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Direct and Inverse problems

Often, direct problems can be addressed through simulation with respect
to some know physical (natural) law.

An example related to CV:
« Image rendering 49
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Direct and Inverse problems

Inverse problems goes in the opposite direction and are much more
difficult to solve.

They are often ill posed as they admit infinite many solutions

An example:

* 3D reconstruction from a single image
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Inverse problems in Imaging

\ 2
A 0\7«9 ,\
One typically observe R @ '& l (
Z = Hy + 77/\7

Where y,z,n € R are images arranged as vectors that corresponds to

* vy :the unknown input image, which is to be recovered

* z:the observation ‘
* 7 :the noise corrupting image acquisition ' )

:
And H € R%*? js a linear operator describing some form of determinfstic’

distortion during the image acquisition process
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Blur

(R

Blurry images can be modeled / ]
z=Hy+n 13 R
I~y v %
Where Hy in its simplest form is spatially invariant Hy = (y ® h)

Forward problem

Inverse problem

Da%[d((tvl)(f
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Blur y e

2= l’{7'
Blurry images can be modeled ﬁvz ‘ ’ u
z=H N
Hy 3] :

Where Hy in its simplest form is spatially invariant Hy = (y ® h)

What H corresponds to a spatially invariant blur operator? f P
L% A /55
(] \ \/E il | . D
NP
s 2-g¥h ﬁ)f%
H A R A
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The Deblurring Problem

The convolution theorem states that
Fourier((f ® g)) = FG

e Convolution can be computed by performing
e Fourier transofrm,
* Element-wise product
* Inverse Fourier transform

« (and if FFT is possible, this is less expensive than computing convolutions in
space domain)

 Blur can be easily inverted in Fourier domain

Note that the convolution theorem holds when the signal is periodic, and
thus the circular convolution has to be computed
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The Deblurring Problem  «f.c o4,

l/"/\a& e~

Given the image y and the kernel h a blurred obsefvation is given by
z=(y ®h)
then., when the filter h is exactly known, the convolutional blur can be inverted in
Fourier Domain v . >/ :FI'TZ(y)
thus, 1 - ,FFTZ[‘?)
y = Fourier™" (Z )

H

fl

in order to define this ratio in frequencies where H = 0

y = Fourier? ZH/\) &

172 +

being € > 0 a regularization parameter (difficult to choose in practice).
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The Deblurring Problem

but what’s up when noise appears’
2=(y®h)+n

Then, when computing the Fourier transform of the observation we have

Z=YH+N

/

Thus 1
YH N NH )
H|*+¢€| ||H|?+e

y = Fourier™! <||

.. thus even unperceptible amount of noise, may become problematic in

the second term of the sum.
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Inpainting

Blurry images can be modeled
Zz=Hy+n

i

Forward problem

Inverse problem
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Inpainting

Blurry images can be modeled
z=Hy+n

What H corresponds to an inpainting operator?
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Denoising

The simplest of Inverse Problems
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Denoising: The Issue

A Detail in Camera Raw Image z
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Denoising: The Issue

Denoised y
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Denoising: The Issue

A Detail in Camera Raw Image z
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Denoising: The Issue

Denoised y
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Image Formation Model -ty <0 "pese

-
Observation model is . V(\ (oleLr
[;(x) =y(x)+nx),] xeX
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Image Formation Model

Observation model is

zx) =yx)+nx), x€X
Where -
 x denotes the pixel coordinates in the domain X < Z?
vy is the original (noise-free and unknown) image
e z is the noisy observation

* 7 is the noise realization

For the sake of simplicity we assume AWG: n ~ N(0,0%) and n(x)
independent realizations.

The noise standard deviation o is also assumed as known.
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Goal of Image Denoising

The goal of image denoising is to compute y realistic estimate of the
original image y, given the noisy observation z

Denoising is an ill posed problem and requires some form of
regularization to promote outputs that are close to natural images
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Image Denoising

Deniosing is a fundamental step in image processing pipelines
* Improves the quality of digital images to the standard we are used to

* Eases the following algorithms in imaging pipelines from those solving
low-level (e.g., edge detection), till high-level (recognition) problems

* [t is also a tool to quantitativelly assess the performance of a
descriptive model for images.

%:Z]-&'Z
5 f
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Denoising as a Regression Problem
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Image Denoising

Estimating y(x) from z(x) can be statistically treated as regression of z
given x

y(x) = E[z | x]
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Denoising and Regression
. . "
Observation model is /

zx) =y(x) +nx), x€X

Denoising can be formulated as a regression problem
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Denoising by Fitting a Constant Value

The problem: Estimate the constant € that minimizes the distance w.r.t.
noisy observations in U,, a neighborhood of x

§lx) = argmin ) (2(0) =€) a
C "y
There are many unbiased estimators (namely such that E, [¥] = y), the

BLUE (Best Linear Unbiased Estimator) is the averaging noisy samples U,,
namely: ‘

1 ]
L 90x0) = 3, 20

X € UO J
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Denoising by Fitting a Constant Value

The above method replaces each noisy input z(x) with the average over a
fixed neighborhood U, centered in x.

/ -
S . (—1/‘/34
_ - — = — ¢ L
Y % = h
P ;"‘ e
]
>
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How would you implement this?
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Denoising by Weighted Fit of a Constant

The problem: Estimate the constant C that minimizes a weighted loss over
noisy observations

o) = argmin ) wlxo —x,)(2(x) ~ € o=
xSElff B

This problem can e solved by computing the convolution of the image z
against a filter whose coefficients are the error weights

V(xg) = (z @@xo)
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Smoothing is Agnostic to Image Content
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.. of course

To perform regression more effectively, we can leverage a model
describing the true signal y

D

_o - In this illlustration,
’ . .
~ o ° assuming the noise-free
0\\\ ﬂ signal follows a
\‘f/ polynomial trend might

help!

>

We can pursue a “regression-approach”, but on images it is difficult to
define a parametric expression for y on X
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Difficult to Find a Good Model for Lena..
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An Overview on Denoising Approaches

Giacomo Boracchi



Pointwise vs Multipoint Methods
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Another view on Denoising Approaches

Pointwise / Multipoint

 Pointwise: the estimation of noise-free signal is computed for the central point
only y,, and not for all the other points considered

* Multipoint: the estimation of the noise-free signal is computed for all the points
ys used by the estimator to estimate .

Katkovnik, V., A. Foi, K. Egiazarian, and . Astola, “From local kernel to nonlocal multiple-model image denoising”,Int. |. Computer Vision 2009



Pointwise vs Multipoint

Pointwise: the estimate is given for the central point only
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Pointwise vs Multipoint

Pointwise, the estimate is given for the central point only

L0

Pixels where
the true signal
Is estimated
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Pointwise vs Multipoint

Multipoint, the original image is estimated in all the pixels considered in
the filtering
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Pointwise vs Multipoint

Multipoint, the original image is estimated in all the pixels considered in
the filtering

L0

Pixels where
the true signal
Is estimated

7
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Parametric vs Non-Parametric

Giacomo Boracchi



Denoising Approaches

Parametric Approaches vl

o ———

2+ Assume the noisy-free signal y features some@arsity property in a

/ suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary
based decomposition. This implies that your image admits a global
parametric representation

Non Parametric Approaches /Z PA- Ct
Bllé{_&l ﬁ\é‘l‘a\

/ﬂ * Local Smoothing / Local Approximation -

« Non Local Methods N<Z.,

Deep Learning &~

\
 Entirely data driven, these methods do not rely on an explicit prior

for handling images

Giacomo Boracchi



Denoising Approaches

Non Parametric Approaches

* Local Smoothing / Local Approximation

* Non Local Methods

Estimating y(x) from z(x) is treated as regression of z given x

y(x) = Elz | x]
;\
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Bilateral Filter
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Bilateral Filter g W AR

”@(& o” n

The denoised image ¥ is a weighted average of (in principle) all the pixels

w (X1, X2)z(x5), Vx; €EX

r}l)/ (’ ['{71']
where weights {w(x, x,)Jare adaptively defined depending on the
image content and distance from pixel position

And W; is a normalization factor for y(x;)

Wy= ) w %)

XZEX

Tomasi, C., & Manduchi, R. Bilateral filtering for gray and color images. In ICCV 1998



Weights in Bilateral Filters | g R’

In particular, weights are function of photometric and spatial distance

between x; and x, $/ / a@ R ;-9 IR .
|
w(xy, x5) = f(2060) = 2(x2)) g5 s — 1) @
w 2
Often functions f. and g are Gaussians / 7
iz -zl iy =, 12
fr(xlle) — € 29.-1% ) gs(xl; Xz) — € 22‘52.

Where the parameters o, and o, regulate the weight decay factors and
compensate for different ranges (image intensity / space)

Tomasi, C., & Manduchi, R. Bilateral filtering for gray and color images. In ICCV 1998



Weights in Bilateral Filters

Weights take into account two different priors:
e Local similarity

* Non-local similarity

What do we obtain if we ignore the photometric contribution in the weight

definition, namely we set !fr =17

Tomasi, C., & Manduchi, R. Bilateral filtering for gray and color images. In ICCV 1998



Local vs Non-Local

Local: weights are determined by the pixel distance (regardless of the
image content)

Different weights

Giacomo Boracchi



Local vs Non-Local

Non Local: weights are determined by the image similarity

Example of observation

Giacomo Boracchi



Local vs Non-Local

Non Local: weights are determined by the image similarity

Example of observation

[ =
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Local vs Non-Local

Non Local, weights are determined by the image similarity

With different weights

Giacomo Boracchi



Nonlocal Self Similarity denoising
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In a natural image, for any given patch there exist many other similar
looking patches at different spatial locations.

Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE TIP 2007, 16(8)



Nonlocal Self-similarity
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NonLocal Self Similarity in Image Processing

Traced back to fractal models of natural images (Barnsley, 1993) and
fractal block coding (Jacquin, 1992)
.. self-transformability on a blockwise basis...

Texture synthesis and completion (Efros and Leung, 1999; Wei and Levoy,
2000).

Predicting the central pixel of a patch by exploiting the long-range
correlation of natural images (Zhang and Wang, 2002)

Nonlocal self-similarity as an effective regularity assumption at the heart
of many successful image denoising algorithms (NL-means, BM3D, etc.).

Nonlocal self-similarity was successfully used for several image/video
processing tasks.
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Denoising methods based on self-similarity

These methods leverage self similarity of image patches as a form of “
regularization for distinguishing natural images from noise f\/é

X
Self-similarity is assessed at patch-level and in a non-local manner. _ \,3

7

Similar patches have to be correctly identified on the basis of a suitable

\|
2, -4,
patch distance measure. l

<)
* This is different from Bilateral Filter which considers only the photometric 5[’(‘)
distance at pixel-wise level

Such a distance implies the assumption of a specific descriptive model for
natural images and their self-similarity.

The denoising effectiveness actually depends on the validity of such
underlying model.
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Image denoising (NL-Means)
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Patches g (5¥)

Let U c Z? be a spatial neighborhood centered at . s T

the origin (0,0) € Z?, - ‘f Mo f*‘-,!’

 we define a patch centered at a pixel x €
X in the observation z

ZZX’@(%Z(X + u), u € U%

* a patch centered at a pixel x € X in the
original image y

V() = y(x +u), uel

Giacomo Boracchi



Patch Distance

The idea:

The patch-wise distance correlates well with the

distance of the two central pixels in the noisy-free
patches

The idea is to assess the similarity between pixels

y(x1) and y(x,) (not available), via the similarity
of the corresponding noisy patches z, and z,,.

Thus, weights based on photometric differences
should be computed from ||z, — z,_|[, rather

than z(x,) — z(x5). -

7/L, X

R 4%\ T T J 7 v
;" :"..-., .\7\r.}§ .\.q.!- ~0 .’\
1 e
AN ,:3“ ’1'3(* J*' 3
..‘. .. »’ B | ﬁ"‘:‘f.‘ ‘-
' » » . -v -, o
v s ' "f- -~ ) v -§
" b L :F“c

RE =y
e
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Windowed Patch Distance in NL-means

The distance operator is defined as a windowed quadratic distance
between patches

d(xq,x,) = E(Z(xl +u) —z(x, + u))z@
UEU

Where k: U » R* is a windowing kernel (we use k since w is being
used for the aggregation weights)

Giacomo Boracchi



Windowed patch distance in NL-means (cnt.)

The windowing kernel k: U - R™ adjusts the contribution of each difference
term depending on the position of u with respect to the patch center.

“ 2¢ - 2y, ﬂj

)
d performs a pixel-wise comparison of the patches }} (le — 34)\(/}“2

the decay of k reflects how much similarity between y(x;) and y(x,) may be
implied from the similarity between y(x; + u) and y(x, + u) when u # 0.

Giacomo Boracchi



Non Local Means Filter (NL-means)

The denoised image ¥ is a weighted average of all image pixels

o) = ) wnx)a(x),  Vx € X

xZEX (/1¥4
where weights {w (x4, x,)} are adaptively defined depending on the similarity . ¢ ﬂ
between two noisy patches z, and z k\,
A 5 G () - L@ -2

e(_d(xi,xz)

w(x,x3) =
A z o V\’LU‘)
* d(xq,x,): distance measure between patches in x; and x,,

« h > 0 is a smoothing parameter (h = o).
* 2z, similarto z,, = d(x1,xz) is small = w(xq,x;) large
 NL-means operates pixel-wise

A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms, with a new one, Multisc. Model. Simulat., vol. 4, no. 2, 2005



Weights from Patch-distances

Seach neighborh. Seach neighborh.

windowed foveated

windowed foveated

patch patch
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Foi, A., & Boracchi, G. Foveated nonlocal self-similarity. International Journal of Computer Vision, 2016 120(1), 78-110.



Spatially Adaptive Methods
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Denoising Approaches

Spatially adaptive methods, The basic principle:

* there are no simple models able to describe the whole image y, thus
perform the regression y(x) = E|z | x]

e Adopt a simple model in small image regions. For instance

vx €X, 32U, s.t. yy,_isapolynomial

* Define, in each image pixel, the “best neighborhood” where a simple
parametric model can be enforced to perform regression.

e For instance, assume that on a suitable pixel-dependent neighborhood,
where the image can be described by a polynomial

Giacomo Boracchi



ldeal neighborhood - an illustrative example

Ideal in the sense that it defines the support of a pointwise Least Square
Estimator of the reference point.

K' - "*-\l / — N ://_..a-‘.-r'. ‘\ / — _:\:I_ —_|
{ | /| | [ | | |

. 2R J/ N

Typically, even in simple images, every point has its own different ideal
neighborhood.

For practical reasons, the ideal neighborhood is assumed starshaped

Further details at LASIP c/o Tampere University of Technology
http://www.cs.tut.fi/~lasip/

Local Approximations in Signal and Image Processing http://www.cs.tut.fi/~lasip/



http://www.cs.tut.fi/~lasip/
http://www.cs.tut.fi/~lasip/

Neighborhood Discretization

A suitable discretization of this neighborhood is obtained by using a set of
directional LPA kernels {gg r}, ,, Where

@ determines the orientation of the kernel support,

* h controls the scale of kernel support

Ideal Neighborhood Directional kernels Discrete Adaptive
Neighborhood

Local Approximations in Signal and Image Processing http://www.cs.tut.fi/~lasip/



http://www.cs.tut.fi/~lasip/

ldeal neighborhood - an illustrative example

Each point has an ideal neighborhood that defines the support of

pointwise Least Square Estimator for the reference point.

Local Approximations in Signal and Image Processing http://www.cs.tut.fi/~lasip/



http://www.cs.tut.fi/~lasip/

Examples of Adaptively Selected Neighorhoods

Define, Vx € X , the “ideal” neighborhood

U, where to perform regression by fitting a
given polynomial

Compute the denoised estimate at x by
“using” only pixels in U,

Local Approximations in Signal and Image Processing http://www.cs.tut.fi/~lasip/
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Local Polynomial Approximation

The problem: Estimate the polynomial p of degree m that minimizes a
weighted loss over noisy observations in a neighborhood of x

p=argmin ) wio = x)(2(xs) =PG5

—

P EPm XE X /%\
where w = {W(X\)} s. t. w(x,) =1 SN
xSZX \f
v 9(x0) = H(xo) o

This is directly solved by convolution of z against a filter g whose
coefficients depend on the polynomial degree m and the weights w

9(x0) = (z ©F) (o)

Katkovnik, V., K. Egiazarian, ]. Astola, “Adaptive window size image de-noising based on intersection of confidence intervals (ICI) rule”, ]. of Math.
Imaging and Vision, 2002.



Local Polynomial Approximation

To achieve spatial adaptation we can consider multiple windows which are
obtained by rotation and scaling of a basic window w

Let w9 = Wy (E) the scaled window over the direction 8

Consider multiple directions 8 € ©® and scales h € H to define a collection
of filters gg 5, yielding a batch of estiamtes
Vo,n(xo) = (Z ® ge,h)(xo) ,
adaptive-scale
|/ directional window

Adaptation is performed by selecting, gﬁ%
along each direction @, the best scale h”

Katkovnik, V., K. Egiazarian, ]. Astola, “Adaptive window size image de-noising based on intersection of confidence intervals (ICI) rule”, ]. of Math.
Imaging and Vision, 2002.



Inersection of Confidence Inverval Rule

Inersection of Confidence Inverval (ICl) Rule is an
adaptive scale selection criteria from statistical
literature.

The scale parameter h controls the trade-off
between bias and variance in the LPA estimates. |,

* Large h corresponds to a large window and
smooth estimates, with lower variance and
typically increased estimation bias.

A small h corresponds to noisier estimates,
less biased, and with higher variance.

>

*
h fi
Katkovnik, V., K. Egiazarian, ). Astola, “Adaptive window size image de-noising based on intersection of confidence intervals (ICI) rule”, ). of Math.
Imaging and Vision, 2002.



ICl Rule

7 £/"‘J

Consider the intersection J; of all the
confidence intervals D

ﬂ D

l<]
Where Di = [yl(xo) — FUi, j;l'(xo) + FO'l'] iy
and o; is the standard deviation of the | s p4|<>,ffh4
estimator associated to y;, andI'>0isa (§—5 I 3H},,AI—° -
tuning parameter. Dy P9k, |7 QW A

D]‘ o)ﬂ’h1 7, @
Then, the ICI rule selects the largest scale
-_l_ o 0 S
such that 7;+ is not empty. ?

.] ]+ p y hy hy hy=h* hy

Katkovnik, V., K. Egiazarian, ). Astola, “Adaptive window size image de-noising based on intersection of confidence intervals (ICl) rule”, ). of Math.
Imaging and Vision, 2002.



LPA - ICI Rule

ICl is applied independently for each direction, yielding the adaptive scale

(length) of the corresponding sector. 7

Local Approximations in Signal and Image Processing http://www.cs.tut.fi/~lasip/

ICI

Giacomo Boracchi
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Examples of adaptively selected neighorhoods

Neighborhoods adaptively selected using the LPA-ICI rule

&"5’5 ;

Local Approximations in Signal and Image Processing http://www.cs.tut.fi/~lasip/
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Adaptive Scales

The adaptive scales reveal the
distribution of features (such as

edges) across the corresponding
direction.

Local Approximations in Signal and Image Processing http://www.cs.tut.fi/~lasip/



http://www.cs.tut.fi/~lasip/

Final Estimate

Directional adaptive-scale estimates are then fused together into the
anisotropic estimate

§xo) = ) A06,0) Py g (x)

6€0

And aggregation weights A(x, 8) are inversely
proportional to the variance of the estimators

o~ *(h*,0,x)
A(x) 8) — _2 _|_
ZQ o (h ) H; x)

Local Approximations in Signal and Image Processing http://www.cs.tut.fi/~lasip/



http://www.cs.tut.fi/~lasip/

Final Estimate

The directional adaptive-scale
estimates are fused together to
obtain the final anisotropic estimate
(shown in the center).

Local Approximations in Signal and Image Processing http://www.cs.tut.fi/~lasip/
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Example of Performance

Original, noisy, denoised using polynomial regression on adaptively
defined neighborhoods (LPA-ICI)

Giacomo Boracchi



Parametric Approaches
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Denoising Approaches

Parametric Approaches

* Assume the noisy-free signal y features some sparsity property in a
suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary
based decomposition. This implies that your image admits a global

parametric representation

Giacomo Boracchi



Sparsity as a Denoising Prior
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Sparsity and Parsimony

The principle of sparsity or “parsimony” consists in representing some
phenomenon with as few variable as possible

Stretch back to philosopher William Ockham in 14t Century
Wrinch and Jeffreys [1921] relate simplicity to parsimony:

The existence of simple laws is, then, apparently, to be regarded as a

quality of nature; and accordingly we may infer that it is justifiable to

prefer a simple law to a more complex one that fits our observations
slightly better.

Simplicity is the number of learning parameters

Giacomo Boracchi



Sparsity in Statistics

Statistics: simple models are preferred.

Sparsity is used to prevent overfitting and improve interpretability of
learned models. /A 0

In model fitting, the number of parameters is typically used as a criterion
to perform model selection.

See Bayes Information Criterion (BIC), Akaike Information Criterion (AIC),
..., Lasso.

Giacomo Boracchi



Sparsity in Signal Processing

Signal Processing: similar concepts but different terminology.

Vectors corresponds to signals and data modeling is crucial for solving
inverse problems.

A very successful prior is to assume that images are approximated by
sparse linear combinations of prototypes (basis elements / atoms of a
dictionary), resulting in simpler and compact model.

Noise, having no structure, is not expected to be sparse.

\/605(0(

4
%J—/_?i'ék ol
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How to promote sparsity/

Sparisity does not make much sense in space domain —» e ”,"F’E?f a
V(4 — a2t

|} ((J
99M

cameraman Sparse cameraman (only 50%
of pixels are preserved)

Giacomo Boracchi



Basic Notions for
Transformed-Domain
Image Processing
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Preliminary Notation: Linear Independence

A set of vectors {e;};—1 _y living in a vector space V is said to be linearly
independent if 7&

Exiei=0<:)xi=0‘v’i

l

Giacomo Boracchi



Preliminary Notation: Basis

A basis {e;};—1 _q Of a vector space V is a set of linearly independent
vectors that spans the whole vector space V, namely:

Vvvel, H{xi}i=1,...,d S.T. v = z Xi€;
l

d is said the dimension of V (potentially it could not be finite)

Giacomo Boracchi



Example

Th two vectors {eq, e;} represent a basis for the plane

Giacomo Boracchi



Example

Th two vectors {eq, e;} represent a basis for the plane

Since any vector in this plane can be written as a linear combination of
these two

v =15 xeq +(—1) *e,
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Example

Th two vectors {eq, e;} represent a basis for the p
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This holds for any vector except the orthogonal ones
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A very important property
Let {e;}i—1..q be a set of linearly independent generators of V then:

Vvvel, a{xi}i=1,...,d S.T. v = z Xi€;

l
And such representation is unique /
[ {xi}izl,...,d
SIJhi f— Cg{//;c“ﬁ’

Proof: follows trivially from the definition of linear independence
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A very important property
Let {e;}i—1..q be a set of linearly independent generators of V then:

Vv eV, I{xi}i=1.q St V= z X;e;
l
And such representation is unique
V= {xi}i=1,...,d

Ok, we know that this represenation exists and is unique

Proof: follo
Vvel, EI{xi}i=1,...,al s... v= Z@i

i
.. But given an input v, how to compute v = {X;}i—1 4
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Orthonormal Basis in Euclidean Space

An orthonormal basis is basis {e;};—1 . 4 is such that

\
e}e]- = 5i,j ¢,
The advantage of using orthonormal basis is that [

—

= A —
l 7*‘ v
and D
@= elv = v'e; il

If we arrange the basis {e;};—1 4 in the columns of a d X d matrix D

x=Dw
\

Vvvel, El{xl-}izl’___,d S.T. v = z Xi€;
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Ok, let’s go back to images

Which is the basis we used for representing digital images so far?

X. e
v - R
116 23 33
16 3 73
5 4 30

/
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Ok, let’s go back to images

116 23 33
16 3 73
5 4 30

Which is the basis we used for representing digital images so far?
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The canonical basis of R

Which is the basis we used for representing digital images so far?

116 23 33
16 3 73
5 4 30
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The canonical basis of R

Which is the basis we used for representing digital images so far?

116 23 33
16 3 73
5 4 30
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The canonical basis of R

Which is the basis we used for representing digital images so far?

116 23 33
16 3 73
5 4 30
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The canonical basis of R

Which is the basis we used for7r?<pkresenting digital images so far?
Yara

< 2L
/[/l‘-'a,'
C’,)(
x »
116 23 33
16 3 73
5 4 30
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Thus the canonical basis

Canonical basis

{ei}iz1,..a
Being e; = zeros(1,d); e;(j) = 1
Uses each coefficient to represent a pixel:

« all coefficients are equally meaningful
 thus, it is not usefull at all for compression

Are there basis that ease image processing tasks/’
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Fourier Transform
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2D Fourier Transform

The (u,v)-element of the 2D Fourier basis is defined as
e ~L2m(ux+vy) — cos(Zn(ux + vy)) + i sin(Zn(ux + vy))

Each Fourier coefficient is computed with an inner product with the
correspondinf function.

The Fourier basis functions are constant where y = —u—cx +C

The Fourier basis functions have unlimited support.

The Fourier Transform is invertible (it is an orthonormal transform)

Fourier domain is also called frequency domain.
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2D Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is defined as
M—-1N-1

Flm,n] = ‘ Z flk, l]e_”i(kﬁerlﬁn)

The Fourier Transform admit a fast implementation (FFT) when the
signal/image sizes are powers of 2.
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2D Fourier Basis Elements

Frequency and Orientation of the 2D Fourier Basis Elements

the u=1v=10Fourier domain bas

N ‘II‘lIIII

Giacomo Boracchi



2D Fourier Basis Elements

Frequency and Orientation of the 2D Fourier Basis Elements

the u=100v=1Fourier domain basis element

buy u=100,v=1
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2D Fourier Basis Elements

Frequency and Orientation of the 2D Fourier Basis Elements

bupy u=10,v=10
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2D Fourier Basis Elements

Frequency and Orientation of the 2D Fourier Basis Elements

the u=2v=2Fourier domain basis element

buy uU=2,v=2

note that in atlab, Fourier
coefficients are indexed
starting from 1
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Try it in Matlab

JExamples of Basis Elements
Y=zeros(512);

u=10

V=10

Y(u,v)=1;

% Y is the image in Fourier Domain having only the (u,v)-coefficient set to 1 and the other set
to 0

figure(1),imshow(Y,[]),title(['the u=',numastr(u), 'v=",num2str(v), 'space domain basis element']

% by inverting the Fourier transform one get the (u,v)-element of the 2D discrete Fourier basis
y=ifft2(Y);

figure(z),]i31show(real(y),[]),title(['the u=',numa2str(u), 'v='",numa2str(v), 'Fourier domain basis
element’
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Limitations of Fourier Transform

* Fourier Transform yield complex coefficients,

* Fourier Trasformation it’s a global trasforamation (each and every pixel
affects in principle each and every coefficient)

Dt

Difficult to find a parametric model describing the whole image and
enabling separation between noise and the image content

* Better operate with a real-valued basis

e Better operate patch-wise, such that the parametric model applies to
small portions of the image \
[
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Denoising by Thresholding in Transform
Domain
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Denoising by Thresholding ,

The underlying assumption is that a clean signal admits a sparse
representation w.r.t. a suitable basis {e;};—1 4 (or set of generators)

Noise, being unstructred, spreads in all the coefficients D¢c

A general denoising appraoch consists in

* C(Cropping the image patch-wise

* Transform each patch according to a sparsitying transformation
e Perform Thresholding

 |nvert Transformation
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Sparsity Promoting Denoising
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Sparsity Promoting Denoising (N S 1
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Sparsity Promoting Denoising

When the transformation is
_ not w.r.t. an orthonormal
, basis, decomposition
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Sparsity Promoting Denoising
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Sparsity Promoting Denoising
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Sparsity Promoting Denoising

DCT Coeff

patch

— N M = o W ~ m

Thresholded Coeff

denoised patch

— O M = 0 W M~ o

DCT Coeff noise free

noise-free patch

— N M = W M~
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Sparsity Promoting Denoising
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Sparsity Promoting Denoising
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Sparsity Promoting Denoising
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Sparg%ity Promoting Denoising

TL feﬂoo f’a’l'ﬂdﬂ This is a much more

compressed representation

I than z.
Encoding X instead of z can
V4 4 significantly reduce the size
N © of the image

l_\ /;( (/@ JPEG Compression performs

encoding of X

Felis_silvestris_silvestris.jpg: Michael Gablerderivative work: AzaToth / CC BY (https://creativecommons.org/licenses/by/3.0) Giacomo Boracchi



Recent Denoising Algorithms
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Hand-Crafted Algorithms

Recent denoisng algorithm combine principles from different approaches:
Spatial Adaptivity
Nonlocal self-similarity

Sparsity w.r.t. to a basis / a learned set of generators
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K-SVD Image Denoising
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The obtained dictionary after 10
iterations

Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse
representation. IEEE Transactions on signal processing, 54(11), 4311-4322.
Sparse and Redundant Representation Modeling of Signals - Theory and Applications By: Michael Elad



BM3D: Block Matching and 3D collaborative Filtering

Noisy Step /| _»Basic estimate Step 2
C—— | | . Final
5 Block-wise estimates == Aggregation = Block-wise estimates == Aggregation =+ Wiener
: | : t s | estimate
; Inverse 3D transform i Inverse 3D transform :
Grouping by 1 ] Grouping by t :
block-matching Hard-thresholding - ------ - | bloc}f:.m.ﬂ‘?f:.}.’:mg Wiener filtering --------
' ' = > t t Weight |
3D transform 5

Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE TIP 2007



. IEEE TIP 2007

ing

-y P LS g
. T S
sl
SR
e s 3

1 5
L
=
=
L
=
frar}
(3]
| S
o
)
S
©
(S ]
=
3]
=
(=}
b
=
S
(=}
[Vl
(7]
c
frary
Q
o
(O]
(V2]
L S
3]
o
(%]
>
0
o0
R
2
o
c
©
(5]
o0
3]
E
h V4
S

lazarian

BM3D denoising (¢ = 35)

Dabov, K., Foi, A., Katkovnik, V., & Eg




Shape Adaptive DCT
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Foi, A., V. Katkovnik, and K. Egiazarian, “Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale and Color Images”, IEEE TIP 2007



Shape Adaptive DCT (o = 35)
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Deep Learning Methods
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Dn-CNN

Noisy Image Residual Image

Conv + RelLU
Conv + BN + RelLU
Conv + BN + RelLU
Conv + BN + RelLU

Conv

|

— @= Zi = Vi

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” IEEE
Transactions on Image Processing, vol. 26, no. 7, pp. 3142-3155, July 2017.



The Network Architecture

Input
WxHx1 WxHx63  WxHx63 WxHx63  WxHx63

Conv

Conv

‘LWXHX1 ‘LWXHX1 J}WXHM ‘LWXHX1 ‘LWXHX1 T
w w - - v v

Remez, T., Litany, 0., Giryes, R., & Bronstein, A. M. (2018). Class-Aware Fully Convolutional Gaussian and Poisson Denoising. IEEE
Transactions on Image Processing, 27(11), 5707-5722.



That’s all, folks!
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