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Images
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Images: the Classifier’s input




RGB images

» Green region
I(r,c) = [120,150, 30]

Dark region
I(r,c) = [40,30,11]

> Blue region
I(r,c) =]100,190,240]

» Red region
I(r,c) =[240,80,70]

In practice, intensity values integers [0 — 255]
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Python Example

from skimage.io import imread

# Read the image
| = imread('baboon.jpg")

# Extract the color channels of the image

R=1: : O
G=1:: 1]
B=1I : 2]

Giacomo Boracchi



RGB images

]R512><512><3

This image is 512 x 512 pixels: I € Cincomo Boracch



RGB image

RGB image

o
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Red Channel

red channel
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RGB image

RGB image

o
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Green Channel
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RGB image

RGB image

o
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Blue Channel
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Videos



Higher dimensional images

Videos are sequences of images (frames)
If a frame

I € [0,255]R*€*3 print (V.shape)

a video of T frames (144, 180, 3, 30)
0 255 RXCX3XT

In this example: R = 144, C = 180, thus these 5 color frames contains:
388.800 values in [0,255], thus in principle, 388 KB
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Dimension Increases very quickly

Without compression: 1Byte per pixel per channel
1 frame in full HD: R = 1080,C = 1920 =~ 6MB
1 sec in full HD (24fps) ~ 150MB

Fortunately, visual data are very redundant, thus compressible

This has to be taken into account when you design a Machine learning
algorithm to be used on images
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Higher dimensional images

Multispectral imaging and remote sensing
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Higher dimensional Images

These images are stacking multiple layers as color-planes

Multi-spectral or Hyper-spectral images:
each band covers a certain wavelength that is meaningful for interpretation soil in

areal images _
* 0.45-0.52 pm Blue-Green e
o2k Classification of
® 0.52-0.60 pm Green . )
. 0.63-0.60 Um Red multispectral images:
. 0.76-0.90 M Near R — infer the soil coverage
* 10.40-12.50 yum Thermal IR different spectral bands
* 2.08-2.35 um Mid-IR -

In hyperspectral images the number of bands becomes larger and you get a whole
energy spectrum in each pixel
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Band 1
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and 2
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Band 4
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Band &
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and 6

Giacomo Boracchi



Band 7
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MRI and TAC

(Structural) MRI provide a 3D stack of grayscale images that are
analyzing the body at different depth levels

These can be used to perform 3D reconstruction of bones, organs and
membranes, e.g. cortical sufaces

Giacomo Boracchi



When we work channel-wise...
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Think of an image as a 2d, real-valued function
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Spatial-Domain vs Transform-Domain Methods

A survey of most important operations in image processing:
 Spatial Intensity Transformations

e Spatial Local Transformations: convolution

Spatial transformations (intensity or local) are direct manipulation of pixel
intensities. Relevant examples of convolutional filters:

« Smoothing Filters (denoising)

* Differentiating Filters (edge detector)
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“Digital Image Processing”, 4th Edition Rafael C. Gonzalez, Richard E.
Woods, Pearson 2017
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Intensity Transformations

Transformations that operate
on each single pixels of an image
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Intensity Transformations

In general, these can be written as
G(r,c) =Tl|I(r,c)]
Where

* [ is the input image to be transformed

G is the output
e T: R3 > R3orT: R3 > Ris a function

T operates independently on each single pixel.
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RGB — Grayscale Conversion

A linear transformation of pixel intensities T: R3 - R
Gray(r,c) =[0.299,0.587,0.114] = [R(r,c),G(r,c), B(r,c)]

which corresponds to a linear combination of the 3 channels
Gray(r,c) = 0.299 * R(r,c) + 0.587 x G(r,c) + 0.114 * B(r,c)
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AN N
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YCbCr color space

Color space conversion T: R3 — R3 to map RBG to YcBCr
* Y is the luma signal, similar to grayscale
« Cb and Cr are the chroma components

Human eye is less sensitive to color changes than luminance variations.
Thus,

* Y can be stored / transmitted at high resolution

 Cb and Cr can be subsampled, compressed, or otherwise treated
separately for improved system efficiency

(e.g. in |JPEG compression che chromatic components are encoded at a
coarser level than luminance)
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Gray-level mapping

A transformation T: R — R that operates on gray-scale images or on each

color-plane separately

255

T(I)

T()

255
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Gray-level mapping

A transformation T: R — R that operates on gray-scale images or on each
color-plane separately

What does this T do?

255

T(I)

0 I 255
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Contrast increases in dark, decreases in bright

Output G =T(1)
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Gray-level mapping

A transformation T: R — R that operates on gray-scale images or on each
color-plane separately

What does this T do?

255

T(I)

T()

0 I 255
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Contrast increases in bright, decreases in dark

Output G =T(I)
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Gamma Correction
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Gamma Correction

Power-low transformation that
can be written as

G(r,c) =I1(r,c)Y

Contrast Enhancement:

* Low values of y stretch the
intensity range at high-values
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Gamma Correction

Power-low transformation that

_ Gamma Transformations
. 1 e
can b € Wil tte n as ol “/_“““ "_"_'::_Er_" ,3=010 .
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Contrast Enhancement:

Low values of y stretch the
intensity range at high-values | >
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Gray-level mapping

A transformation T: R — R that operates on gray-scale images or on each
color-plane separately

What does this T do?

255

T(I)

T()

0 I 255
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Contrast Stretching

Contrast stretching: increases the constant at values in the middle of intensity
range, decreases contrast at bright and dark regions.

It is implemented by piecewise or parametric transformations

Giacomo Boracchi



Gray-level mapping

A transformation T: R — R that operates on gray-scale images or on each

color-plane separately

What does this T do?

255

T(I)

()

255
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Thresholding

Thresholding binarizes images
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Thresholding

A transformation T: R — R that operates on gray-scale images or on each

color-plane separately

T(I(r,¢)) = {

255,
0,

if I(r,c)=>T
if I(r,c)<TIl

255

T(I)

T()

r

I

255
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Thresholding

A transformation T: R — R that operates on gray-scale images or on each

color-plane separately

What does this T do?

255

T(I)

T()

r

I

255
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Thresholding




Thresholding

A transformation T: R — R that operates on gray-scale images or on each
color-plane separately

T(I(r, C)) — T(I(T; C)); if I(r,c) =T

0, if I(r,c) <l
255
=
This simple operation is one of the r T()

most frequently used to add
nonlinearities in CNN, through the
RelLU Layers

0 r [ 255
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Digital Image Filters

Giacomo Boracchi
CVPR USI, March 27 2020
Book: GW chapters 3, 9
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Outline

Image Transformations
e More on intensity transformation: histograms
e Spatial Transformation: Correlation and Convolution

e Convolution properties

* Smoothing
e Derivatives estimation

 Nonlinear Filters
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Recap: Intensity Transformations

In general, these can be written as

Where

G(r,c) =

T|I(r,c)]

* [ is the input image to be transformed

G is the output

e T- RS> R3orT: R3 - Ris a function

T operates independently on each single pixel.
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Histograms

How to define intensity transformations adaptively on
the image
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Image histograms

Histogram of pixel intensities can be used to define intensity

transformation

img

number of pixels

1400
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800

600

400

200

image intensity histogram (pdf)

50 100 150 200 250
Input values

Histogram

Giacomo Boracchi



Image histograms

Histogram of pixel intensities can be used to define intensity
transformation

Definition
The histogram {h;} associated to an image I is a vector of 256 bins, each
corresponding to am intensity value i =0, ..., 255

h; = #{(r, c), s.t. I(r,c) =i}

Where # denotes the cardinality of a set

[h, bins] = hist (I, bins)
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Image histograms

Histogram of pixel intensities can be used to define intensity

transformations

img

= 1150

thO

image intensity histogram (pdf)
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Image histograms

Remember that images assume integer values (uint8), thus there might
be intensity values that do not occur in an image

image intensity histogram (pdf)
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NORMAL image

number of pixels

Histogram of an NORMAL image

%x10* RED intensity histogram
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Histogram of an UNDEREXPOSED image

A %x10* RED intensity histogram

UNDEREXPOSED image
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. %x10* GREEN intensity histogram
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Histogram of an OVEREXPOSED image
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Contrast Enhancement by histogram equalization

Contrast enhancement transformation map the image intensity to the
whole range [0,255]

Histogram equalization maps histogram bins. Let
« |0, L] be the intensity range of input image

* {h;} be the histogram of the input image and let p; = h;/N be the
proportion of pixels having intensity j in the input image

Histogram equalization is defined as
i
T(i) = floor| (L —1) ij
j=0
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Contrast Enhancement by histogram equalization

Histogram equalization maps any pdf (histogram of the input image) to a
uniform pdf (output image)

T(i) =floor| (L—1) ) p;
JZ )

This transformation maps the histogram to a uniform distribution

By Zefram - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=668605



Contrast Enhancement by histogram equalization

Histogram equalization maps any pdf (histogram of the input image) to a
uniform pdf (output image)

T(i) =floor| (L—1) ) p;
JZ )

Rationale: the cumulative function CDF of a random variable I maps the
random variable to a uniform distribution, i.e.

CDF(I) ~ U(0,1)

The transformation then becomes the cumulative function itself:
T(-) = CDF(")
I eq = histeq(I)
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Histogram Equalization Results

NORMAL EQUALIZED image

-
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UNDEREXPOSED EQUALIZED image

-
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Histogram Equalization Results

«10* RED intensity histogram
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Histogram Equalization Results

%x10* RED intensity histogram

10

OVEREXPOSED EQUALIZED image
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Equalization can not create

UNDEREXPOSED image

UNDEREXPOSED EQUALIZED image

new intensity values!

x10* BLUE intensity histogram
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Histogram Matching

Estimate the intensity transformation mapping an histogram to any target
distribution.

For instance, given two images I; and I,, estimate the transformation
mapping the histogram of I; to the histogram of I,



Histogram Matching

Ildea: Estimate the transformation that makes their cumulative density
functions to be the same

The transformation
i" =T(), such that
CDF;(i) = CDF,(i")

Solves this problema and can be easily computed since histograms are
discrete



Histogam Matching T:y — y'

1.0 A

0.8 1

0.6 1

0.4 A

0.2 1

0.0 A

0 l l 255

By Llorenzi - CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=65976023



Hist. Matching

UNDEREXPOSED image
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Histogam Matching Results

UNDERPOSED TO NORMAL image
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NORMAL
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UNDEREXPOSED TO NORMAL




UNDEREXPOSED




Local (Spatial) Transformations:
Correlation and Convolution
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Local (Spatial) Transformation

In general, these can be written as
G(r,c) = Ty (r,0) [1]
Where
e [ is the input image to be transformed
 ( is the output

U is a neighbourhood, identifies a region of the image that will concur in the
output definition

e Ty: R > R3 or Ty: R3 > Ris a function

T operates on [ “around”“ U

The output at pixel (r,¢) i.e., Ty () [1] is defined by all the intensity values:
{I(u,v), wu—r,v—c) € U}
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Local (Spatial) Filters

The dashed square represents {I(u,v), (u—r,v—c) € U}

Ty [I] I

(r,¢c)
®
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Local (Spatial) Filters

The dashed square represents {I(u,v), (u—r,v—c) € U}

Tyll] I

(r,c)
O

* The location of the output does not change
 The operation is repeated for each pixel

e T can be either linear or nonlinear
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Local Linear Filters

Linear Transformation: Linearity implies that

T|I](r,c) = 2 w; x I(r +u,c+v)

(u,v)eU

Considering some weights {w;} I
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Local Linear Filters

Linear Transformation: Linearity implies that

T|I](r,c) = 2 w(u,v) *I(r+u,c+v)

U u,v)eU ¢
w(=1,0) | w(=1,1)
_ I
w(0,0) | w(0,1) I !
r ‘ O
w(1,0) | w(11) |

We can consider weights
as an image, or a filter h

The filter h entirely defines
this operation
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Local Linear Filters

Linear Transformation: Linearity implies that

T|I(r,c) = 2 wu,v) *I(r +u,c + v)

C

U u,v)eU )
| I
r - -
We can consider weights This operation is repeated for
as an image, or a filter h each pixel in the input image
The filter h entirely defines L
this operation
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Correlation

The correlation among a filter h = {w;} and an image is defined as
L

L
(IQ h)(r,c) = z z h(u,v) *I(r + u,c + v)

u=—-Lv=-L

where the filter h is of size (2L + 1) X (2L + 1) and contains the
weights defined before as w.

The filter is sometimes called “kernel”
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Correlation for BINARY target matching

> Il =

UTK

Easier with binary images

Target used as a filter
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Correlation for target matching

Correlation function

Highest correlation
value

Maximum value line profile
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Another example

I0RM
a._201
8.794

8_765

y, original image

DIF1 Det
B.145 HO
B.142 HO
g._409 HO

correlation

template

The maximum is here
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However...

IORM1
a._201
8.794
B_765

y. oniginal image
DIF Det
H.145 HO
g.142 HO
0.4489 HO

#FA
2.0888
2.080848
6.888

correlation

template

HO
X HO

HO

Each pointin a

white area is as big as the
template achieve the
maxium value (togheter with
the perfect match)
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Normalized Cross Correlation

A very straightforward approach to template matching
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Normalized Cross Correlation

Normalized Cross Correlation is defined as
N(4,B)

JN(A,A)N(B, B)

NCC(4,B) =
where

N(A,B) = f f (A(x,y) — D)(B(x,y) — B) dx dy
|1/74

and A represents the average image value on patch A, similarly B. W is
the support of 4 or B.
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Normalized Cross Correlation

Remarks:

* NCC yields a measure in the range [-1,1] , while the SSD is only positive and not
normalized (its maximum value depends on the image range).

* NCC is invariant to changes in the average intensity.

» While this seems quite computationally demanding, there exists fast
implementations where local averages are computed by running sums (integral
image)
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Integral Image

The integral image S is defined from an image I as follows

S(x,y) = z I(r,c)

r<y,c<X

I S

X

)’|-
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Using the Integral Image

The integral image allows fast computation of the sum (average) of any

rectangular region in the image

Z I(r,c) =S(x2,¥2) —S(x2,¥1) —S(x1,¥2) +5(x1,¥1)

ylerYZt
X1SC<Xo
X1 X1 X2
S(x1,y1) S(x2,v1)
O] S T LA et Y 2 )1
S(x1,52) S(x5,¥2)
S N vy 2 Y2
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Disparity Map Estimation

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale



http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale

Disparity Map Estimation

There are different measures to compare a patch in I; with all the candidate matches in I,

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale



http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale

Disparity Map Estimation

There are different measures to compare a patch in I; with all the candidate matches in I,

u u+d
I, |

h

N(A,B)

NCC(AB) = JN(A, A)N(B, B)

I ——

V=---

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale
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Convolution
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Correlation and Convolution

The correlation among a filter A and an image is defined as
L

L
(IQ h)(r,c) = z z h(u,v) *I(r + u,c + v)

u=—-Lv=-L

where the filter h is of size (2L +1) X (2L + 1)

The convolution among a filter A and an image is defined as

L L
(I ® h)(r,c) = z z h(u,v) *I(r —u,c —v)

u=—Lv=-—L

where the filter a is of size (2L + 1) X (2L + 1)

There is just a swap in the filter before computing correlation!
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Convolution - and filter flip

Let y, h be two discrete 2D signals of (2L + 1) X (2L + 1)

L L
G(r,c)=U®h)(r,c) = z 2 I(r+u,c+ v)hl(—u, —V)

u=-—Lv=—-L

h, h, h ~|n h h h h h
3 X—flip |~ | Y —flip |-

hoo | h, hs ) h, hs ,

h he h h, h, h h, h, h,

In this particular case L = 1 and both the image and
the filter have size 3 X 3
The convolution is evaluated at (r,c) = (0,0)
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Convolution - and filter flip

Let y, h be two discrete 2D signals of (2L + 1) X (2L + 1)

L L
G(r,c)=U®h)(r,c) = z 2 I(r+u,c+ v)hl(—u, —V)

u=-—Lv=—-L

h, h, h ~|n h h h h h
3 X—flip |~ | Y —flip |-

hoo | h, hs ) h, hs ,

h he h h, h, h h, h, h,

In this particular case L = 1 and both the image and
the filter have size 3 X 3
The convolution is evaluated at (r,c) = (0,0)
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Convolution - and filter flip

Let y, h be two discrete 2D signals of (2L + 1) X (2L + 1)

G(r,c)=U®h)(r,c) = ZL: ZL:

I(r+u,c+v)h(—u,—v)

u=—-Lv=-L
h h h _ | h h h h
| 2 3 X —flip | 8 9 Y - flip |- :
h, h, h EE—— h, h .| s h
h, he h, h, h, h, hy h,
Point-wise product
h, hy h, ! , , hly [ hgl, |,
h h, h, x|, , l he, | hds | h
h, h, h, } l , h, | hlg | hl
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Convolution

Let y, h be two discrete 2D signals of (2L + 1) X (2L + 1)

L L
G(r,c)=U ®h)(r,c) E E I(r +u,c+v)h(—u,—v)
u=—-Lv=-L

h, h, h . |n h h h h h

3 X=fip| ” | " |* fvy_fipp L

no |h h, h S N} h, h o | Ns h, h,

h, he h, h, h, h, hy h, h,

Point-wise product sum
h, hy h, ! , ! hly [ hgl, |,
h h, h, x|, , l Y 117 PR P P I PR I
h, h, h, } l , h, | hlg | hl

Gs = holy + hgl, + h I3 + hyl, + hels + hsl, + hsl, + hylg + hyl,
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Question

The filter (a.k.a. the kernel) yields the coefficients used to compute the

linear combination of the input to obtain the output

10

0.1

Image

Kernel

Filter Output
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Let’s have a look at 1D
convolution



Let’s have a look at 1D Convolution

Let us consider a 1d signal y and a filter h.
 Their convolution is also a signal z = y ®h.
 For continuous-domain 1D signals and filters

2(2) = (y ®h) (7) = f Y(Oh( — t)dt

R
that is equivalent to

2(2) = (h ®y)(7) = f YT — Oh(Dde

R
 For discrete signals and filters

L
2n) = (Y ®W(W) = ) y(n—mh(m)

m=—L

where the filter has (2L + 1) samples
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1D Convolution - example

L
2(n) = (Y®R) () = Z y(n — m)h(m)
vy h = |1 111 -
1 )’1— Slln(X}, 1_ g;g;g;g;g )L - 2
5% 5 5 5 5]
[ LA

I I I I
I
(@]
o))
;. O
=)
—
S
| | | |

0.2

| | [, |

£0.76 071
I PP P T Giacomo Boracchi




1D Convolution - example

2(n) = (Y®h)(n) = }:ym.nuMm>

y = sin(x), h

§§§§§L‘2

1 1 1
0.766 ~§*048+§ 0.84+§*1+§*O.91+§*0.60

Yy 0384
7 065

2 " 0.60
0.4 — e > 46 h *46 —
02‘9'2)6/ -~ \\ \\\ . B
o 014
S VRV NN

077

---original Y|
9.70 ~o * convolved| |

vy
N
\
oo
AN

1058 058 -
076 T +0.75--+0.74 -+0.71 |

| S~lnoa-_—efag

A
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1D Convolution - example
L
2(n) = GO = ) y(n—m)h(m)
m=—L

L
= z y(n + m)h(—m)
m=—L

o8 - l 84 (;:;%55091 ---original |
el L FEE) “9»79\ 60 + convolved||
o ;;f;ete f}fﬁ \. |
N 26/ RN |
The minus in the formula above 04
indicates a flip. Flipping the filter h Lﬂ il
or the signal y is actually the same. \ §§ f,/?:gig
Here there is no point of flipping h '\“x\:"‘w..gkggﬁ 958 |
since it is symmetric w.r.t. its center “‘--0.‘_7‘__@““%0.—75-—*uﬂ'.?g____..-/-'uo.71 il | |
. . \ | R PP P T oY~ Giacomo Boracchi




What about an imupulse?

08

0.6

0.4

0.2

ne

0.2

-0.4

0.6

-0.8

~~7Noisy i
* convolved| |

»
|
|

1
N ]
o oo
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What about an imupulse?

~~7Noisy
* convolved| |
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What about noise’

| » o
I
/ glu-lo \_e
L -,
i ::,::"‘ g [ \': -
e iy '
a7 ®
..\ . /. -8
L
0.5 — j
o/
f - \‘
‘./
[ 2
ol
05—
A
|

~~-noisy
* convolved
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What about noise’
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Let’s go back to
2D convolution now



A well-known Test Image - Lena
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A Trivial example
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Linear Filtering

-7
pisd .-+
01

0.054
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The original Lena image
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Filtered Lena Image
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0.034.
0024
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The original Lena image
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The filtered Lena image




What about normalization?
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.. convolution is linear
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..what about
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.. convolution is linear
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2D Gaussian Filter

Continuous Function

1
HG(X’ y): 272'(72 eXp o

Discrete kernel: assuming G is a (2k + 1) x (2k + 1) filter

. 1 i+ j°
G(I’J): 270° =P _( 20‘g )

That is then normalized such that 3% _, ?:—k G(,j) =1
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Weighted local averaging filters: Gaussian Filter

02—

015

01l —
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Weighted local averaging filters: Gaussian Filter
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Gaussian Smoothing vs Averaging Filters

Gaussian Smoothing Smoothing by Averaging
Support 7x7 On 7x7 window
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Convolution Properties



Properties of Convolution: Commutative

It is a linear operator

(AL + uly) ® h)(r,¢) = 2, ® h)(r,¢) + u(l; ® h)(r,c)
where A, u € R

Obviously, when the filter is center-symmetric, convolution and correlation
are equivalent
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Properties of Convolution

It is commutative (in principle)
11 @ 12 — 12 @ 11

However, in discrete signals it depends on the padding criteria In continuous domain

it holds as well as on periodic signals

Input image [ filter h
o o o o [o[o “D 0 ||1 1
0o 1 0 2 [1 o "D 1 ||1 0
0o 1 1 1 Jo]h IlD 1 ||-1 1
0 1 2 1 0 1 0
01 2 0 2 2 O Original image is in
0 1 0 1 0 0 0 violet, grey values are
padded to zero to
0 0 0 0 0 % enable convolution

at image boundaries

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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http://cs231n.stanford.edu/
http://cs231n.github.io/

Is Convolution Commutative’
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Is Convolution Commutative’
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Translation
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Translation

Remember the filter has to be flipped before convolution

Giacomo Boracchi



Is Convolution Commutative’

Giacomo Boracchi



Properties of Convolution: Associative

It is also associative
fOUWOAH=F®g®h=f®g®h
and dissociative

fOUT+H=f®g+f®h
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Properties of Convolution: Shift invariance

It is also associative
fOUWOAH=F®g®h=f®g®h
and dissociative

fOUT+H=f®g+f®h

It is shift-invariant, namely

(I(- =19 —co) ® h)(r,c) =U ® h)(r —19,¢ — cg)

Any linear and shift invariant system can be written as a convolution
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Systems

Consider a system H as a black box that processes an input signal (f)

and gives the output (i.e, H[f])

flt)—
/

The input is a signal

H

—(H f)(1)
AN

The output is a signal
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Systems

Consider a system H as a black box that processes an input signal (f)
and gives the output (i.e, H[f])

fi)y—| H | —CH f)(1)

In our case, f is a digital image (a 2D matrix), but in principle could be
any (analogic or digital) n-dimensional signal
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Linearity and Time Invariance

A system is linear if and only if
H[Af(®) +png®)] =2H[f] (t) + u H[g] (t)

holds for any A, u € R and for f, g arbitrary signals (this is the canonical
definition of linearity for an operator)

A system is time (or shift) - invariant if and only if
H[f(t —ty)] = H[f] (t — tp)

holds for any t; € R and for any signal f
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Linear and Time Invariant Systems

All the systems that are Linear and Time Invariant (LTI) have an equivalent
convolutional operator

* LTI systems are characterized entirely by a single function, the filter
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Linear and Time Invariant Systems

All the systems that are Linear and Time Invariant (LTI) have an equivalent

convolutional operator

* LTI systems are characterized entirely by a single function, the filter

 The filter is also called system's the impulse response or point
spread function, as it corresponds to the output of an impulse fed to

the system

—

H

—
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The Impulse Response

Take as input image a discrete Dirac

original “E”‘e':

g/
% 10

50
A0 40

30 30
4 20
0l

This is why h is also called the “Point Spread Function”

observation
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Denoising

An application scenario for digital filters
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Low - Pass

no

smoothing

o=1 pixel

0=2 pixels

The effects of smoothing
Each row shows smoothing
with gaussians of different
width; each column shows
different realisations of

an image of gaussian noise.
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Denoising: The Issue

A Detail in
Camera Raw
Image
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Denoising: The Issue

Denoised
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Denoising: The Issue

A Detail in Camera
Raw Image
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Denoising: The Issue

Denoised
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Image Formation Model

Observation model is

zx)=yx)+nx), x€X
Where
 x denotes the pixel coordinates in the domain X < Z?
vy is the original (noise-free and unknown) image

e z is the noisy observation

* 7 is the noise realization
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Image Formation Model

Observation model is
z(x) = y(x) +n(x), x €X

The goal is to compute y realistic estimate of y, given z and the
distribution of 7.

For the sake of simplicity we assume AWG: n ~ N(0,04) and n(x)
independent realizations.

The noise standard deviation o is also assumed as known.
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Convolution and Regression

Observation model is

Consider a regression

2(z) =y(@)+n(z) z€X

oroblem
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Fitting and Convolution

The convolution provides the BLUE (Best Linear Unbiased Estimator) for
regression when the image y is constant

The problem: estimating the constant C that minimizes a weighted loss
over noisy observations

yn(xzo) = argmin wp(xo — xs) (2(x5) — O) 2
¢ r,€X
Where wp, = {wn(z Z wh (2
reX

This problem can e solved by computing the convolution of the image z
against a filter whose coefficients are the error weights

y(zo) = (2 ®wn) (z0)
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Image Formation Model

Observation model is

2(z) =y(@)+n(z) z€X

hus we can pursue a “regression-approach”, but on images it may not be convenient to assume a
parametric expression of  on Yy X

¥
;
i
i
:
o
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Image Formation Model

Observation model is

2(z) =y(@)+n(z) z€X

hus we can pursue a “regression-approach”, but on images it may not be convenient to assume a
parametric expression of  on

5
2
i
ot
X
[
&

b
w5
=
.
=
P
Ty
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Local Smoothing

Additive Gaussian
White Noise

= N (,u ’ O-) After Gaussian Smoothing
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Denoising Approaches

Parametric Approaches

 Transform Domain Filtering, they assume the noisy-free signal is somehow
sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary
based decomposition)

Non Paran
e local ¢
* Non L«
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Denoising Approaches

Parametric Approaches

 Transform Domain Filtering, they assume the noisy-free signal is somehow
sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary
based decomposition)

Non Parametric Approaches
* Local Smoothing / Local Approximation
* Non Local Methods

Estimatin‘n arl AN fram A\ rAn ha ctaticticrallvr +fraa+taAd Ac ronrabb:nn Of Z
(

given x
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Denoising Approaches

Parametric Approaches

 Transform Domain Filtering, they assume the noisy-free signal is somehow
sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary
based decomposition)

Non Parametric Approaches
* Local Smoothing / Local Approximation
* Non Local Methods

Estimating y(x) from z(x) can be statistically treated as regression of z
given x

y(x) = E[z | x]
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Denoising Approaches

Parametric Approaches

 Transform Domain Filtering, they assume the noisy-free signal is somehow
sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary
based decomposition)

Non Para

given x
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Denoising Approaches

Spatially adaptive methods, The basic principle:

* there are no simple models able to describe the whole image y, thus
perform the regression y(x) = E|z | x]

e Adopt a simple model in small image regions. For instance

vx €X, 3U, s.t. y5,_isapolynomial

* Define, in each image pixel, the “best neighborhood” where a simple
parametric model can be enforced to perform regression.

e For instance, assume that on a suitable pixel-dependent neighborhood,
where the image can be described by a polynomial
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ldeal neighborhood - an illustrative example

Ideal in the sense that it defines the support of a pointwise Least Square
Estimator of the reference point.

Typically, even in simple images, every point has its own different ideal
neighborhood.

For practical reasons, the ideal neighborhood is assumed starshaped

Further details at LASIP c¢/o Tampere University of Technology
http://www.cs.tut.fi/ ~lasip/
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Neighborhood discretization

A suitable discretization of this neighborhood is obtained by using a set of directional LPA kernels {gg,h}e 0

where 8 determines the orientatio

ldeal Directional Discrete Adaptive
Neighborhood kernels Neighborhood
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ldeal neighborhood - an illustrative example

Ideal in the sense that the neighborhood defines the support of pointwise Least Square Estimator of the reference point.
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Examples of Adaptively Selected Neighorhoods

Define, Vx € X , the “ideal” neighborhood U,

Compute the denoised estimate at x by “using” only pixels in U, and a
polynomial model to perofrm regression (x) = E[z |x, U,]
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Examples of adaptively selected neighorhoods

Neighborhoods adaptively selected using the LPA-ICI rule
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Example of Performance

Original, noisy, denoised using polynomial regression on adaptively
defined neighborhoods (LPA-ICI)
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