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Features and Keypoints

Consider an Image Patch
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Features and Keypoints

Consider an Image Patch

Keypoint: The coordinates of a point
where the image content is sort of
relevant
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Features and Keypoints

A Feature could be
 an Keypoint neighbor
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Features and Keypoints

A Feature could be
 an Keypoint neighbor

* some measures computed in an
image neighbor:

* mean
e variance
e principal directions

stacked in a vector, thus yielding a
descriptor
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Object Recognition by Computer Vision Features

Keypoint detection: identifying coordinates where the image is considered
meaningful for addressing some task

Design Criteria: Keypoints have to be repeatable
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Object Recognition by Computer Vision Features

Descriptor computation: compute a vector that describes the content of an
image in a region around the keypoint

Design Criteria: Features have to be stable
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Object Recognition by Computer Vision Features

Descriptor computation: compute a vector that describes the content of an
image in a region around the keypoint

Design Criteria: Features have to be stable




Keypoint Detection: The
Rationale

The principle underpinning many
corner detection algorithms



¥ P - DSk N/
", \ L= b Bos '&:,f g “‘\

TSRS A AR . S
~ )b' b e, '-'~ - V : -:‘ﬁ‘j’ 1 %"." , . B
P ConS|der thls map where would you tell your friend to meet? %=
e SRR UG | P Gl AL

t
} -~

v 2 - S % . * B " v/ ) L -
- & 5 s :
PN . \ o .- ~“\.r--‘,./ . - ;
. R : R T R 2 . : ) .’i.. ' ‘;'« o i 2t ot



n . e - N N . o - . o~ N - PAT ot
i§ ' 1 \\. - ’“ % Y t, o~ 5“\“”"‘ ‘%: e ." ‘ ' ‘\ "" . - .;‘“I . \ : J‘-, r ) : <
\ - \ ‘ ,‘.\‘\‘ by - of : ;‘ S £ Nl
; w7 . . ' y . \ y V‘(

ConS|der thls map where would you tell your friend to meet?

CIN - LR YW "","*\7 " ; PR VEE R -

\\' i .~ = \Q;‘ ) } A . : - , .' % e
'.; y ;. W s ) “ \\ Y '.‘/ - " . . y : : ‘&



Keypoint Properties

Keypoints are expected to be in regions where the image is:

» Well-defined: i.e. distinctive, neighboring points should all be
different.

 Stable across views: same scene point should be extracted when the
viewpoint slightly changes

These are necessary properties to achieve repeatable keypoints
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Image Patches at Corners are good Features

Not every image patch is suited for hosting a keypoint: some of them can
be easily mismatched
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Image Patches at Corners are good Features

Not every image patch is suited for hosting a keypoint: some of them can
be easily mismatched
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Keypoint Detection

A point is interesting when the image content around there is dissimilar
from the neighboring ones.

 We need a measure to assess local similarity dissimilarity in images

The typical figures of merit to extract keypoints are:
* Gradient Based (ex Harris, Hessian)
* Phase Based (Kovesi)
 Entropy Based (Zisserman)

and the Keypoints are located as local maxima of these figure of merit
over the whole image.
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Comparing image regions

Dissimilarity Measure: SSD, the Sum of Squared Distances
Eyy(r,c) = z [I(w,v) —I(u—x,v—1y)]?

(u;v)EUT,C C c+ x

{I (u,v), (u,v) € U,ﬂ,c}
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The SSD as the norm of a vector

The SSD is the €% norm of the vector given by the difference of two image
patches

Ex,y (7", C) —
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The SSD as the norm of a vector

The SSD is the €% norm of the vector given by the difference of two image
patches JEW

Ex,y (T', C) —

The pixel-wise difference among these two
patches is likely to be very close to zero
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There exist many values (x,y) yielding a patch centered in
(r +x,c+ y)thatis very S|m|lar to the one centered in (7, ¢)
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The SSD as the norm of a vector

The SSD is the €% norm of the vector given by the difference of two image
patches

Ex,y (T', C) —

The pixel-wise difference among these two
patches is likely to be very close to zero

..the same holds for many orange
alternatives centered in (r + x,c + y)
along that road.

Thus, (7, c) is not a keypoint
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: m. g
" But there are locations (7, c¢) yielding a patch that is very different
:1 from all the neighboring ones, thus which is almost unique.
.

These are the locations we want to select as keypoints
Mo @ ™ AT T TN
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The SSD as the norm of a vector

The SSD is the €% norm of the vector given by the difference of two image
patches

Ex,y (T', C) —

The pixel-wise difference among the yellow
patch in (r,c) and any ortange
alternatives in patch (r + x,c + y) is
likely to be large

(r,c) is then a good candidate for
becoming a keypoint
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The rationale behind many corner detectors

Compute the Sum of Square Distances between the image values on the
green square at different position

\
\ R

. li N
“flat” region: “edge”: “corner”:
no change in no change along significant change

all directions the edge direction in all directions
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Keypoint Detection: Harris
corner

A meaningful example to be found in many other
algorithms
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Setting up the stage

* (7,c) point where to compute the output
response (candidate keypoint)

* U, . neighborhood identifying the blue area

 E,,(r, c) difference between the green U,
square centered in (r,c¢) and the square I~
centered in (r —x,c —y) ) |~

[
* The pixels inside U, . are indexed by (u, v) (T”'”-N
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Moreavec (80) - Corner Detection

Corner measure as the SSD over a fixed set

of displacements

Fry(i) = D W@ v) — 1w - xv =)’

(WV)EUy
(x,y) € {(1,0),(0,1), (-1

W, . IS @ window centered in (7, ¢), which ¢

,0),(0,—1)}

efines each pixel neighbor

U, . (e.g the green square in the previous s

ides)
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Moreavec (80) - Corner Detection

At corners values of E, , “are always big”, even for the less significant
displacements (x,y)

HM(r,c) =T, (82133 (Ex,y (r, C)))

where T, is the hard thresholding operator having threshold y

Corner (keypoint) Detection: Look for local maxima of HM (r, ¢), as
corners maximizes this measure
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Moravec Drawbacks - Solutions
The response may be noisy

Bry(i) = D W)l v) = I =x,v -]

(W, V)EUy ¢

Solution: take w,. . as Gaussian distributed weights.
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Moravec Drawbacks - Solutions

The response is anisotropic since only a finite set of displacements (x,y)
IS considered

By = ) W@ u)lI@w) = (- x,v = )]’
(WV)EUy
therefore, the same corner rotated may yield different responses.
Solution: Expand I(u — x,v — y) in Taylor series
I(u—x,v—y)=I1v)+xLuv)+yl,wv) +0(x*y*)

where L(") =3=1() and I,(") = %1(-), then

Eyy(r,c) = 2 wy (U, V) (xlx(u, v) +yl,(u,v) + O(xZ,yz))2

U, VeEUy ¢
Giacomo Boracchi



Moravec Drawbacks - Solutions

We consider only the first-order terms in the Taylor expansion

Ey,(r,c) = 2 wy o (u, v) (xlx(u, v) +yl,(u, v))z

W VveEUy ¢

Basic calculus leads to E, (7, ¢)

~ Z wy (U, v) (leg (w,v) + y*I5(u, v) + 2xyL,(u, v) 1, (u, U))

(Wv)EUy
~ x2 z wy o (u, V) I (u, v) + y* 2 wyc(u, V)15 (u, v) +
(u,v)EUr,C (u»U)EUr,C
+2xy z Wy o(u, V)L (u, v) I, (u, v)
(u,v)eUy ¢
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Moravec Drawbacks - Solutions

Which is an expression that admits the following matrix notation
X
Ex,y(r» c) = [x,y] M; . [y]
where
L@ w)(r,c)  (x L, ®w)(r,c)
(I L, ®w)(r,c) Uy ®w)(r,c) |
2Ow LLOw

= T, C
LI, ®w IL®w _( )

Mr,c —

Note that I, and I,, denotes image derivatives, which can be computed with
any derivative filters (Sobel, Previtt, Gaussian)

[x, y] always denotes the displacement (very bad notation, sorry)
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Moravec Drawbacks - Solutions

Thus E, , (7, c) can be computed at any pixel (7, c), w.r.t. any
displacement vector (x,y)

. |
Boy(r,0) = [yl | EOW@A) (b OWE O

L L, ®@w)(r,0) (I ®w)(rc)

The response E, (1, ¢) w.r.t. any displacement (x,y) can be

approximated by the quadratic expression involving the matrix M, . in any
pixel (7, c).

Obtaining the matrix M,. . is straightforward, as it involves only computing
(few) image derivatives.
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Matrix M values in different image regions

“analytical behavior” of the matrix M, . in different locations r, c

homogeneous

o, '
\“?&”o’,ﬁn '
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Moravec Drawbacks - Solutions

Considering the minimum of E is not a great deal, may give too ready
responses, and might require many calculations, since many
displacements (x,y) have to be considered.

Ay
Solution:
* consider the SVD (M, . ) and require
that the minimum eigenvalue of M, .
is large at corners

* This means that E, ,,(r, ¢) exhibits a
large variation w.r.t. any displacement

vector (x,y) Being A, and A, the M
eigenvalues of M
Giacomo Boracchi




Harris - Stevens (88)

The following relation holds
Tr(M) =1, + A,
det(M) =21, - 4,
And the function
det(M) — k Tr(M)
is large when both A; and A, are large, where
k = 0.04.

C. Harris and M. Stephens "A combined corner and edge detector”, Proceedings of the 4th Alvey Vision Conference. 1988



Our Matrix

Thus E, (1, ¢) can be computed at any pixel (r, ¢), w.r.t. any
displacement vector (x, y) by using the following matrix

- ZOw)(r,o) (L, L, ®w)(r,c)

M, . =
T L, ®w)(re)  (Z®w)ro)

if we define,
]9%213%®W; ]3212132/®W; ]xy=1x1y®W
the following relations hold
Tr(M,.) =J2(r,c) + J2(r,c) = ((I% + I2) ® W) (r,¢)
det(M,..) = JZ J5(r,¢) — J3,(r,c)
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Harris - Stevens (88)

The following relation holds
Tr(M) =1, + 1,
det(M) =1, - 4,
And the function
det(M) — k Tr(M)
is large when both A; and A, are large, where k = 0.04.
ety =1; ®w, J; =1 ®w
Jxy = Ixly ® w
It is possible to avoid computing SVD(M) and the Harris measure becomes
CIM = (J3]5 —J%) —k (% +J3)
defined as in the previous slide

Giacomo Boracchi



Harris - Stevens (88)

iSO-I'CSpOﬂSf: contours

The following relation holds
Tr(M) =1, + 1,
det(M) =1, - 4,
And the function
det(M) — k Tr(M)
is large when both A; and A, are large, where k = 0.04.
ety =I; ®w, J; =1 ®w

amplitude of response function

]xy — Iny ®w >
It is possible to avoid computing SVD(M) and the Harris measure becomes  rigure from
CIM = (J2J2 —J2,) —k (J2 + J2) Harris ‘88

defined as in the previous slide

C. Harris and M. Stephens "A combined corner and edge detector”, Proceedings of the 4th Alvey Vision Conference. 1988



Harris - Stevens (88)

Alternatively, Noble’s variant which does not
involve k:
det(M)

CM =
Tr(M) + €

That can thus be computed from the image
derivatives as:

Uz -T5)
IR te

CM

Alison Noble, "Descriptions of Image Surfaces”, PhD thesis, Department of Engineering Science, Oxford University 1989, p4s.



Extract Local Maxima of Harris Corner

Measure

—0.08

—{ 0.07

= 0.06

= 0.05

0.01
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Extract Local Maxima of Harris Corner Measure

Harr

is measure

Are we able to find again these
points when the image undergoes
some gometric or photometric
transformation?

—0.08

—{ 0.07

= 0.06

= 0.05

0.01
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Image Features

Giacomo Boracchi
CVPR USI, April 7 2020
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Scale-Invariant Feature
Transform

SIFT Scale Invariant Feature Transform [Lowe 2004]
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Histograms of Oriented Gradients (HOG)

HOG: a Family of Image Features that are built upon orientation of image
gradients around selected keypoints

SIFT [Lowe 2004] is a prominent example of HOG features. SIFT features are
invariant to:

* image scale

* Image rotation,

The cost of extracting SIFT is minimized by a cascade approach, in which
the more expensive operations are applied only at locations that pass an
initial test.

Giacomo Boracchi



Scale Invariant Feature Transform

SIFT that are shown to provide robust matching across a
 substantial range of affine distortions,
e change in 3D viewpoint,
 addition of noise,
e change in illumination

The SIFT descriptors are highly distinctive, relatively easy to extract and
allow for correct object identification with low probability of mismatch.

Scale invariance is provided by an ad-hoc keypoint extraction algorithm

[Lowe 2004] Lowe "Distinctive Image Features from Scale-Invariant Keypoints" IJCV 2004



SIFT outline

SIFT generates large numbers of features that densely cover the image
over the full range of scales and locations.

It is composed of the following steps
» Scale-space extrema detection
» Keypoint localization
 Orientation assignment
» Keypoint descriptor

Giacomo Boracchi



Scale-space extrema
detection

SIFT Scale Invariant Feature Transform [Lowe 2004]



SIFT outline

Scale-space extrema detection: search over all the scales and image
locations for potential interest points that are invariant to scale and
orientation.

Giacomo Boracchi



Detection of scale-space extrema

Keypoint detection is the first stage of a cascade approach

The goal is to identify locations and scales that can be repeatably
assigned under differing views of the same object.

How: search for stable keypoints across all possible scales of the image,
l.e., in the scale space

Giacomo Boracchi



Image Pyramid

Unfortunately, only a single image from a single scale is available. How to
extract information from “all possible scales”?

By generating an image pyramid: Build different representations of the
original image at different resolutions/zoom levels, by convolution
* The highest resolution corresponds to the original image I
* Lower resolutions are synthetically generated through blurring by
convolution and resampling

An image pyramid is obtained by convolving the image I with several
Gaussian kernels G, having standard deviation o.
We define the layers of such pyramid as:

L(x::V: o) = (G ® D(x,y)

Giacomo Boracchi



An Image Pyramid
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An Image Pyramid
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An Image Pyramid
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An Image Pyramid
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An Image Pyramid
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An Image Pyramid
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An Image Pyramid
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An Image Pyramid
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Keypoint Localization in the Scale Space

Keypoints are detected as the local maxima in the difference between two
adjacent representations in the scale space

D(x,y,0) = L(x,y,ko) — L(x,y,0)

That, thanks to convolution properties we have that:

D(x,y,0) = ((Gxs —G5) ® D(x,y)

Ggaussians: it acts as a “blob" detector

(Gka _Ga)

)mo Boracchi



Let’s ook at a 1d-example

%1072 Gaussians
I

35

2.5
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Let’s ook at a 1d-example
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Convolution achieve its

maximum where the filter

DoG filter as

matches at best the width
of sinusoid in the signal
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a Blob detector
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—convn(chirp, 100*(f1-f2))
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Difference-of-Gaussian

Responses w.r.t. to the DoG filter

K. Grauman, B. Leibe

Low Response in the scale Space
resolution 1%

>

High
é resolution

Filters used to compute the DoG

adewl
1ndu



Difference-of-Gaussian (DoG)

K. Grauman, B. Leibe



DoG - Efficient Computation

Computation in Gaussian scale pyramid
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Advantages of the Difference of Gaussian

Why the Difference of Gaussian?

* It is very efficient to compute since the smoothed images need to be computed
for the descriptors

* The DoG approximates the scale-normalized Laplacian of Gaussian [see Lowe
2004], whose local maxima and minima have been shown (experimentally) to
provide the most stable image features.

Giacomo Boracchi



Local Extrema Detection

Local maxima and minima are found by comparing the values
of adjacent DoG of the scale space

e Each point is compared to its 8 neighbors in the current DoG and 9 neighbors in
the scale above and below

* It is selected only if it is larger/smaller than all of these

pd ()
e )

/ 77" D(x,y,03)
[Lowe 2004]

10 Boracchi



Local maxima in position-scale space of DoG

—> List of
(x, y,s)

K Crairiman R leihe Giacomo Boracchi



Keypoint localization

SIFT Scale Invariant Feature Transform [Lowe 2004]

Giacomo Boracchi



SIFT outline

Scale-space extrema detection: search over all the scales and image

locations for potential interest points that are invariant to scale and
orientation.

Keypoint localization: At each candidate location, a detailed model is fit to
determine location and scale

Giacomo Boracchi



The Issue

It is necessary to analyze the nearby data of each candidate keypoint to
estimate Its:

* |ocation,
* scale,
e ratio of principal curvatures of the image

These information are associated to each keypoint and are used for:
* building the descriptor

* rejecting many keypoints that have low contrast or are poorly localized along an
edge.

Giacomo Boracchi



The issue

D(x,y,al) — D()/C\,}/;,é\')

To build meaningful feature descriptors, we need to know to
associate each keypoint to its intrinsic scale (Pyramid layer).

The descriptor will be built at the keypoint refence scale to

become scale invariant
K. Grauman. B. Leibe Giacomo Boracchi



D(x,y,al) — D(D/C\,}/;,é\')

The intrinsic scale of a keypoint can be identified as a local
maxima in the scale space

K. Grauman. B. Leibe Giacomo Boracchi



Automatic Scale Selection

Function responses for increasing scale (scale signature)

K. Grauman. B. Leibe Giacomo Boracchi



Automatic Scale Selection

Function responses for increasing scale (scale signature)

K. Grauman. B. Leibe Giacomo Boracchi



Automatic Scale Selection

Function responses for increasing scale (scale signature)

D(x,y,0)

FEIEE o o o o e o e e e e e e LI T T T
=]
2.0 3.85 srale 19

K. Grauman, B. Leibe
K. Grauman. B. Leibe Giacomo Boracchi



Automatic Scale Selection

Function responses for increasing scale (scale signature)

K. Grauman. B. Leibe Giacomo Boracchi



Automatic Scale Selection

Function responses for increasing scale (scale signature)

K. Grauman. B. Leibe Giacomo Boracchi



Automatic Scale Selection

Function responses for increasing scale (scale signature)

K. Grauman. B. Leibe Giacomo Boracchi



Scale Invariance

* To each keypoint (7, ¢) we associate the scale & of the scale-space
corresponding to the local maxima

* The descriptor is computed from the image in the selected
scale L(-,-,0)

* This provides scale-invariance to the SIFT descriptor

Giacomo Boracchi



SIFT Keypoint Detector: Lowe (‘99)

In particular the following operations are performed:

* Fitting a 3D quadratic function in x, y, o to interpolate the location of the
maximum in the scale-space. This associates to each extrema the 3D-fitted
location (X,%,0)

* Remove low-contrast features by thresholding D(X, ¥y, o), e.g.,

|ID(%,9,6)| < 0.3

* Remove edges responses, preserving only pixels where D has two large

eigenvalues of the Hessian Matrix

H = [Dxx ny]
Dyy  Dyy
It is possible to follow an approach similar to Harris detector to avoid computing

the SVD.

Giacomo Boracchi



B MM

b shhes LiBOAVALS =i

(b)

(d)

Figure 5: This figure shows the stages of keypoint selection. (a) The 233x189 pixel original image.
(b) The mitial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function.
Keypoints are displayed as vectors indicating scale. orientation. and location. (c¢) After applying
a threshold on minimum contrast. 729 keypoints remain. (d) The final 536 keypoints that remain
following an additional threshold on ratio of principal curvatures.

Figure from [Lowe

2004]



Scale Invariance

The features are built from the same pyramid used to locate the scale-
invariant keypoints

The scale associated to each keypoint (7, c¢) determines the Gaussian
smoothed image, L(-,-,0), that is used to build the descriptor at (7, ¢)

Thus, each keypoint is associated to a scale of the scale-space

Scale-invariance to the SIFT descriptor is achieved by the scale-invariance
property of the keypoint

Giacomo Boracchi



Orientation Assignment

SIFT Scale Invariant Feature Transform [Lowe 2004]

Giacomo Boracchi



SIFT outline

Scale-space extrema detection: search over all the scales and image

locations for potential interest points that are invariant to scale and
orientation.

Keypoint localization: At each candidate location, a detailed model is fit to
determine location and scale

Orientation assignment: One or more orientations are assigned to each
keypoint location based on local image gradient directions.

Giacomo Boracchi



Rotation Invariance: The Basic ldea

Assigning a principal orientation for each keypoint
Each descriptor can be represented relative to this orientation

This yields invariance with respect to image rotations

Giacomo Boracchi



How to Assign an Orientation to Each Keypoint?

Goal: compute the principal orientation in a neighborhood of the keypoint (r,c) in L(
,,0) (at the selected scale)

1. For (x,y) in a 16 x 16 neighborhood of (r,c) compute:
* 8(x,y) the orientation of the gradient
 m(x,y) the magnitude of the gradient

2. Compute an histogram of the orientations over 36 bins, each bin covering 10
degrees.

3. Weight each orientation by:
 the gradient magnitude
 a Gaussian weight to give more relevance to estimates that are close to (7, ¢)

The idea: peaks in the orientation histogram correspond to dominant directions of

local gradients
Giacomo Boracchi



Local Descriptors: Image Gradients

The idea: peaks in the orientation histogram correspond to
dominant directions of local gradients

The neighborhood (r, ¢)

N4
:I-*""——*a-
..-‘l’/‘q.

—a
W Rl e

Imaae aradients y Boracchi



Local Descriptors: the Orientation Histogram

Weight each orientation according to:

e the gradient magnitude
(orientation at pixels in high-
contrast regions are more
relevant)

 the distance from the keypoint
location. This weight is assigned
by a Gaussian function having
standard deviation 1.5 &,
where & is the keypoint
selected scale

Scaling due to the gradient

4
= o 2 |e ﬂ magnitude is indicated by the
— length of the arrow. Gaussian

Imaae aradients weights are indicated by the circle. 3 Boracchi




Local Descriptors: Orientation assignment

The highest peak in the histogram is detected

v

4
N

Imaae aradients y Boracchi



Local Descriptors: Orientation assignment

The highest peak in the histogram is detected, and then any other
local peak that is within 80% of the highest peak is used to also

create a keypoint with that orientation
<=

~
"_I

x I

Imaae aradients
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Local Descriptors: Orientation assignment

A parabola is fit to the 3 histogram values closest to each peak to
interpolate the peak position for better accuracy.

Imaae aradients y Boracchi



Local Descriptors: Orientation assignment

Thus, at few locations (about 15% in the experiments in [Lowe 2004])
multiple keypoints might be created at the same location and scale but
different orientations

These contribute significantly to the stability of matching.

[Lowe 2004] y Boracchi
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Keypoint descriptor

SIFT Scale Invariant Feature Transform [Lowe 2004]

Giacomo Boracchi



SIFT outline

Scale-space extrema detection: search over all the scales and image

locations for potential interest points that are invariant to scale and
orientation.

Keypoint localization: At each candidate location, a detailed model is fit to
determine location and scale

Orientation assignment: One or more orientations are assigned to each
keypoint location based on local image gradient directions.

Keypoint descriptor: The local image gradients are measured at the
selected scale in the region around each keypoint

Giacomo Boracchi



The Descriptor [Lowe 2004]

The previous operations have assigned an
* image location X, y
e scale ¢
- orientation 8 (and possibly more orientations)

to each keypoint.

Descriptors are built on images transformed w.r.t. the assigned location,
orientation, and scale: this assignment provides invariance with respect to
these transformations.

The SIFT descriptor is then extracted from local image region around each
keypoint to be highly distinctive and invariant as much as possible to
other photometric and geometric transformations, such as change in
illumination or 3D viewpoint changes.

Giacomo Boracchi



The SIFT Descriptor

SIFT descriptors are built from the image gradients.

Preprocessing:

 the image gradient magnitudes and orientations are sampled around X, y, from
the layer & of the pyramid (i.e. using the selected scale).

 the gradient orientations are rotated relative to 0 (i.e., the keypoint orientation).

Giacomo Boracchi



Local Descriptors: SIFT Descriptor

As for orientation assignment, the gradient orientation are weighted w.r.t.
the magnitude and the distance from the center (this guarantees
robustness to small changes in the position of the window)

Image gradients
) Boracchi



The SIFT descriptor

4 Orientation histograms are created over 8 directions. The length of each
arrow indicates the height of the corresponding bin.

The descriptor is a vector stack of these histograms

— [Lowe 2004]
fx ’ * w ‘. .

/

v

Image gradients Keypoint descriptor
) Boracchi



The SIFT descriptor

In the typical implementation, the region is divided in 4x4 regions, each
containing an 8-bin histogram.

This yields a descriptor v having 4 X 4 X 8 = 128-dimensions

Image gradients

) Boracchi



The SIFT descriptor

In the typical implementation, the region is divided in 4x4 regions, each
containing an 8-bin histogram.

This yields a descriptor v having 4 X 4 X 8 = 128-dimensions

) Boracchi



The SIFT Descriptor

The descriptor encodes the height of the
orientation histogram

Input region SIFT descry.

[Lowe 2004] Lowe "Distinctive Image Features from Scale-Invariant Keypoints" IJCV 2004
Giacomo Boracchi



An Example

An example of
few SIFT selected
scale and
orientations

(the larger the
square, the
larger the
corresponding
scale in the
scale-space)

Giacomo Boracchi



An Example

An example of few SIFT
selected scale and
orientations

The keypoint was found
at an high level of the
pyramid, that’s why there
is a large region around.

Lena’ eye is likely to be
preserved even by heavy
blur in the scale space

Image have been rescaled

Giacomo Boracchi



An Example

An example of few SIFT
selected scale and
orientations

The keypoint was found
at a low level of the
pyramid, that’s why there
is a small region around.

Such a texture pattern is
likely to be suppressed by
blur at lower levels

Image have been rescaled

Giacomo Boracchi



Robustness to Illumination Changes

SIFT is invariant to affine changes in illumination

e Gradients are themselves invariant to additive shifts, thus SIFT are invariant to
«additive illumination changes»

 To achieve invariance to intensity scaling, each descriptor is normalized to yield
unitary length i.e. v —

vl

Nonlinear illumination changes might affect SIFT, introducing gradients
having large magnitude.

To increase the robustness to nonlinear illumination changes, the
components of v are clipped to 0.2 and then v is normalized again.

Giacomo Boracchi



Other Descriptors

BRISK, SURF, FREAK



Other approaches

Lowe has inspired many research works in the following years

Further developments aimed at designing descriptors that are
e more robust to viewpoint changes and artifacts
* easier to extract
e faster to match

Example are:
* PCA-SIFT reduces the descriptor vector from 128 to 36 dimension using principal
component analysis

 Speed-up Robust Feature (SURF): relies on local gradient histograms computed by
the Haar-wavelet that are efficiently computed using integral images (64

dimensional)

Giacomo Boracchi



SURF

Surf replaces derivative filters used in gradient computation
with "flat filters" that assume integer values

1] [T
- l il

. il
I HEEE

Fig.1. Left to right: the (discretised and cropped) Gaussian second order partial
derivatives in y-direction and ry-direction., and our approximations thereof using box
filters. The grey regions are equal to zero.

Convolution against these filters can be efficiently computed
by means of the integral image

Bay H., Ess A., Tuytelaars T., Van Gool L., "SURF: Speeded Up Robust Features", CVIU, 2008



Binary Descriptors

Latest research is devoted to
descriptors that are faster to
compute, even though less
accurate than SIFT.

BRISK (Binary robust
invariant scalable keypoints)
is a binary descriptor that
encodes the sign of the
difference in «receptive
fields» around a keypoint

15+
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BRISK sampling pattern
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S. Leutenegger, M. Chli, and R. V. Siegwart, "Brisk: Binary robust invariant scalable keypoints*“ ICCV 2011



Binary Descriptors

Latest research is devoted to FREAK sampling pattern
descriptors that are faster to P P
compute, even though less Y, |

accurate than SIFT.

Freak (fast retina keypoint) is
a binary descriptor that

encodes the sign of the |
difference in «rece pt]ve & _
fields» around a keypoint

[FREAK] A. Alahi, R. Ortiz, and P. Vandergheynst, "Freak: Fast retina keypoint," in CVPR 2012



Binary Descriptors

Latest research is devoted to descriptors
that are faster to compute, even though

less accurate than SIFT. FREAL palrs
Freak (fast retina keypoint) is a binary V]
descriptor that encodes the sign of the PRGN
difference in «receptive fields» around a Bk 4L
keypoint o 2 U ) TR =

[FREAK] A. Alahi, R. Ortiz, and P. Vandergheynst, "Freak: Fast retina keypoint,” in CVPR 2012 Giacomo Boracchi



FREAK Desctiptor

The descriptor encodes the sign of
the difference over pairs of

Input region rec@@&k’@eﬁﬁ@or

sign(ry — 134)

sign(rys — 122)

x € {0,1}°12
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