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Object Recognition by Computer Vision Features

Estimating Image Correspondences

* |[Extract features from each image (last time...)
« Keypoint detection
e Descriptor Computation

* Match features between images

* Prune matches and then perform triangulation
detect objects / stitching ..
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Object Recognition by Feature Extraction
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Feature Matching



Object Recognition by Computer Vision Features

Estimating Image Correspondences

« Extract features from each image
« Keypoint detection
e Descriptor Computation

* |Match features between images

* Prune matches and then perform triangulation
detect objects / stitching ..
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The General Approach to Feature Matching

When comparing two images I; and I, one typically:
 Independently extract SIFT features (keypoint + descriptor) from each image

* For each descriptor in I; we look for the most similar, descriptors in I,, i.e., we
compute its nearest neighborhood in I, in terms of the Euclidean distance

Matches are confirmed when the distance between the two descriptors is below
a threshold. A matched feature connects both keypoint location and scale.

After having iterated the procedure for all the points, global criteria to discard
wrong matches can be implemented

Objects are detected by clustering (grouping) matches, to this purpose, some
global criteria is enforced

Giacomo Boracchi



Feature Matching

Input: X; and X,, features extracted from T and I

Template Image
features features

X, € R¥*M X, € R4*Nz
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Feature Matching

Input: X; and X,, features extracted from T and I

7\(*‘»
ETT%

Template Image
features features

X, € R3*N:1 [X3 € REXN:
Goal: match image features on the template features.
Estimate each image feature x; € X,, the template feature x]‘: € X,
minimizing distance the Euclidean distance
i . .
X; = argmm(“yﬁ— j”z) ®
XjE N
Xz
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Feature Matching

Input: X; and X,, features extracted from T and I

Template Image
features features

X, € R¥*M X, € RA*N>
Goal: match image features on the temnlate features.
This is the Nearest-Neighbor Matching Problem

(on high-dimensional data)

A central problem in CV, ML, document retriveal,

data analysis, bioinformatics, compression
e

Estimate e
minimizing
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Feature Matching

One option is linear search: exhaustively looking for the closest point in a

loop -~
ve!l FZ%\) e % &%A
) ..

Finding nearest neighbor matches to high dimensional vectors of the
training set is one of the most computationally expensive part of CL and

ML algorithms, it is O(n) but training set are typically very large

This is computationally infeasible in cases of practical interest, and more
efficient solutions are needed

Muja and Lowe: “Scalable Nearest Neighbor Algorithms for High Dimensional Data” TPAMI 2014 Giacomo Boracchi



K-d trees: the rationale

Data-structured approach: organize data for efficiently searching nearest

neighbor.

K-d trees are constructed by recursive binary splits on each marginal

component (typically based on the median of the covariate population)

Data where to
build a k-d tree
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K-d trees: the rationale

K-d trees are constructed by recursive binary splits on each marginal
component (typically based on the median of the covariate population)
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K-d trees: the rationale

K-d trees are constructed by recursive binary splits on each marginal
component (typically based on the median of the covariate population)

Split the right part on the
median values of the data

along the second component
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K-d trees: the rationale

K-d trees are constructed by recursive binary splits on each marginal
component (typically based on the median of the covariate population)

This scheme yields a tree with node splits based on [x];
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Nearest Neighbor (NN) search over K-d trees

NN search in K-d trees is very efficient since it consists in:

1. walking through the tree and finding the leave containing the query
point
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Nearest Neighbor (NN) search over K-d trees

NN search in K-d trees is very efficient since it consists in:

1. walking through the tree and finding the leave containing the query
oint
p Y
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Nearest Neighbor (NN) search over K-d trees

NN search in K-d trees is very efficient since it consists in:

1. walking through the tree and finding the leave containing the query

point
query point
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Nearest Neighbor (NN) search over K-d trees

NN search in K-d trees is very efficient since it consists in:

1. walking through the tree and finding the leave containing the query
point

2. Computig the distance from the closest point in the leave
query point

Giacomo Boracchi



NN search over K-d trees: the rationale

3. Backtrack the recursion on the leaves, to check whether the NN is in
another leave

query-point
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NN search over K-d trees: the rationale

3. Backtrack the recursion on the leaves. For each leave:

* Intersect the hypersphere having radius of the closest point with the
hyperplanes defining the leave

query-point
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NN search over K-d trees: the rationale

3. Backtrack the recursion on the leaves. For each leave:
* Intersect the hypersphere with leave hyperplanes
« Recursively follow the tree down to nonempty intersections

query-point
\U\\.\
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NN search over K-d trees: the rationale

3. Backtrack the recursion on the leaves. For each leave:
* Intersect the hypersphere with leave hyperplanes
« Recursively follow the tree down
* Possibly define a new hyperplane radius (i.e. NN)

query-point
%
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NN search over K-d trees: the rationale

3. Backtrack the recursion on the leaves. For each leave:
* Intersect the hypersphere with leave hyperplanes
« Recursively follow the tree down
* Possibly define a new hyperplane radius (i.e. NN)

 Empty intersection — skip the whole branch
query-point
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NN search over K-d trees: the rationale

3. Backtrack the recursion on the leaves. For each leave:
* Intersect the hypersphere with leave hyperplanes
« Recursively follow the tree down
* Possibly define a new hyperplane radius (i.e. NN)
 Empty intersection — skip the whole branch

query-point
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NN search over K-d trees: the rationale

3. Backtrack the recursion on the leaves. For each leave:
* Intersect the hypersphere with leave hyperplanes
« Recursively follow the tree down
* Possibly define a new hyperplane radius (i.e. NN)

 Empty intersection — skip the whole branch
query-point
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NN search over K-d trees

Nearest Neighbor search using k-d trees can be far more efficient than
linear search, complexity becomes 0(log(n))

 Efficient distance calculation since leave splits are parallel to the axis
— k-d trees can be crawled by checking a single component of the
vector at a time

* However, it is not very effective in high-dimensional spaces, when the
number of points approaches data-dimension it becomes close to linear
search.

Giacomo Boracchi



Approximated searches over K-d trees

Approximate versions can be implemented:
« Upper-bounding the number of points to check

e Reducing the hypersphere radius by 1/a when controlling the intersection

with other leaves , ,
Use this radius to

compare against
° boundaries of
o other segments

query point
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Randomized Ensembles of K-d trees

-
T
.
L
-

Randomized ensembles of trees can speed %
up approximate calculations since it is o
more likely that the query point and the >
nearest neighbor fall in the same cell at
least once
=
()
O
S
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Muja and “Scalable Nearest Neighbor Algorithms for High Dimensional Data” TPAMI 2014




FLANN: Fast Library for Approximated Nearest Neighborhood

A library which implements advanced approximated seraching methods
based on trees, including new algorithms:

* Priority search k-means tree algorithms (which are not constructed as
splits along the axis)

 Hierarchical Clustering Tree (meant for binary features)

Muja and Lowe: “Scalable Nearest Neighbor Algorithms for High Dimensional Data” TPAMI 2014



Pruning Matches
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Object Recognition by Computer Vision Features

Estimating Image Correspondences

Extract features from each image
« Keypoint detection
e Descriptor Computation

Match features between images

Prune matches and then perform triangulation
detect objects / stitching ..
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Remove matches that are not good enough

The major issue:

 There does not exist a refernce value for a descriptor distance for
good/wrong matches

Desciptor distance can vary a lot from scene to scene, and feature to
feature

Matches have to be pruned by looking at their relative distance

\ x e X, X, e‘xL Tle W/ ARET
EIEH WAL (X0, % ) o e adkh
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Ratio Test

By nearest neighbor search we get for each image feature x; € X,, the
closest template feature x; € X;

Wrong matches (x;, x]‘:) need still to be rejected.
X, X

[Lowe 2004] Lowe "Distinctive Image Features from Scale-Invariant Keypoints" IJCV 2004



Ratio Test

During matches, retrieve the 2-NN neighbor of each x;, i.e.
(x4, x7) and (x;, x3,)

Discard keypoints where

S .
‘xi_x;c
—2> 0.8
|x; — .

This analysis discards matches where the second nearest neighbor is very
close to the first. These are:

 Ambiguous matches
* False matches arising from background clutter

[Lowe 2004] Lowe "Distinctive Image Features from Scale-Invariant Keypoints" IJCV 2004
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Robust Fitting

Giacomo Boracchi
CVPR USI, April 24 2020

Credits Luca Magri, Politecnico di Milano
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Let’s go back to the fitting problem

Giacomo Boracchi



Example: Line Fitting for Vanishing Point Estimation
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Example: Conic Fitting
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Example: Estimating Homographic Transformations
P
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200 400 1200 . )
Giacomo Boracchi



Example: Estimating Fundamental Matrix
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In all these cases the problem boils down
o 10 fitting a parametric model to
(presumably) noisy input data

£ kS

-
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Ordinary Least Square
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All these problems boils down to..

Given a set of N points (or matches..)
X = {(x1,y1), e, (XN, YN)}
Given a parametric model
y=mx-+q ¢

Estimate the parameters m, g yielding the P
best fit

Giacomo Boracchi



Least Square Regression

Given a set of N points (or matches..) Residual errors
X = {(le Y1)i ) (xN' yN)}

Given a parametric model
y=mx+q

(xi, Yi) ®
|
1
n=Yyi—mx;—(q !
1
l

Estimate the parameters m, g yielding the (pmx =a) = /-,
best fit ¢

The best fit is the one minimizing some
residual error over the whole data

— . o ()
ri=Yi—mx; —(

o

/]

Giacomo Boracchi



Ordinary Least Square (OLS) Regression

The loss function is the sum of squared residual errors

N N
E = z(ri)z = z(yi —mx; —q)? =
i=1 i=1 R

Which in matrix form becomes V4
m
=y —lx 1] q
(V1] _xl 17
E=|]..]= [
VN XN 1]
Then, the solution can be computed via

[m,q]

east square regression

m
q

|

: mi|?
rgmin v x|

Giacomo Boracchi



Ordinary Least Square (OLS) Regression
OLS consists in solving the following problem

man 2

M, §] = argmin HY —X[q]H
m,q 2
by zeroing the derivative of the loss function/,,
9 Y = X6]Z = 0 )9 = [m]‘

06 2 q

—

This follows from matrix calculus

a 2 T
> IY — X611 = 2X"(x6 — 1)

]

Thus the solutoin becomes 7
¥ 2X"(X60—-Y) =0 —>}é = (X'X)" Xy

Giacomo Boracchi



Ordinary Least Square (OLS) Regression

In case the residuals have different variance, one typically wants to

minimize the following loss
N 2
T
: Oi
=1

Being o; the standard deviation of the residual r;

This leads to weighted least squares:
2X'WX0 = -X"WY x

Being W = diag( iz iz )

)
01 ON

Giacomo Boracchi



This error does not make sense
when the line is vertical

Giacomo Boracchi



What about minimizing point-line distance’

Given a set of N points (or matches..) Residual errors
X = {(x4, , e, (XN,
{Cen, y1), w0 Cony Y} o y) o« /o
Given a parametric model -
— Kax; + by; + ¢ ®
ax +by+c=0 Qm
Estimate the line parameters a, b, c yielding | 4oMetHEIon/ g &
the best fit minimizing the residual error
N oo
E = z(axi + by; + ¢)* o
i=1 o/®
If we take o/®
’ri=axi+bXL+C/\ %

o

Giacomo Boracchi



What about minimizing point-line distance’

Given a set of N points (or matches..)
X = {(xl' yl)' ) (xN' yN)}

Given a parametric model
ax +by+c=0

Estimate the line parameters a, b, ¢ yielding the best fit minimizing the
residual error

N
E = E(axi + by; + ¢)*
i=1 |

Giacomo Boracchi



What about minimizing point-line distance’

X1 Y117 1a
o e H
C

XN VN 1_

6 = argmin||A0]|3,
0

Being the parameter vector @ = [a; b; c] and constraining ||8]|, = 1 due
to the equivalence relation between 8 and lines
6 = argmin||A6||3, subject to ||0]], = 1
6

2

The DLT solves this problem by minimizing the algebraic error!
6 =V (:,end), being A = UDV'

Giacomo Boracchi



Robust Fit

Giacomo Boracchi
CVPR USI, April 28 2020
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Next Homework

A 20 points homework assignments
e 10 points on template detection (Sequential RanSaC)

* 10 points on image restoration (most probably denoising)
* 3 weeks for solving each

A 30 points project

« Related to multiple template detection (multiple instances, multiple
templates)

e Scenario and “research direction” up to you

e Qutline to be discussed in a class-presentation on May 26° (possible to ask
for feedback before)

 Due date on the exam day

e Oral exam [0-25] includes presentation of final results of the project

Giacomo Boracchi



Robustness to Qutliers
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Least squares breaks down

Break down point: the proportion of
incorrect observations that can be handled
before giving an arbitrarily large uncorrect
result.

Least squares has 0% breakdown point (the
outlier might be arbitrarily large, i.e., » oo )

.' A

° ° .
single outlier el unstructured
outliers

Giacomo Boracchi



The loss function in OLS

The loss so far is the sum of a function of all the residuals
N
E= ) f(r), where f(r) = 17
i=1

However, other options for f are viable, giving
rise to different loss functions, and different results

0 T

Giacomo Boracchi



M-Estimator

Replaces the squared loss in the OLS with a different loss function which
penalizes less large residual values (deemed to correspond to outliers)

N
6 = argminz p(r;(6)) X
o 4
i=1

Where p a symmetric, positive-definite function having a unique minimum

in zero ,
cauchy ) huber Y \; square

bisquare
. . . 20

0.2

1.5

015}

QU oo

60

40t

057

005} 20

=] =% [ ] a Ecy o 5]

0 : —p 0 : : : : 0 : :
I
40 5 0 5 10 40 5 0 5 10 40 5 0 5 10 40 5 0 5 10

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale



http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale

M-Estimator

To solve this minimization problem we need to zero the derivative for
each dimension of H pix

o ar;
aw) ZP(n L_0,  j=1..M

The trick is to associate to p a weight function w such that
p'(x) =x *w(x)

Giacomo Boracchi



M-Estimator

Weights associated to the previous losses are

bisquare cauchy huber square
0.2 . . . 1.5 . . . & . . . 20 . . .
5 4
04571 T &0 r
~ 11 4 ]
~
E 0.1} : 3 : 40t
0.5} 2 1
0.05 T 201
.I -
0 : : 0 : : 0 : : 0 : :
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
() = VW) r
1t 1 1t 1t 1
0.8} 0.8} 0.8} : 1.05
~
\ , 067 067 0.6 1
E 0.4+ 0.4} 0.4}
0.95
0.2r 0.2y 0.2r
0 : 0 : : : 0 : : : 0.9 : : :
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r
Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale
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M-Estimator

Then the zeroing the derivative corresponds to solving the following

- ' 6rl _
Tk w(r; 00 =0 j=1,..,.m (1) s
i=1 ﬁ k/(ﬂ"’D — P s

| xe”/

If we consider an iterative scheme where at iteration k, we alternate
weight definition and minimization for r;. Then, during the k — th
iteration we treat weights as fixed and defined by ri(k_l), such that we

solve (1) just w.r.t. to ;. In this case, 8 is the same solution of

_D\
argmin Z w (ri(k 1)) rl-z G+ Lot gpLets
' /

Which is a weighted least square problem!

Giacomo Boracchi



M-Estimator )
e

Minimizing this
H (k) = argminz W(ri(k_l)) 1;(0)?

0 .

L

Can be done by weighted least square, but weights w depend on 7;(60)

lterative Reweighted Least Sqares (IRLS) alternates

+  Define weights w(r;“~ ") from residual r;(§*~1) at the previous
iteration. This is done by simply sampling the weight curves.

« Define the model 8% by solving the weighted least square keeping
(k—1) .
w(r; ) as fixed

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale
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The Weights and p

What actually determines the M-estimator is the influence function p’.

« p’ in robust estimator should be bounded. For example r? has not a
bounded derivative. The others shown before have a bounded
derivative since p'(x) = w(x) * x decay faster than linearly.

* The function p should be strictly convex, to yield a unique minimum

Obviously, the weights should decrease as r increases, to bound residual
contribution.

Giacomo Boracchi



RanSacC
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Robust single model fitting: consensus maximisation

Instead of minimizing the residuals, maximize
the consensus. Define:

 an inlier threshold € > 0

* a consensus function f which is

I

~ _ 1, {Ti,SE
Fao —{0 Ny

)

Identify 8 that maximizes tha consensus

L
6 = arggnaX; f (rif@)

—€ 0 € 7T

Giacomo Boracchi



The Conensus Set

Consensus set
CS(0,¢) = {x; ||rl-[S €}

Being r; = r(x;,0), the residual of the
model @ at a point x;

The larger the consensus set CS(8,¢), -
the better the model 6

Giacomo Boracchi



The Conensus Set

Consensus set
CS(B,e) ={x;|r; <€}

Being r; = r(x;,0), the residual of the
model @ at a point x;

The larger the consensus set CS(6, €),
the better the model @

We have been fitting lines so far, but
everything holds for any parametric model
(e.g. circle, conics, homographies,
fundamental matrices)

Giacomo Boracchi



Randomized Sample Consensus [Fischler and Bolles 1981]

® ® o® ¢ Input: X data, € inlier threshold, k,x max iteration
~. ° ... ‘: o’ Output: 0* model estimate
e ..'~ ‘e te ° J* = —00,k = 0;
e © ' o o % repeat
o o ° . : ° Select randomly a minimal sample set S C X;
® o o0 Qo o ° ® Estimate parameters 0 on S;
: ° o.. , o L } . Evaluate J(0) = Z fe(r(x,0));
® .. 0o © ° e % © xeX
° ° ~ ® oo if J(0) > J* then
:80 .o. ."o. 0% = 0;
° % *® o J* =J(8);
oo 830030‘.0 o end
® ® .. ¢ ¢ k =k + ];

until kK > K05
Optimize 0 on its inliers.
Credits Luca Magri



Randomized Sample Consensus [Fischler and Bolles 1981]

° ° o o ® Input: X data, € inlier threshold, k,x max iteration
-. o .: o. : . Output: 0* model estimate
L Je o % J* = —o0, k = 0;
o © * ° o % repeat
g o °® o .‘ ° [Select randomly a minimal sample set S C X; |
® o o0 Qo o ° ® Estimate parameters 0 on S;
* °° . ® ®eo } . Evaluate J(6) = ) fe(r(x,0));
o .. 0 © ° o % © xeX
° ° . ® o0 if J(0) > J* then
."0 .o Xy o’ " =0
* % ° @t e J* =J(0);
®o ¥ 4 ° end
o P 0800 % °
® .. ® ¢ k =k + ];

until kK > K05
Optimize 0 on its inliers.
Credits Luca Magri



Randomized Sample Consensus [Fischler and Bolles 1981]

Input: X data, € inlier threshold, k,x max iteration
Output: 0* model estimate

J* = —o0,k =0;

repeat

Select randomly a minimal sample set S C X;
Estimate parameters 0 on S; )

Evaluate J(0) = Z fe(r(x,0));

0TS T then — =

0* = 0; %:
J* =](0); =

end

k =k+ 1;

until kK > K05

Optimize 0* on its inliers.

Credits Luca Magri



Randomized Sample Consensus [Fischler and Bolles 1981]

° .. oo ..0 '. o. ® Input: X data, € inlier threshold, k,x max iteration
[ ) o .. e . Output: 0* model estimate
o, :.‘ o S J¥ = —o0,k = 0;
e © . o o % repeat
o ° ® . : o. |Select randomly a minimal sample set S C X; |
® o o0 Qo o ° ® Estimate parameters 0 on S;
: ¢ ... o Py ®e } o Evaluate ](9) — Z fA‘e (T(X, e))’
e % o, o ¢ . ® ® x€X
° ° ~ ® oo if J(0) > J* then
:'. °.. o.‘.o 0* = 0;
°* % . ®° J* =7J(0);
o0 . :'..8.... o end
o o o ¢ o k=k+T;

until kK > K05
Optimize 0 on its inliers.
Credits Luca Magri



Randomized Sample Consensus [Fischler and Bolles 1981]

Input: X data, € inlier threshold, k,x max iteration
Output: 0* model estimate

J* = —o0,k =0;

repeat

Select randomly a minimal sample set S C X;
Estimate parameters 0 on S; )

Evaluate J(0) = Z fe(r(x,0));

xeX
(07> T then
0* =0;
J* =J(0);
end
k =k+ 1;

until kK > K05
Optimize 0* on its inliers.
Credits Luca Magri



Randomized Sample Consensus [Fischler and Bolles 1981]

® & ° Input: X data, € inlier threshold, kp.x max iteration
‘5” o .. .. : . Output: 0* model estimate
e ,o.' . o % J* = —o0,k = 0;
e © o o % repeat
i e ° ., .’ ! |Select randomly a minimal sample set S C X; |
/e oo o ® o ¢ o Estimate parameters O on S;
© o .
o o e ° @ Evaluate J(0) = Y fe(r(x,0));
o ° o o F K
® \\o 0 o ° ¢ o xeX
° -~ oo if J(0) > J* then
® { o * — 0:
. ; °*%° . 0* =0;
° °‘$ C °/~®.). o J* =7(0);
°® W N P o end
® ¢ .. ¢ ¢ k =k + ];

until kK > K05
Optimize 0 on its inliers.
Credits Luca Magri



Randomized Sample Consensus [Fischler and Bolles 1981]

Input: X data, € inlier threshold, k,x max iteration
Output: 0* model estimate

J* = —o0,k =0;

repeat

Select randomly a minimal sample set S C X;
Estimate parameters 0 on S; )

Evaluate J(0) = Z fe(r(x,0));

xeX
(07> T then
0* =0;
J* =J(0);
end
k =k+ 1;

until kK > K05
Optimize 0 on its inliers.
Credits Luca Magri



Randomized Sample Consensus [Fischler and Bolles 1981]

Input: X data, € inlier threshold, k,x max iteration
Output: 0* model estimate

J* = —o0,k =0;

repeat

Select randomly a minimal sample set S C X;
Estimate parameters 0 on S;

Evaluate J(0) = Z fe(r(x,0));

xeX
if J(0) > J* then
0* =0;
J* =J(0);
end
e k=k+ ];

Using OLS,
Increase stability of
Credits Luca Magri the results

until kK > K05
| Optimize 0 on its inliers.




Randomized Sample Consensus

Data driven search of model space
H={91,92,...,9m}%@

tentative models k'n«a«
|‘_F: 1 i1 4 T T

pick the column with the maximum sum
Credits Luca Magri



Randomized Sample Consensus

e oo . Data driven search of model space
¢ o H={91,92,...,9m}%@

: tentative models
TF: TH . J&b 1

(IR R

K What is the maxium theoretical : 1 ,l Lllf .
_ background RANSAC can achleve7

......

]
- - - UL H -
- " . w = - -,
- . .- L] = R - . "
- - m-sw - - = -m LI - . - "= - - - - -
" - 3 " - - .- s "t . -
S . g = == - 2 e ) -1
- - . - N .J:- et el aowwe e W
= o - -
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- i e . = - -
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O N T L e - .
. N - tem ®
- . ul s LT "1 = -
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pick the column with the maximum sum

Credits Luca Magri



Randomized Sample Consensus

. o © o Data driven search of model space
2{91,92,...,9111}%@

tentative models

TN i Hm}—" TH .lul‘,:._

| 1 1 l

0% break-down, since we cannot ,

° < guarantee that when there are than 50% == @i =0

*e o outliers, there might be a model -_:;_'f"“;_f'i_'?._;{.'r'ifff_ P

gathering them all, thus achievinga  Fia 200

maximum conensus e A [l

s = ° o e e T O e e E e ] 0
° 1

pick the column with the maximum sum

Credits Luca Magri



Ransac: practical issues

The size of the minimum sample S: this is the bare minimum number of
points to fit the parametric model at hand

The inlier threshold e: this can be estimated from the noise in the data

L K L .
The number of iterations n: the criteria for selecting the number of
samples n: “Choose n so that, with probability p, at least one random
sample is without outliers (e.g. p = 0.99) “

Giacomo Boracchi



The maximum number of iterations n

Let e the probability of a sample to be an outlier and(l el the probability
of an inlier (can be estimated / provided by a-priori inform atlon) 7%5

The probability that all s points are inliers: (1 — e)®

The probability that at least one point in S is an outlier: |1 — (1 - e)°
(this is the probability for a sample S to yield the right model)

The probability that all the n selected set contain outliers
1-(1-e))"
The probability that at least one the n set is without outliers:
1-(1-(1—-e))"
Set n to have the above probabilinarameter D d,/ /
p=(1~(1~-(1-e))" ~/n=log(l~p)/log(l—(1-e))

Giacomo Boracchi




Ransac: practical issues

Choose n so that, with probability p, at least one random sample is free
from outliers (e.g. p = 0.99) (outlier ratio: e)

n = log(1 —p) /log(1 — (1 —¢e)%)

proportion of outliers e
5% 10% 20% 25% 30% 40% 50%
) 6 7 11 17
7 9 11 19 35
9 13 17 34 72
12 17 26 of 146
16 24 37 97 293
20 33 24 163 588
26 44 /8 272 1177

CONO Ok WNW®W
OOk~ WWONDN
O© 00 ~NO 01 W

Giacomo Boracchi



Ransac: details

Repeat n times:

* Draw s points uniformly at random

* Fit line to these s points

e Find inliers to this line among the remaining points (i.e., points
whose distance from the line is less than t)

e Update n

oe:l_

number of inliers

number of points

*n =log(1—p) /log(1—(1—e)°)

Choose the best model

Re-estimate the line with the inliers only through ordinary least square

Giacomo Boracchi



Ransac

Pros:

« very popular (>22900 citations in Google Scholar)
 many improvements have been proposed

e very versatile

e agnostic on outlier percentage

 mild assumption: know the scale noise
to set the inlier threshold ¢

cons:

e can take longer than expected

Giacomo Boracchi



Ransac as M-estimator

(Steward 1999) RanSaC can be seen as a particular
M-estimator since the loss it minimizes is the
number of points having residual above the inlier

threshold e RANSAC
Fr) = {(1) e

TiSE

1 R

0.8

Of course selecting inlier thrshold € is very critical .|

. . Q
Ransac achieves a theoretical breakdown of 50% of 4|
outliers, but in practice, provided a good selection
of €, this can be even higher

Giacomo Boracchi



MSAC

(Torr and Zisserman 2000) a different loss function
to be minimized within the RanSaC framework

1%, (8] > €

f(ri):{e-, r; <€

This turns to be more effective and should be
preferred to RanSacC

p/e

0.8 ¢

0.6 ¢

0.4 ¢

0.2t

MSAC

-P_E[}EE 8

Giacomo Boracchi



Ransac vs MSaC

Input: X data, € inlier threshold, ky,,x max iteration

Output: 0* model estimate
J¥ = —o0,k = 0;
repeat

Estimate parameters O on S;

Select randomly a minimal sample set S C X;

Evaluate J(0 Z fel

xeX
if J(0) > J* then (
0* = 0;
J* =J(0);
end
k =k + 1; 3

until k > ko
Optimize 0* on its inliers.

Credits Luca Magri

Input: X data, € inlier threshold, k;,,x max iteration
Output: 0* model estimate

J* = +o0,k = 0;
repeat
Select randomly a minimal sample set S C X;
Estimate parameters O on S;
Estimate inlier set I = {x € X:1r(x,0)* < €’}
Evaluate | (X, 9 (1X]— 1] ) e;
MRS
if |(0) < |J* then l |
OF = 0;
J* = TJ(0);
end
k=k+1;

until kK > kjax
Optimize 0* on its inliers.



Least Median of Squares

Giacomo Boracchi



L-meds: Least Median of Squagss, Rousseeuw e Leroy (1987)

Input: X data, k., max iteration

Output: 0* model estimate

J* =400,k = 0;

repeat

Select randomly a minimal sample set S C X;
Estimate parameters 0 on S;

Evaluate |(0) = median,cx(7(x, 0));

if ](0) < J* then

0* = 0;

J* =J(0);
end
k=k+1;

until k > Kpax;
Optimize 0* on its inliers.

Credits Luca Magri,



L-meds: Least Median of Squares, Rousseeuw e Leroy (1987)

Input: X data, k., max iteration

° Output: 0* model estimate
o J* =400,k = 0;
¢ repeat
® . Select randomly a minimal sample set S C X;
® Estimate parameters 0 on S;
* ¢ Thisis a gready solution of Evaluate J(0) = medianex(r(x, 0));
. ° arg;nin(median {r;(0)DH?) if | (g)j < g then
J* =J(0);
end
K=K+ 1;

until k > Kpax;
Optimize 0* on its inliers.

Credits Luca Magri,



L-meds: Least Median of Squares, Rousseeuw e Leroy (1987)

Input: X data, k., max iteration

Output: 0* model estimate

J* =400,k = 0;

repeat

Select randomly a minimal sample set S C X;
Estimate parameters 0 on S;

Evaluate |(0) = median,cx(7(x, 0));

if ](0) < J* then

Since there is no explicit definition ?* ]9(’9);
of inliers here, inliers can be end
identified as points having residuals k=k+1;
(w.r.t. to the final model) that are until k > Ko

smaller than 2.5o0 ‘Optlmlze 0* on its inliers.

Credits Luca Magri,



L-meds: Least Median of Squares, Rousseeuw e Leroy (1987)

Input: X data, k., max iteration

Output: 0* model estimate

J* =400,k = 0;

repeat

Select randomly a minimal sample set S C X;
Estimate parameters 0 on S;

Evaluate |(0) = median,cx(7(x, 0));

if ](0) < J* then

There is no need to define an inlier ?* ]9(’9);
threshold € in L-meds, but just for end
the final refinement k=k+1;
o o ¥ "".."‘o’ o ° until k > k.«

‘Optimize 0* on its inliers.

Credits Luca Magri,



Multi-Model Fitting

Giacomo Boracchi



The problem of multi-model fitting (or structure recovery)

Given a set of data X = {x4, ..., xy} C

R%, possibly corrupted by noise and
outliers, and a family of geometric
models O

Credits Luca Magri



The problem of multi-model fitting (or structure recovery)

Given a set of data X = {x4, ..., xy} C

R%, possibly corrupted by noise and
outliers, and a family of geometric

models ©
o’ . ....000.:. .. ’ . ::.oo.:
¢ .;.. ° ‘:" .o.. .3:...
o ® s .0. .: . ° o.
. ..a- s'..°"o.°.-':°.. 2 i
. 'a o '.l}- “.‘; . 6.:\-.....: .:....... .
.'o &‘Ou&.., ,:.. 3\ ) .° ° ¥
N A
o.. .. . ....'.’o e . °

Credits Luca Magri



The problem of multi-model fitting (or structure recovery)

Given a set of data X = {xy, ..., xy} c Goal: automatically estimate the models
R, possibly corrupted by noise and  that best explain the data/discover the

outliers, and a family of geometric structures hidden in the data
models @

o' . :.....00:. ~. * .o:.... ® *

. " .;. . . :.o. O.o: o.:....

Credits Luca Magri



The problem of multi-model fitting (or structure recovery)

Given a set of data X = {xy, ..., xy} c Goal: automatically estimate the models
R, possibly corrupted by noise and  that best explain the data/discover the
outliers, and a family of geometric structures hidden in the data

models ©

Lol Ll
. ¥ s . . models

“in the eye of the beholder”, mathematical descriptions of the data that an observer fits
Credits Luca Magri



The problem of multi-model fitting (or structure recovery)

Given a set of data X = {xy, ..., xy} c Goal: automatically estimate the models
R, possibly corrupted by noise and  that best explain the data/discover the

outliers, and a family of geometric structures hidden in the data
models O )
[ ¢ - .....0..0. ° ° r :. ce e ® )
o® ® o % ° .0.
° s ¥ ° :0 <’ ® ::...
° : “.' .o..: .:0 . ° og
° "ﬂJs 0%00..:‘..0.: :. ° .: oo
[ t ¢ *° - ..o.. : .0.. °
° ...! ‘OOQ.‘ :o ® ) o ,00° .
..o “o..“.’ ;:. ‘. .o ° .
B N A :

X
X X

relations among the data, intrinsic to data
Credits Luca Magri



The Challenges of multi-model fitting

O

models

chicken & egg
dilemma

Credits Luca Magri



The Challenges of multi-model fitting

Number of models? J \7 Inliers/outliers?

ill posed

Credits Luca Magri



Multi-Model Fitting

Giacomo Boracchi
CVPR USI, May 8th 2020

Giacomo Boracchi



Outline

* Lab on Image Segmentation

* Preference-based methods: J-linkage<— _

* Project description

* Image Classification and Retrieval by Image features

Giacomo Boracchi



Multi model fitting applications: primitive fitting

Bridge the semantic gap that separates sparse
point cloud coming from SfM form the
understanding of a 3D scene

input images

o ,\‘4. ""
"

2 3D sparse reconstruction
X C R3,@ = planes

Credits Luca Magri



Multimodel fitting for 3D scattered data

L. Magri, and A. Fusiello. "Reconstruction of interior walls from point cloud data with min-hashed J-linkage." 2018 3DV

L. Magri, and A. Fusiello. "IMPROVING AUTOMATIC RECONSTRUCTION OF INTERIOR WALLS FROM POINT CLOUD DATA." International Archives of the
Photogrammetry, Remote Sensing & Spatial Information Sciences (2019).

L. Magri, and Andrea Fusiello. "T-linkage: A continuous relaxation of j-linkage for multi-model fitting." CVPR 2014



Multi model fitting applications: scan2bim

scanned point cloud wall models

L
PR

X C R3,@ = planes

floor-plan
Given a scanned point cloud of an interior g
environment, detect its primary facility
surfaces - such as floors, walls, and ceilings. — —LD] ~

X C R, 0 = lines

Credits Luca Magri



Multi model fitting applications: two view geometry

Geometric fit on corresponding matches across two images

plane detection epipolar geometry

e
AL IR
PSR

SN

£
y
K

2

a8

XCcR*,O= homographies X c R* © = fundamental matrices

Credits Luca Magri



Multi model fitting applications: subspace clustering

3D Video segmentation Face clustering

O
o :

o
. O @)
o)
ALY
@)
O.

@)
O

X C R4, © = subspaces

Credits Luca Magri



Template Detection
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Multimodel (and multi-class) fitting

(a) (b)

L. Magri, A. Fusiello. "Fitting Multiple Heterogeneous Models by Multi-Class Cascaded T-Linkage" CVPR 2019.

(c)



Multimodel (and multi-class) fitting

Image of the scene colour coded class colour coded model

L. Magri, A. Fusiello. "Fitting Multiple Heterogeneous Models by Multi-Class Cascaded T-Linkage" CVPR 2019.



Multi-model Fitting Solutions

Giacomo Boracchi



Let’s go back to RanSaC

Data driven search of model space
— {91 y 623 m} ~ 0

tentative models

TR . -u o TR

pick the column with the maximum sum



Sequential RanSacC [Zuliani o5]

Start RanSaC on the dataset X searching for the best fit for a single
instance of the model

Mo §

Line fitting example

Giacomo Boracchi



Sequential RanSacC [Zuliani o5]

Start RanSaC on the dataset X searching for the best fit for a single
instance of the model

Once detected a model 6, keep the model and Mo §
remove all the inliers

Line fitting example

Giacomo Boracchi



Sequential RanSacC [Zuliani o5]

Start RanSaC on the dataset X searching for the best fit for a single
instance of the model

Once detected a model 6, keep the model and Mo §
remove all the inliers from X

Line fitting example

Giacomo Boracchi



Sequential RanSacC [Zuliani o5]

Start RanSaC on the dataset X searching for the best fit for a single
instance of the model

Once detected a model 6, keep the model and Mo §
remove all the inliers from X
Iterate through the remaining points 64
Nndrnte
P sy 6,

Line fitting example

Giacomo Boracchi



Sequential RanSacC [Zuliani o5]

Start RanSaC on the dataset X searching for the best fit for a single
instance of the model

Once detected a model 8,, keep the model and 0,
remove all the inliers from X

Iterate through the remaining points 64
until there are no models with
a sufficiently large consensus

Line fitting example

Giacomo Boracchi



Sequential RanSacC [Zuliani o5]

Unfortunately, this does not fit well with the multi-model scenario
and the problem becomes even more sever in presence of outliers

Line fitting example

Giacomo Boracchi



Preference-based methods

Giacomo Boracchi



From model consensus to point preferences

A e e ,,ﬁi?
y
Consensus set of a model 6: CS(8) = {x :r(x,0) < €}
0 Preference set of a point x: PS(x) = {6 :7r(x,0) < €}
1

CS(eg) :{X2>X3)X4}
PS(x1) ={01,02}
PS(x2) ={0,, 03}

Credits Lu¢a Magri



Multi model fitting: the preference trick .-

Generate a pool of m random models (as in RanSaC)

H=1{66,..0.,}

Build the Preference Matrix

Credits Luca Magri

points

tentative models

it

0 i

points and models reordered for visualization purposes



Multi model fitting: the preference trick

| Consensus set of a model 8: CS(8) = {x : r(x,0) < €} |
Preference set of a point x: PS(x) ={0 : r(x,0) < €}

tentative models ¢
G A T MR T o, ™ :‘.:‘\‘1 i .

| 1| I.;u ."‘ \‘I‘ oA

points
%

) i oints and models reordered for visualization purposes
Credits Luca Magri P purp



Multi model fitting: the preference trick

Consensus set of a model 8: CS(8) = {x : r(x,0) < €}
| Preference set of a point x: PS(x) = {0 :7(x,0) <€} |

tentatlve models

pomts
%
=

) i ointé and modéls réordered for' visua'li'zation ur OSes |
Credits Luca Magri P purp



Multi model fitting: the preference trick

Point «— subset of preferred sampled models

Block diagonal matrix = point of the same structure have similar ’T
preferences

O e~ tentative models

¥ | R REPETTRE
IR SR

LTSI

B O A

i i ints and models reord “visualizati —
Credits Luca Magri points and models reordered for visualization purposes




Multi model fitting: a lift to Preference Space PS(x)

e

Voting function Vector of binary votes to sampled models

A ~ 8‘L —_

x = [f(r(x,61)),..., f(r(x,0m))] €{0, T}™ TR

—h

Structures correspond to high-density regions in

Credits Luca Magri the preference space



Multi model fitting: a lift to Preference Space PS(x)

Voting function Vector of binary votes to sampled models

A

.F | X [f(T(X,eﬂ),---,ﬂT(X) em))] S {031}m

—€ 0 € T i

-  x€eRd PS(x) € {0,1 }™
Structures can be identified by clustering —]

points in the preference space, i.e. by

_—
clustering preference sets. e/t)\
0

Structures correspond to high-density regions in
Credits Luca Magri the preference space

2




Multi model fitting: a lift to Preference Space

The Jaccard distance can be used to . “e b .
measure distance between

preference sets. ran
7o, ’%

|A N B

A.B) =1
dj (A, B) A UB|

—

Credits Luca Magri o



Multi model fitting: a lift to Preference Space

The Jaccard distance can be used to
measure distance between
preference sets.

|A N B

A,B) =1

Credits Luca Magri

the more models in common in their
preference set, the closer points are.



ldentify Structures by Clustering Preferences

The Jaccard distance can be used to
measure distance between
preference sets.

|A N B
A U B|

dj(A,B) =1

Credits Luca Magri

Structures are identified by clustering
points, or better preference sets. Each
cluster will then correspond to a
structure.



Structure Identification by Clustering in PS

Hierarchical clustering can be used in the Preference Space to recover the
structures.

ooo ooo ofe)
o)
oXe) O
o OO
Single linkage Average linkage Complete linkage Centroid linkage

Distances are measured in the Preference Space, and each element of clustering
Is identified by a preference set.

Instead of using centroids, we derive a conceptual representation for each
cluster (which also lives in the preference space).

Credits Luca Magri



J-linkage clustering [Toldo and Fusiello, ECCV 08]

The representation of a cluster U € X in the preference space is the
intersection of the PS of its points
UCX,PS(U) = () PS(x)

xelu
This is the component-wise min of rows in the preference matrix.

. @ L ..-’ -.‘. ..':, ..-. .-.' ...".'-.' i . .-', ~‘. .":‘ 111111
.‘ .‘u "0.:.- ) .‘ “a "'.:-. )
.-.:.o K .".. 'o ... " : . . ...‘:- X .’.. " ... . PS(U)
Vel ™ . . . - . - : "t . . . . '
- - - v I TTTTT T 111]
\

ucXx PS(U) PS(~)

Credits Luca Magri



J-linkage clustering [Toldo and Fusiello, ECCV 08]

The representation of a cluster U € X in the preference space is the
intersection of the PS of its points

11 X PRI = (M) P](x)
J-linkage iterates a hierarchical clustering
This is the compor scheme based on this distance until all the natrix.
representatives of the clusters are disjoint

. Vi (i.e. Jaccard distance = 1, no models in
. common)

-~ ..' - .':‘ ". .‘,. ..”'.’..' ‘ . ‘-; N\. ":' llllill
B n..:..' . ‘ : .‘. ....:_..

Credits Luca Magri



J-linkage clustering [Toldo and Fusiello, ECCV 08]

Input: X data, € inlier threshold
Output: Partition in structures and models

Randomly sample model hypotheses H C ©;

=

Preference matrix
Credits Luca Magri

Compute PS;

Put each point in its own cluster C; = {x;};
Compute dj Jaccard distance between PS;

while min(dj) < T do

Find pair (C;, C;) of clusters with the min dj;
Replace the clusters with their union;
Compute the PS of C; U C;;

Update dj;

end
Local fit of models to clusters;



J-linkage clustering [Toldo and Fusiello, ECCV 08]

Put each point in its own cluster
Input: X data, € inlier threshold

* )M . Output: Partition in structures and models

O . Randomly sample model hypotheses H C ©;
Compute PS;

Put each point in its own cluster C; = {x;};
Compute dj Jaccard distance between PS;
while min(dj) < 1do

Find pair (C;, C;) of clusters with the min dj;
Replace the clusters with their union;
Compute the PS of C; U C;;

Update d];

end
H Local fit of models to clusters:

Preference matrix
Credits Luca Magri



J-linkage clustering [Toldo and Fusiello, ECCV 08]

Find the closest points in Preference Space
Input: X data, € inlier threshold

e Output: Partition in structures and models

O . Randomly sample model hypotheses H C ©;
Compute PS;

Put each point in its own cluster C; = {x;};
Compute dj Jaccard distance between PS;

H‘H H H_l while min(d;) < 1 do

e | Find pair (Ci, C;) of clusters with the min dj
L Replace the clusters with their union;
Compute the PS of C; U C;;

Update d];

end
I Local fit of models to clusters;

Preference matrix
Credits Luca Magri



J-linkage clustering [Toldo and Fusiello, ECCV 08]

N\erge cluster

Preference matrix
Credits Luca Magri

Input: X data, € inlier threshold
Output: Partition in structures and models

Randomly sample model hypotheses H C ©;
Compute PS;
Put each point in its own cluster C; = {x;};
Compute dy Jaccard distance between PS;
while min(dj) < T do
Find pair (C;, C;) of clusters with the min djy;
| Replace the clusters with their union;
Compute the PS of C; U C;;
Update d];

end
Local fit of models to clusters;



|- llnka[jze clusl;ering [Toldo and Fusiello, ECCV 08}

P date preterences
Input: X data, € inlier threshold
e Output: Partition in structures and models
O . Randomly sample model hypotheses H C ©;

Compute PS;

Put each point in its own cluster C; = {x;};

Compute dj Jaccard distance between PS;

(&, - H_H H_ while min (]d]) < 1do

H : Find pair (Ci, C;) of clusters with the min dj;
Replace the clusters with their union;

| Compute the PS of C; U C;;

Update d];

end
H m I Local fit of models to clusters;

Preference matrix
Credits Luca Magri




date distances

J-linka%? clugtering [Toldo and Fusiello, ECCV 08]
p

AL
T

=

Preference matrix
Credits Luca Magri

Input: X data, € inlier threshold
Output: Partition in structures and models

Randomly sample model hypotheses H C ©;

Compute PS;

Put each point in its own cluster C; = {x;};

Compute dy Jaccard distance between PS;

while min(dj) < T do
Find pair (Ci, C;) of clusters with the min dj;
Replace the clusters with their union;
Compute the PS of C; U C;;

| Update dj;

end

Local fit of models to clusters;




J-linkage clusterin,% [Toldo and Fusiello, ECCV 08]

Continue until all PS are isjoint...
Input: X data, € inlier threshold
. Output: Partition in structures and models
P e P
@ . Randomly sample model hypotheses H C ©;

Compute PS;

Put each point in its own cluster C; = {x;};
Compute d; Jaccard distance between PS;

whilel min(dj) <1 |d0

Find pair (Ci, C;) of clusters with the min dj;
Replace the clusters with their union;
Compute the PS of C; U C;;

Update dj;

end
H Local fit of models to clusters;

Preference matrix
Credits Luca Magri



J-linkage clustering [Toldo and Fusiello, ECCV 08]

Credits Luca Magri

o®
°oo..'°.
°

Input: X data, € inlier threshold
Output: Partition in structures and models

Randomly sample model hypotheses H C ©;
Compute PS;

Put each point in its own cluster C; = {x;};
Compute dy Jaccard distance between PS;
while min(dj) < T do

Find pair (C;, C;) of clusters with the min dj;
Replace the clusters with their union;:
Compute the PS of C; U C;;

Update dj;

end
Local fit of models to clusters;



J-linkage clustering [Toldo and Fusiello, ECCV 08]

Credits Luca Magri

Input: X data, € inlier threshold
Output: Partition in structures and models

Randomly sample model hypotheses H C ©;
Compute PS;

Put each point in its own cluster C; = {x;};
Compute dy Jaccard distance between PS;

while min(dj) < T do

Find pair (Ci, C;) of clusters with the min dj;
Replace the clusters with their union;
Compute the PS of C; U C;;

Update d];

end
Local fit of models to clusters;



J-linkage clustering [Toldo and Fusiello, ECCV 08]

Pro:
 The number of structures is automatically determined

* For each cluster there exists at least one model that fits all the points
of the cluster

 (Clusters are “maximal” in the sense that does not exist a model that
explain all the points of two distinct clusters

Cons:
« |t still relies on a pre-defined inlier threshold e

« OQutliers have to be filtered out a posteriori (they will always end up in
small clusters)

Credits Luca Magri



Object Detection by Computer
Vision Features
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Object Detection: Keypoint Extraction

Test keypoints
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Object Detection: Keypoint Extraction

Template keypoints
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Keypoint Matching

All matches
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Keypoint Matching: Ratio Test

All matches after ratio test
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Sequential Ransac Iterations

Clustered matches
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Sequential Ransac Image Rectification
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Sequential Ransac: Histogram Matching
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Sequential Ransac: Image Differences
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Sequential Ransac

Clustered matches
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Sequential Ransac Image Rectification

Clustered matches
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Sequential Ransac Image Rectification

Clustered matches
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Sequential Ransac Issues: Radial Distortions

Clustered matches
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Sequential Ransac Issues: Radial Distortions
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Sequential Ransac Issues: Radial Distortions

Clustered matches
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Sequential Ransac Issues: Radial Distortions
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Sequential Ransac Issues: Outliers

Clustered matches
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Sequential Ransac Issues: Outliers

Rectified object
matches
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Object Recognition by Feature Extraction
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Object Recognition by Computer Vision Features:

Advantages:
* Leverage Geometric Properties of the Scene

« Detection of the object in any position / location / zoom level is possible, as
long as deformation are perspective

* |t is possible to rectify each detected instance and compare it against the
template to spot minor differences

* No need of training data, just a template

* Engineered to be invariant to a set of photometric and geometric
transformations and partial occlusions

« Naturally designed for object detection
e Accurate localization, and distortion correction
e (Can process very large images efficiently

Giacomo Boracchi



Adding Homography Constrain
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Object Recognition by Computer Vision Features:

Cons:
* Not effective out of the set of invariant transformations
* It is often necessary for the template to feature some geometric regularity
« Most of computer vision features ignore color information
 When searching for multiple templates it can be slow

Giacomo Boracchi
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Object Recognition by Computer Vision Features

"Learning” phase:

* Extract features from the template(s)

Detection phase:

e Extract features from the image
» Keypoint detection
e Descriptor Computation

* Match features with the reference template

* Prune matches to achieve object localization

Giacomo Boracchi



Project Description



Goal

Identify yourself a realistic scenario for multi-template detection

e Multiple templates have to be identified within the same image

 The image should include multiple instances of each template

(  Templates have to be detected by fitting a parametric transformation

—

Add a decision criteria to determine whether matches give rise to a
/qdetecuon If possible, implement a pixel-wise comparison.

* Include any advanced method to improve your algorithm

You can possibly use multiple images to demonstrate the performance of
your algorithm. Templates have not to be selected from the test image.
Ideally these should be acquired in «ideal settings» (as in assignment 2)

Giacomo Boracchi




Goal

Identify yourself a realistic scenario for multi-template detection
e Multiple templates have to be identified within the same image

 The image should include multiple instances of each template

 Templates have to be detected by fitting a parametric transformation

 Add a decision criteria to determine whether matches give rise to a
detection. If possible, implement a pixel-wise comparison.

* Include any advanced method to improve your algorithm

You can Extending the solution shown in Homework 2 to  1ance of
your algo address these problems have to be consider the bare mage.
Ideally th minimum for the project ment 2)

Giacomo Boracchi



Ideally...

To chose your research idea you have to:

 |dentify a situation where the template matching implemented in the
Homework 2 fails (or exhibit severe limitations)

 Understand what are the reasons of such failures / limitations
* Find out a nice idea to overcome these limitations

* You are ready to start your project!

Giacomo Boracchi



Distinguish among multiple similar templates

Giacomo Boracchi
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Distinguish multiple similar templates
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Detection under blur, shadings

EARTA4 oy

Giacomo Boracchi



Detect non-planar templates
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Detect non-planar templates
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A few ideas (just as as a referece...)

Expand the project in the direction you prefer to "make it cooler". Use
techniques presented in this course to address problems like:

* Improve RanSacC efficiency by optimizing the algorithm
* modify stopping criteria of RanSaC
« assume a first detection is given, estimate a pixel/cm ratio in order to
perform a tile-based analysis of each template
* Improve RanSac rffectiveness

« Improve outlier reject criteria during random search inside RanSac, to discard
bad homographies. Don’t mind if this becomes extremely slow w.r.t. to
openCV functions

e Try another multi-model fitting algorithm

e Address a different scenario where matches need to be found by
different criteria.

Giacomo Boracchi



A few ideas (just as as a referece...)

Improve: detection-Decision criteria
e Handling occluded instances
« Handling photometric distortions (e.g. blur, noise shadows)

Expand the template model
e Estimate fundamental matrices to handle multiple instances of 3D objects

Prioritize scanning order over multiple templates. Possible criteria are:

* deep learning to speed up detections by defining which template to
search first

e color analysis to define which template to match first
e consider match density

- To oo codvaved
Giacomo Boracchi



Image Classification and
Retrieval By Computer Vision
Features

Giacomo Boracchi
CVPR USI, May 12 2020
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Feeding Computer Vision Features to a Classifier

Part of these lectures are from
ICCV 2009 course: Recognizing and Learning
Object Categories
http://people.csail.mit.edu/torralba/shortCourse
RLOC/index.html

Giacomo Boracchi


http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html

The rationale

Difficult to extract distinctive features to describe the whole image

However... when | show you these:

Giacomo Boracchi



The rationale

Difficult to extract distinctive features to describe the whole image

However... when | show you these:
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The rationale

You can clearly recognize
that these are from a
football pitch

regions to infer the

¢ Analyze small image
Image content




Feature Extraction and Classification .

. r

Perform classification by analyzing image features. [ ( lr__"o—’
Advantages:
* Keeps only the most discriminative regions in the image. |

. . . N~ \&
* Reduce the overall dimensionality. nn/

* Use intermediate representations to classifying images.
Isues:

 Different images provide different
number of features and in random order

* Impossible to label features

Pixel-wise representation cannot
be straightforwardly replaced by
feature-based representations

Fei-Fei Li; Perona, P. "A Bayesian Hierarchical Model for Learning Natural Scene Categories". CVPR05



The Feature Extraction Perspective
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The Feature Extraction Perspective
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Bag of Words Model (Bow)

To represent an image using BoW model, an image can be treated as a
document.

An image is modeled as a collection of patches / descriptors / features.
These local descriptors are the words, the image is the whole document.

Object — Bag of ‘words’

Josef Sivic and Andrew Zisserman, “Video Google: A Text Retrieval Approach to Object Matching in Videos” ICCV 2003



1.Feature detection and representation

=| «—

Compute |
descriptor Normalize
e.g. SIFT [Lowe’99] patch

Detect patches
[Mikojaczyk and Schmid ’02]
[Mata, Chum, Urban & Pajdla, '02]

[Sivic & Zisserman, '03]

Local interest operator
or
Regular grid

Slide credit: Josef Sivic



1.Feature detection and representation

Extract other features
from the same image and
from other images of the

same class

Slide credit: Josef Sivic




2. Codewords dictionary formation
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2. Codewords dlct|onary formatmn

Slide credit: Josef Sivic
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2. Codewords dictionary formation

Slide credit: Josef Sivic

f

aYa

\

r

r

\

\

®)
[ N
@

Codewords are in a
fixed number and might
include data from

different image
categories

&

128-D SIFT space

Each input feature is
associated to the
closest cluster.
This procedure is called
vector quantization
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Image Representation

An image becomes an histogram of features
w.r.t. codewords (cluster centers) extracted from
salient point locations
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Image Representation

An image becomes an histogram of features
w.r.t. codewords (cluster centers) extracted
over a grid (as in HOG)

frequency
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Classifiers for BOVW Representations

BOVW: Bag of Visual Word

Learn a model that best represents the distribution of codewords in each
category of scenes

input of image, class1 input of image, class2 input of image, class3

4

.

e 0, oo o, lall b w,

N 4%
codewords in the codebook codewords in the codebook codewords in the codebook



Classifiers for BOVW Representations

BOVW: Bag of Visual Word

Learn a model that best represents the distribution of codewords in each
category of scenes

Distribution of codewords, Distribution of codewords, Distribution of codewords,
for class1 (faces) for class2 (bicycles) for class3 (violin)

codewords in the codebook codewords in the codebook codewords in the codebook



Learning the BOVW model

Given a bunch of images in each class,

TRAINING " TESTING
 Eaxtract features (e.g. SIFT) B a1 ovee cass | unknoun
* Learn codewords that are representative = = ! - i

of several similar patches ocal feature xtractir Qf) L ®
(e.g. k-means, VQ) ::

form codebook \ A3 O---@ O T
1

1l
g 1 \
Class 1 essee Class N :: 4

e The codebook contains all the codewords

feature detection & representation

represent each FAN ./_:.ﬁk <
amoenes ez [Eaay i le222
 Learn a model that best represents | beg of codewords e oo 5552 |-
the distribution of codewords in each 2[ tearn Bayesian l L s
class B| kil [Mosel - edel i Corlgg

Figure 2. Flow chart of the algorithm.

b

—_— . " . . . . c '
Fei-Fei Li; Perona, P. "A Bayesian Hierarchical Model for Learning Natural Scene Categories". CVPR05

feature detection & representation

recognition



Learning the BOVW model

These histograms are used as features describing the image.

A classifier is learned by:

* Training a generative model on histograms
(e.g., a Naive Bayes classifier or a
Hierarchical Bayesian model that
describes classes and themes)

e Training a discriminative model
(e.g. an SVM or a Neural Network)

feature detection & representation

learning

TRAINING " TESTING

e class 1 eeee class N unknown
 — — :: image —

input image II= II= "
- - "
"
l 1"

1" v

local feature extraction ® 1" ®

form codebook A $1 O--- @ O

represent each " VANV i ¢

image into a | P | AAAD " O OO E

bag of codewords g &5 sS85 | OO -
v

learn Bayesian

A 4
Class 1 essee Class N :: /

ok

; - — decide
hierarchical
models for Model 1| ««+ [Model N -|-|—> onobdeglt

each class

Figure 2. Flow chart of the algorithm.

Fei-Fei Li; Perona, P. "A Bayesian Hierarchical Model for Learning Natural Scene Categories". CVPR'o5
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Classifying using the BOVW model

When classifying a test image:
1. extract features

2. match each feature the closest codeword ir
(e.g. by clustering)

3. find the model

that fits best the corresponding
histogram of codewords

of the image.

Ion
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feature detection & representat

learning
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Figure 2. Flow chart of the algorithm.

Fei-Fei Li; Perona, P. "A Bayesian Hierarchical Model for Learning Natural Scene Categories". CVPR05
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Limitations of BoVW model

One of the notorious disadvantages of BoW is that it ignores the spatial
relationships among the patches, which are very important in image
representation.




Limitations of BoVW model

One of the notorious disadvantages of BOVW is that it ignores the spatial

relationships among the patches, which are very important in image
representation.

Possible solutions:

e Take into account the relative position of codewords in generative
models.

* For discriminative models, perform pyramid matching by partitioning

the image into increasingly fine sub-regions and compute histograms of
local features inside each sub-region.



Image Retrieval

Giacomo Boracchi



Example of Image Retrieval

Query Image

Giacomo Boracchi

Caltech games dataset



Example of Image Retrieval

Dataset of |mages

Query Image
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Example of Image Retrieval

Dataset of |mages
Query Image =
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Representation

As in text retrieval, each image [ is assigned to a Bag of Visual Word
descriptor, thus a vector of frequencies of each codeword

1—>@e®d

Being d the number of codewords (i.e. the dictionary size)

HHHH H

frequency
|

FPLO=ERLS, B

Josef Sivic and Andrew Zisserman, “Video Google: A Text Retrieval Approach to Object Matching in Videos” ICCV 2003



Representation weighting

Term-frequency - inverse document frequency

In text retrieval it is usual to apply a weighting to the components of the
representation vector, rather than using the frequency vector directly for

indexing
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Josef Sivic and Andrew Zisserman, “Video Google: A Text Retrieval Approach to Object Matching in Videos” ICCV 2003



Representation weighting

Term-frequency - inverse document frequency

_IN a representation is

\

The weight to term

Nig
w; =|—tlog i=1,..,d
A Ma
Where n;; number of occurrence of term ¢;

in the document, n; the number of terms in
the document, N the number of terms in the
dataset, n; the occurrence of t; in the
dataset

Larger weights to word that are

often occurring in the document

and that are rare in the dataset
(thus that are very specific)

e.g. words like «the», «for» are
not informative, others like «liver»
or «epipolar» more clearly

frequency

)
HHHH

H

, corresponds to a specific contet

FLONENLES,

Josef Sivic and Andrew Zisserman, “Video Google: A Text Retrieval Approach to Object Matching in Videos” ICCV 2003



Representation weighting

Each image is associated to a weighted

frequency vector
I ->{w.x f; s

And the same is done for images in a
database

frequency

Larger weights to word that
are often occurring in the
document and that are rare in

the dataset

(thus that are very specific)

HHHH

il

FPLON=ERLS

N
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Large Scale Image Search

Building the database:
« Extract features from the database images

e Learn a vocabulary using k-means (typical k: 100,000)

. Computelweightjfor each visual codeword

« (reate an inverted file mapping words to images (this is a database
T e T —
structure for efficient searches)

Giacomo Boracchi



Large Scale Image Search

Searching for a query image:

« Extract features from the image I

 Compute weights for each visual codeword

-

* For each imagg] in the dataset, compute cosine similarity between [
and J. Chose the image yielding the minimum distance

< b\f‘* ZI/%T%T>
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Example of Visual Word Matches
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