linearity

It is a linear operator
𝜆𝜆𝐼𝐼1 + 𝜇𝜇𝐼𝐼2 ⊛𝒘𝒘 (𝑟𝑟, 𝑐𝑐) = 𝜆𝜆 𝐼𝐼1 ⊛𝒘𝒘 (𝑟𝑟, 𝑐𝑐) + 𝜇𝜇 𝐼𝐼2 ⊛𝒘𝒘 (𝑟𝑟, 𝑐𝑐)

where 𝜆𝜆, 𝜇𝜇 ∈ ℝ

Obviously, when the filter is center-symmetric, convolution and correlation 
are equivalent
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Properties of Convolution (and Padding)

It is commutative (in principle)
𝐼𝐼1 ⊛ 𝐼𝐼2 = 𝐼𝐼2 ⊛ 𝐼𝐼1

However, in discrete signals it depends on the padding criteria In continuous domain 
it holds as well as on periodic signals

Input image 𝐼𝐼 filter 𝒘𝒘

Original image is in violet, 
grey values are padded to 
zero to enable  convolution 

at image boundaries

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

http://cs231n.stanford.edu/
http://cs231n.github.io/
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Is Convolution Commutative?

⊛ =
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Is Convolution Commutative?

⊛ =
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Translation

⊛ =
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Translation

⊛ =

Remember the filter has to be flipped before convolution
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Is Convolution Commutative?

⊛ =

This holds for the «full 
convolution» modality, not 
the «same» or «valid»
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Properties of Convolution: Associative

It is also associative
𝑓𝑓 ⊛ 𝑔𝑔⊛𝒘𝒘 = (𝑓𝑓 ⊛ 𝑔𝑔) ⊛𝒘𝒘 = 𝑓𝑓 ⊛ 𝑔𝑔⊛𝒘𝒘

and dissociative

𝑓𝑓 ⊛ 𝑔𝑔 + 𝒘𝒘 = 𝑓𝑓 ⊛ 𝑔𝑔 + 𝑓𝑓 ⊛𝒘𝒘
It is shift-invariant, namely

𝐼𝐼(⋅ −𝑟𝑟0,⋅ −𝑐𝑐0) ⊛ℎ 𝑟𝑟, 𝑐𝑐 = 𝐼𝐼 ⊛ ℎ 𝑟𝑟 − 𝑟𝑟0, 𝑐𝑐 − 𝑐𝑐0

Any linear and shift invariant system can be written as a convolution
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Properties of Convolution: Shift invariance

It is also associative
𝑓𝑓 ⊛ 𝑔𝑔⊛𝒘𝒘 = (𝑓𝑓 ⊛ 𝑔𝑔) ⊛𝒘𝒘 = 𝑓𝑓 ⊛ 𝑔𝑔⊛𝒘𝒘

and dissociative

𝑓𝑓 ⊛ 𝑔𝑔 + 𝒘𝒘 = 𝑓𝑓 ⊛ 𝑔𝑔 + 𝑓𝑓 ⊛𝒘𝒘

It is shift-invariant, namely
𝐼𝐼(⋅ −𝑟𝑟0,⋅ −𝑐𝑐0) ⊛𝒘𝒘 𝑟𝑟, 𝑐𝑐 = 𝐼𝐼 ⊛ 𝒘𝒘 𝑟𝑟 − 𝑟𝑟0, 𝑐𝑐 − 𝑐𝑐0

Any linear and shift invariant system can be written as a convolution
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Systems

Consider a system 𝐻𝐻 as a black box that processes an input signal (𝑓𝑓) 
and gives the output (i.e, 𝐻𝐻[𝑓𝑓])

The input is a signal The output is a 
signal
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Systems

Consider a system 𝐻𝐻 as a black box that processes an input signal (𝑓𝑓) 
and gives the output (i.e, 𝐻𝐻[𝑓𝑓])

In our case, 𝑓𝑓 is a digital image (a 2D matrix), but in principle could be 
any (analogic or digital) n-dimensional  signal
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Linearity and Time Invariance

A system is linear if and only if

𝐻𝐻 𝜆𝜆 𝑓𝑓 𝑡𝑡 + 𝜇𝜇 𝑔𝑔(𝑡𝑡) = 𝜆𝜆𝐻𝐻 𝑓𝑓  (𝑡𝑡) + 𝜇𝜇 𝐻𝐻 𝑔𝑔  (𝑡𝑡)
holds for any 𝜆𝜆, 𝜇𝜇 ∈ ℝ and for 𝑓𝑓,𝑔𝑔 arbitrary signals (this is the canonical 
definition of linearity for an operator)

A system is time (or shift) – invariant if and only if

𝐻𝐻 𝑓𝑓 𝑡𝑡 − 𝑡𝑡0 = 𝐻𝐻 𝑓𝑓 𝑡𝑡 − 𝑡𝑡0
holds for any 𝑡𝑡0 ∈  ℝ and for any signal 𝑓𝑓
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Linear and Time Invariant Systems

All the systems that are Linear and Time Invariant (LTI) have an equivalent 
convolutional operator

• LTI systems are characterized entirely by a single function, the filter

• The filter is also called system's the impulse response as it 
corresponds to the output of an impulse fed to the system

𝐻𝐻
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Linear and Time Invariant Systems

All the systems that are Linear and Time Invariant (LTI) have an equivalent 
convolutional operator

• LTI systems are characterized entirely by a single function, the filter

• The filter is also called system's the impulse response or point 
spread function, as it corresponds to the output of an impulse fed to 
the system

𝐻𝐻



Giacomo Boracchi

The Impulse Response
Take as input image a discrete Dirac

This is why ℎ is also called the “Point Spread Function”

⊛ =
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Denoising
An application scenario for digital filters
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The effects of smoothing
Each row shows smoothing
with gaussians of different
width; each column shows
different realisations of 
an image of gaussian noise.

Low - Pass
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Denoising: The Issue

A Detail in 
Camera Raw 
Image
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Denoising: The Issue

Denoised
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Denoising: The Issue
A Detail in Camera 
Raw Image
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Denoising: The Issue
Denoised
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Image Formation Model

Observation model is
𝑧𝑧 𝑥𝑥 = 𝐺𝐺 𝑥𝑥 + 𝜂𝜂 𝑥𝑥 , 𝑥𝑥 ∈ 𝒳𝒳

Where

• 𝑥𝑥 denotes the pixel coordinates in the domain 𝒳𝒳 ⊂ ℤ2

• 𝐺𝐺 is the original (noise-free and unknown) image 

• 𝑧𝑧 is the noisy observation

• 𝜂𝜂 is the noise realization
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Image Formation Model

Observation model is
𝑧𝑧 𝑥𝑥 = 𝐺𝐺 𝑥𝑥 + 𝜂𝜂 𝑥𝑥 , 𝑥𝑥 ∈ 𝒳𝒳

The goal is to compute �𝐺𝐺 realistic estimate of 𝐺𝐺, given  𝑧𝑧 and the 
distribution of 𝜂𝜂.

For the sake of simplicity we assume AWG: 𝜂𝜂 ∼ 𝑁𝑁(0,𝜎𝜎2) and 𝜂𝜂(𝑥𝑥)
independent realizations. 

The noise standard deviation 𝜎𝜎 is also assumed as known.
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Observation model is

Consider a regression problem 

Convolution and Regression
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Fitting and Convolution

The convolution provides the BLUE (Best Linear Unbiased Estimator) for 
regression when the image 𝐺𝐺 is constant

The problem: estimating the constant 𝐶𝐶 that minimizes a weighted loss 
over noisy observations 

Where

This problem can e solved by computing the convolution of the image 𝑧𝑧
against a filter whose coefficients are the error weights 
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Observation model is

Thus we can pursue a “regression-approach”, but on images it may not be convenient to assume a 
parametric expression of     on 

Image Formation Model
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Observation model is

Thus we can pursue a “regression-approach”, but on images it may not be convenient to assume a 
parametric expression of     on 

Image Formation Model
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Local Smoothing

Additive Gaussian 
White Noise

After Gaussian Smoothing

After Averaging

),( σµη N≈
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Denoising Approaches

Parametric Approaches
• Transform Domain Filtering, they assume the noisy-free signal is somehow 

sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary 
based decomposition)

Non Parametric Approaches
• Local Smoothing / Local Approximation

• Non Local Methods
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Denoising Approaches

Parametric Approaches
• Transform Domain Filtering, they assume the noisy-free signal is somehow 

sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary 
based decomposition)

Non Parametric Approaches
• Local Smoothing / Local Approximation

• Non Local Methods

Estimating 𝐺𝐺(𝑥𝑥) from 𝑧𝑧(𝑥𝑥) can be statistically treated as regression of 𝑧𝑧 
given 𝑥𝑥 

�𝐺𝐺 𝑥𝑥 = E 𝑧𝑧 𝑥𝑥]
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Denoising Approaches

Parametric Approaches
• Transform Domain Filtering, they assume the noisy-free signal is somehow 

sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary 
based decomposition)

Non Parametric Approaches
• Local Smoothing / Local Approximation

• Non Local Methods

Estimating 𝐺𝐺(𝑥𝑥) from 𝑧𝑧(𝑥𝑥) can be statistically treated as regression of 𝑧𝑧 given 𝑥𝑥 
�𝐺𝐺 𝑥𝑥 = E 𝑧𝑧 𝑥𝑥]
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Denoising Approaches

Parametric Approaches
• Transform Domain Filtering, they assume the noisy-free signal is somehow 

sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary 
based decomposition)

Non Parametric Approaches
• Local Smoothing / Local Approximation

• Non Local Methods

Estimating 𝐺𝐺(𝑥𝑥) from 𝑧𝑧(𝑥𝑥) can be statistically treated as regression of 𝑧𝑧 given 𝑥𝑥 
�𝐺𝐺 𝑥𝑥 = E 𝑧𝑧 𝑥𝑥]
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Denoising Approaches

Spatially adaptive methods, The basic principle:

• there are no simple models able to describe the whole image 𝐺𝐺, thus 
perform the regression �𝐺𝐺 𝑥𝑥 = E 𝑧𝑧 𝑥𝑥]

• Adopt a simple model in small image regions. For instance 
∀𝑥𝑥 ∈ 𝑋𝑋, ∃ �𝑈𝑈𝑥𝑥 s. t.  𝐺𝐺|�𝑈𝑈𝑥𝑥  is a polynomial

• Define, in each image pixel, the “best neighborhood” where a simple 
parametric model can be enforced to perform regression. 

• For instance, assume that on a suitable pixel-dependent neighborhood, 
where the image can be described by a polynomial
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Ideal neighborhood – an illustrative example

Ideal in the sense that it defines the support of a pointwise Least Square 
Estimator of the reference point. 

Typically, even in simple images, every point has its own different ideal 
neighborhood.

For practical reasons, the ideal neighborhood is assumed starshaped

Further details at LASIP c/o Tampere University of Technology 
http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/%7Elasip/
http://www.cs.tut.fi/%7Elasip/
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Neighborhood discretization

A suitable discretization of this neighborhood is obtained by using a set of  
directional LPA kernels 𝑔𝑔𝜃𝜃,ℎ 𝜃𝜃,ℎ

where 𝜃𝜃 determines the orientation of the kernel support, and ℎ controls 
the scale of kernel support.

http://www.cs.tut.fi/~lasip/

Ideal 
Neighborhood

Directional 
kernels

Discrete Adaptive 
Neighborhood

http://www.cs.tut.fi/%7Elasip/
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Ideal neighborhood – an illustrative example
Ideal in the sense that the neighborhood defines the support of pointwise Least Square Estimator of the reference point.

http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/%7Elasip/
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Examples of Adaptively Selected Neighorhoods

Define, ∀𝑥𝑥 ∈ 𝑋𝑋 , the “ideal” neighborhood �𝑈𝑈𝑥𝑥 

Compute the denoised estimate at 𝑥𝑥 by “using” only pixels in �𝑈𝑈𝑥𝑥 and a 
polynomial model to perofrm regression �𝐺𝐺 𝑥𝑥 = E 𝑧𝑧 𝑥𝑥, �𝑈𝑈𝑥𝑥]

http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/%7Elasip/
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Examples of adaptively selected neighorhoods

Neighborhoods adaptively selected using the LPA-ICI rule

http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/%7Elasip/
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Example of Performance

Original, noisy, denoised using polynomial regression on adaptively 
defined neighborhoods (LPA-ICI)

http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/%7Elasip/
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