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Planar Geometry

Today we will study the geometry on the image plane Π, and in particular 

the properties of points and lines and their relationships
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Points in ℙ2

In homogeneous coordinates a point on Π corresponds to a triplet

𝒙 = 𝑥, 𝑦, 𝑤 ⊺

We will always consider column vectors as these are more convenient in 

linear algebra operations

In homogeneous coordinates a point corresponds to a class of equivalence 
that includes all the scaled versions of 𝒙

𝒙 = 𝑥, 𝑦, 𝑤 ⊺ =
𝑥

𝑤
,
𝑦

𝑤
, 1

⊺

The latter representation is mapped in ℝ2 by removing the last coordinate

𝑥

𝑤
,
𝑦

𝑤
, 1

⊺

→
𝑥

𝑤
,
𝑦

𝑤

⊺

∈ ℝ2
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Lines in ℝ2

In ℝ2 the equation of a line 𝑙 is

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0

being −𝑎/𝑏 the angular coefficient and −𝑐/𝑏 the intercept

𝑙

−𝑎/𝑏−𝑐/𝑏
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Lines in ℙ2

Thus we can associate a point to each line 

𝑙 → 𝑎, 𝑏, 𝑐 ⊺

This association is not one-to-one since 𝜆𝑎𝑥 + 𝜆𝑏𝑦 + 𝜆𝑐 = 0, 𝜆 ≠ 0
identifies the same line but with different parameters

𝑙 → 𝜆𝑎, 𝜆𝑏, 𝜆𝑐 ⊺

Thus, representations 𝜆𝑎, 𝜆𝑏, 𝜆𝑐 ⊺ and 𝑎, 𝑏, 𝑐 ⊺ do coincide

Rmk: lines are naturally represented in ℙ2

Rmk: this is the reason why a line has 3 coefficients but indeed only two 

degrees of freedom (gradient and intercept)

Rmk: the vector 0,0,0 ⊺ does not correspond to any line

𝑙

−𝑎/𝑏−𝑐/𝑏
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Incidence relation

A point 𝒙 ∈ ℝ2, 𝒙 = (𝑥, 𝑦) belongs to a line 𝑙 = 𝑎, 𝑏, 𝑐 ⊺ if and only if

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0

The above relation can be written as

𝑎, 𝑏, 𝑐 ⋅
𝑥
𝑦
1

= 0

Where ⋅ denotes the scalar product. Then

Property (incidence):

A point 𝒙 ∈ ℙ2 lies on the line 𝑙 if and only if 

𝑙⊺𝒙 = 𝒙⊺𝑙 = 0
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Incidence relation

A point 𝒙 ∈ ℝ2, 𝒙 = (𝑥, 𝑦) belongs to a line 𝑙 = 𝑎, 𝑏, 𝑐 ⊺ if and only if

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0

The above relation can be written as

𝑎, 𝑏, 𝑐 ⋅
𝑥
𝑦
1

= 0

Where ⋅ denotes the scalar product. Then

Property (incidence):

A point 𝒙 ∈ ℙ2 lies on the line 𝑙 if and only if 

𝑙⊺𝒙 = 𝒙⊺𝑙 = 0

This is the reason why this

number i set to 1 when

moving from Euclidean to 

homogeneous coordinates
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Intersection of lines

Property (intersection of lines):

The intersection of two lines 𝑙, 𝑚, their intersection 𝒙 ∈ ℙ2 is

𝒙 = 𝑙 × 𝑚

where × denote the cross product of two 3-dimensional vectors.
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Cross Product

Let 𝒂, 𝒃 ∈ ℝ3 be two vectors, their cross product is a vector 𝒂 × 𝒃 ∈ ℝ3

• That is perpendicular to the plane < 𝒂, 𝒃 >

• Has orientation of the right-hand rule

• Has lenght proportional to the area of the parallelogram spanned by 

the vectors, 𝒂 × 𝒃 = 𝒂 𝒃 sin𝜽

By Acdx - Self-made
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Cross Product

Rmk: the cross product can be also computed as

𝒂 × 𝒃 =
𝒊
𝑎1
𝑎1

𝒋
𝑎2
𝑏2

𝒌
𝑎3
𝑏3

being 𝒊, 𝒋, 𝒌 the versors of ℝ3 and ⋅ the determinant

Rmk: the cross product is anti-commutative

𝒃 × 𝒂 = −𝒂 × 𝒃

But this is not an issue when we want to intersect two lines, since the 

result in the same point of ℙ2 (equivalence up to a multiplication by −1)
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Cross Product

Rmk: the cross product is distributive over addition

𝒂 × 𝒃 + 𝒄 = 𝒂 × 𝒃 + 𝒂 × 𝒄

Rmk: the cross product is compatible with scalar product

𝜆 𝒂 × 𝒃 = 𝜆𝒂 × 𝒃 = 𝒂 × 𝜆𝒃
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Cross Product

Rmk: the cross product is not associative

𝒂 × 𝒃 × 𝒄 ≠ 𝒂 × 𝒃 × 𝒄

Rmk: the triple scalar product identity follows by definition of cross 

product (which is orthogonal to both terms)

𝒂 ⋅ 𝒂 × 𝒃 = 𝒃 ⋅ 𝒂 × 𝒃 = 0

This also proves the fact the intersection of two lines 𝑙 ∩ 𝑚 is 𝒙 = 𝑙 × 𝑚

In fact 𝒙 belongs to both 𝑙 and 𝑚 since the incidence equation is satisfied 

𝑙 ⋅ 𝑙 × 𝑚 = 𝑚 ⋅ 𝑙 × 𝑚 = 0
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Line joining two points

Property: given 𝒙, 𝒚 ∈ ℙ2, the line 𝑙 joining 𝒙 and 𝒚 is 

𝑙 = 𝒙 × 𝒚

Rmk this can be verified by checking that both 𝒙 and 𝒚 belong to 𝒙 × 𝒚
through the incidence equation

Rmk: we have seen that the cross product is anti-commutative

𝒙 × 𝒚 = −𝒚 × 𝒙

This is not an issue for the resulting lines, since these are intrinsecally

equivalent up to a multiplication by a scalar
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An interesting property

An interesting property, given two points in homogeneous coordinates

𝑎 = 𝑎1; 𝑎2; 𝑎3 and 𝑏 = 𝑏1; 𝑏2; 𝑏3 any linear combination 𝜆𝑎 + 𝜇𝑏,
𝜆, 𝜇 ∈ ℝ belongs to the line joining 𝑎, 𝑏

Proof 

Let 𝑙 = 𝑎 × 𝑏, for which holds 𝑙⊺𝑎 = 𝑙⊺𝑏 = 0 (incidence equation)

Then, 𝜆𝑎 + 𝜇𝑏 𝑙⊺ = 𝜆𝑎𝑙⊺ + 𝜇𝑏𝑙⊺ = 0 + 0
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Angles in the Euclidean Plane

In Euclidean geometry the angle between two lines is computed from the 

dot product of their normals. For the lines 𝑙 = (𝑙1; 𝑙2; 𝑙3), and 𝑚 =
(𝑚1;𝑚2;𝑚3), the angle 𝜃 is such that

cos 𝜃 =
𝑙1𝑚1 + 𝑙2𝑚2

𝑙1
2 + 𝑙2

2 (𝑚1
2 +𝑚2

2)

We will see later interesting properties on projective plane
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Intersection of parallel Lines

Consider two parallel lines 𝑙 = 𝑎, 𝑏, 𝑐 and 𝑚 = (𝑎, 𝑏, 𝑑), then their 
intersection is:

𝑙 × 𝑚 =
𝒊
𝑎
𝑎

𝒋
𝑏
𝑏

𝒌
𝑐
𝑑

= 𝒊 𝑏𝑑 − 𝑏𝑐 − 𝒋 𝑎𝑑 − 𝑎𝑐 + 𝒌 𝑎𝑏 − 𝑎𝑏

𝑙 × 𝑚 =
𝑏𝑑 − 𝑏𝑐
𝑎𝑐 − 𝑎𝑑

0
= (𝑑 − 𝑐)

𝑏
−𝑎
0

That corresponds to the homogeneous point 𝒙 = 𝑏,−𝑎, 0 ⊺

Rmk if we try to move to Euclidean coordinates we get 
𝑏

0
,
𝑎

0
which goes 

to infinity.

These are the ideal points or points at the infinity
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Point at the Infinity

Definition: a point of ℙ2 with the third coordinate equal zero is a point at 

the infinity (or ideal point)

Rmk: 𝑙 = 𝑎, 𝑏, 𝑐 ⊺ passes through the ideal point 𝑙∞ = 𝑏,−𝑎, 0 ⊺

Rmk: ideal points can be seen as sort of directions

Rmk: ℙ2 augments ℝ2 by including directions

Rmk: finite points in ℙ2 are those having the third coordinate ≠ 0 and 

these corresponds to ℝ2 up to a normalization factor
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Line at the infinity ℓ∞

Property: all the ideal points lie in the line at the infinity ℓ∞ having 

coordinates 

ℓ∞ = 0; 0; 1

Rmk: Thanks to ideal points

• any pair of lines in ℙ2 intersect in a single (homogeneous) point.

• any pair of points of ℙ2 lie a single line 

This does not hold in ℝ2 where parallel lines do not meet.

ℓ∞
𝑙1 𝑙2

𝑚∞
𝑚1
𝑚2

𝑙∞
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Example

Isometric cube, draw missing points as the intersection of lines parallel to 

this and passing through another point
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A model for ℙ2

Points of ℙ2 are represented by all the rays of 

ℝ3 through the origin, since all

𝒙 = 𝜆 𝑎; 𝑏; 1 , ∀𝜆

corresponds to the same point

Lines of ℙ2 are represented as planes passing 

through the origin

The Euclidean plane is the plane 𝒙𝟑 = 1 and 

projection to Euclidean coordinates is 

computing the intersection between the ray and 

the plane Π, i. e. , 𝒙𝟑 = 1.

Lines lying in the plane 𝒙𝟑 = 0 represent ideal 

points (directions) as these do not instersect Π.
Hartley Zisserman Fig.2.1
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Point Line Duality in ℙ2

Duality principle. To any theorem of 2-dimensional projective geometry (ℙ2)
there corresponds a dual theorem, which may be derived by interchanging the 
roles of points and lines in the original theorem.

Theorem Dual Theorem

- Point → - Line

- Line → - Point

- Belongs to → - Go through

- Go through → - Belongs to

E.g. The incidence equation, the line passing through two points which has the 
same formulation of the intersection between lines

Rmk: Note that is it not necessary to prove the dual of a given theorem once 
the original theorem has been proved
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Linear Combinations in ℙ2

An interesting property, given two points in homogeneous coordinates

𝑎 = 𝑎1; 𝑎2; 𝑎3 and 𝑏 = 𝑏1; 𝑏2; 𝑏3 any linear combination 𝜆𝑎 + 𝜇𝑏,
𝜆, 𝜇 ∈ ℝ belongs to the line joining 𝑎, 𝑏

Proof

Let 𝑙 = 𝑎 × 𝑏, for which holds 𝑙′𝑎 = 𝑙′𝑏 = 0 (incidence equation)

Then, 𝜆𝑎 + 𝜇𝑏 𝑙′ = 𝜆𝑎𝑙′ + 𝜇𝑏𝑙′ = 0 + 0
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Outline

• Trasformations in ℙ2

• The Projective Space ℙ3

• Vanishing Points

• Affine Rectification
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Transformations in ℙ2
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Homographies

The most general transformation we consider in ℙ2

Definition A projectivity is an invertible mapping ℎ from ℙ2 to itself such 

that three points 𝒙𝟏, 𝒙𝟐 and 𝒙3 lie on the same line if and only if ℎ(𝒙1), 
ℎ(𝒙2) and ℎ(𝒙3) do.

Rmk this property is called collinearity

Alternative names

• Collineation

• Projective transformation

• Homography

𝑌𝐸𝑆

𝑁𝑂



Giacomo Boracchi

Homographies

Theorem 2.10. A mapping ℎ:ℙ2 → ℙ2 is a projectivity if and only if there 

exists a non-singular 3 × 3 matrix 𝐻 such that for any point in ℙ2

represented by a vector 𝒙 it is true that ℎ(𝒙) = 𝐻𝒙

𝐻 =

ℎ1,1
ℎ2,1
ℎ3,1

ℎ1,2
ℎ2,2
ℎ3,2

ℎ1,3
ℎ2,3
ℎ3,3

Each and every linear mapping in ℙ2 is an homography, and only linear 

mapping are homographies



Giacomo Boracchi

Homographies and Points in ℙ2

From theorem follows

𝒙′ = 𝐻𝒙

Rmk: if we scale both 𝒙′ and 𝒙 by arbitrary factors the relation holds 

since we are in ℙ2

𝒙′ = 𝜆𝐻𝒙, ∀𝜆 ∈ ℝ\{0}

Thus, 𝐻 has 9 entries but only 8 degrees of freedom, since only the ratio 

between the elements counts. 𝐻 is said to be an homogeneous matrix.
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Homographies and Lines in ℙ2

An homography transform each line 𝒍 in a line 𝑚 such that:

𝑚 = 𝐻−1 ⊺ 𝑙

We say that points transform contravariantly and lines and conics 

transform covariantly.
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Mapping between planes: homography

Mapping between planes induced by a central projection is an 

homography, as this preserves collinearity

If a coordinate system is defined in each plane and points are represented 

in homogeneous coordinates, then the central projection mapping may be 

expressed by 

𝒙′ = 𝐻𝒙

where 𝐻 is a non-singular 

3 × 3 matrix

Hartley Zisserman Fig.2.3
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Other examples where homographies apply

Hartley Zisserman Fig.2.5
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A Hierarchy of 
Transformations
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Linear Transformation

We consider linear transformations of ℙ2, 

• these can be expressed as  a 3 × 3 matrix 𝐻, 

• the homogeneous constraint applies

Depending on the structure of 𝐻 there are different class of 

transformations with a different number of degrees of freedom
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Isometries
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Isometries

H =

0.8660   -0.5000         0

0.5000    0.8660         0

0         0    1.0000

theta =

30

eps = 

1
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Isometries

H =

0.8660   -0.5000         0

0.5000    0.8660         0

0         0    1.0000

theta =

30

eps = 

-1
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Isometries

Isometries can be written as

𝒙′ = 𝐻𝐼𝒙

where

𝑥′
𝑦′
1

=
𝜖 cos 𝜃
𝜖 sin 𝜃
0

−sin𝜃
cos 𝜃
0

𝑡𝑥
𝑡𝑦
1

𝑥
𝑦
1

and 𝜖 = ±1.
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Isometries

Isometries can be written as

𝒙′ = 𝐻𝐼𝒙

A more compact representation is 

𝑥′
𝑦′
1

=
𝜖 cos 𝜃
𝜖 sin 𝜃
0

− sin 𝜃
cos 𝜃
0

𝑡𝑥

1

𝑥
𝑦
1

where R ∈ 𝑂(2) is a rotation matrix, i.e. an orthogonal matrix 

R⊺R = RR⊺ = 𝐼2

And 𝐭 ∈ ℝ𝟐 is a translation vector .

Pure rotation 𝐭 = [0; 0], pure translation R = 𝐼2

R 𝐭
𝟎⊺
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Isometries: Invariants

Isometries describe a 2D motion of a rigid object

Isometries preserves the angles, the distances, the areas.
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Isometries: Remarks

Isometries have three degrees of freedom: the rotation angle 𝜃 and the 

translation vector [𝑡𝑥 , 𝑡𝑦]

𝑥′
𝑦′
1

=
𝜖 cos 𝜃
𝜖 sin 𝜃
0

− sin𝜃
cos 𝜃
0

𝑡𝑥
𝑡𝑦
1

𝑥
𝑦
1

Rmk Isometries can be estimated from two point correspondences

Rmk When 𝜖 = 1 the isometry preserves the orientation, when 𝜖 = −1
the isometry reverses the orientation.

For instance diag(−1,1,1) is a reflection
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Isometries: Remarks

Isometries have three degrees of freedom: the rotation angle 𝜃 and the 

translation vector [𝑡𝑥 , 𝑡𝑦]

𝑥′
𝑦′
1

=
𝜖 cos 𝜃
𝜖 sin 𝜃
0

− sin𝜃
cos 𝜃
0

𝑡𝑥
𝑡𝑦
1

𝑥
𝑦
1

Rmk Isometries do not modify ideal points: 

• Ideal points in ℙ2 remain ideal points (they might change but always 

remain ideal points in ℓ∞)

• Finite points in ℙ2 remain finite points

• ℓ∞ = 𝐻𝐼
−⊺ℓ∞
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Similarities
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Similarities

H =

1.2990   -0.7500         0

0.7500    1.2990         0

0         0    1.0000

s =

1.5

theta=

30
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Similarities

Similarities can be written as

𝒙′ = 𝐻𝑆𝒙

where

𝑥′
𝑦′
1

=
𝑠 cos 𝜃
𝑠 sin 𝜃
0

−𝑠 sin 𝜃
𝑠 cos 𝜃
0

𝑡𝑥
𝑡𝑦
1

𝑥
𝑦
1

and 𝑠 ∈ ℝ

Rmk Similarities can be seen as an isometry composed with an isotropic 

scaling of the axis 
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Similarities

Similarities can be written as

𝒙′ = 𝐻𝑆𝒙

A more compact representation is 

𝑥′
𝑦′
1

=
𝜖 cos 𝜃
𝜖 sin 𝜃
0

− sin 𝜃
cos 𝜃
0

𝑡𝑥

1

𝑥
𝑦
1

where 

• 𝑠 ∈ ℝ is the scaling factor

• R ∈ 𝑂(2) is a rotation matrix, 

• 𝐭 ∈ ℝ𝟐 is a translation vector.

𝑠R 𝐭
𝟎⊺
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Similarities: Invariants

Similarities are also known as equi-form transformations

Similarities preserves the angles and the shapes, while not the length and 

the areas.

The ratio between lengths and areas is preserved since the scaling factor 

cancels out
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Similarities : Properties

Similarities have four degrees of freedom: the scaling factor 𝑠, the rotation 

angle 𝜃 and the translation vector [𝑡𝑥 , 𝑡𝑦]

𝑥′
𝑦′
1

=
𝑠 cos 𝜃
𝑠 sin 𝜃
0

−𝑠 sin 𝜃
𝑠 cos 𝜃
0

𝑡𝑥
𝑡𝑦
1

𝑥
𝑦
1

Rmk ℓ∞ = 𝐻𝑆
−⊺ℓ∞, thus finite points remain finite points

Rmk Similarities can be estimated from two point correspondences

Metric structure means that the structure is preserved up to a scaling
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Affinities
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Affine Transformation

H =

3.5784   -1.3499         0

2.7694    3.0349         0

0         0    1.0000

det(A) =

14.5985
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Affinities

Affinities can be written as

𝒙′ = 𝐻𝐴𝒙

where

𝑥′
𝑦′
1

=

𝑎1,1
𝑎2,1
0

𝑎1,2
𝑎2,2
0

𝑡𝑥
𝑡𝑦
1

𝑥
𝑦
1

and 
𝑎1,1
𝑎2,1

𝑎1,2
𝑎2,2

is an invertible matrix
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Affinities

Affinities can be written as

𝒙′ = 𝐻𝐴𝒙

A more compact representation is 

𝑥′
𝑦′
1

=
𝜖 cos 𝜃
𝜖 sin 𝜃
0

− sin 𝜃
cos 𝜃
0

𝑡𝑥

1

𝑥
𝑦
1

where 

• 𝐴 ∈ ℝ2,2 is an invertible matrix

• 𝐭 ∈ ℝ𝟐 is a translation vector.

Rmk Affinities can be seen as a linear, non singular transformation of 

followed by a translation

𝐴 𝐭
𝟎⊺
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Decomposition of Affinities

The linear part of the affine transformation can be seen as the 

composition of two fundamental transformations: 

• rotation 

• and non-isotropic scaling. 

The affine matrix A can always be decomposed

𝐴 = 𝑅(𝜃) 𝑅(−𝜑)𝐷𝑅(𝜑)

where 𝑅(𝜃) and 𝑅(𝜑) are rotations by 𝜃 and 𝜑 respectively, and 𝐷 is

𝐷 =
𝜆1
0

0
𝜆2
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Decomposition of Affinities

This decomposition can be obtained via 𝑆𝑉𝐷 𝐴

𝐴 = 𝑈𝐷𝑉⊺, being 𝑈𝑈⊺ = 𝑉𝑉⊺ = 𝐼2
𝐴 = 𝑈 𝑉𝑉⊺ 𝐷𝑉⊺ =

𝐴 = 𝑈𝑉 𝑉⊺𝐷𝑉⊺

𝐴 = 𝑅(𝜃) 𝑅(−𝜑)𝐷𝑅(𝜑)

non-isotropic 

scaling.
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Non-isotropic Scaling in Affinities

Hartley Zisserman Fig.2.7
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Affinities: Invariants

Due to the non-isotropic scaling, the similarity invariants of length ratios 

and angles between lines are not preserved under an affinity.

Affinities preserves

• Parallel lines, since ℓ∞ = 𝐻𝐴
−⊺ℓ∞

• Ratio of lengths over parallel lines

• Ratio of areas (since each area is scaled of det(𝐴), which cancels out)
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Affinities: Properties

Similarities have six degrees of freedom: the four terms of 𝐴 and the 

translation vector [𝑡𝑥 , 𝑡𝑦]

𝑥′
𝑦′
1

=

𝑎1,1
𝑎2,1
0

𝑎1,2
𝑎2,2
0

𝑡𝑥
𝑡𝑦
1

𝑥
𝑦
1

Rmk Similarities can be estimated from four point correspondences

Rmk ℓ∞ = 𝐻𝐴
−⊺ℓ∞, thus finite points remain finite points
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Homographies
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Projective Transformation

H =

-1.0689   -2.9443         0

-0.8095    1.4384         0

0.0100    0.0010    1.0000

det(A) =

-3.9209
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Homographies

Homographies are the most general transformation in homogeneous 

coordinates, and can be written as

𝒙′ = 𝐻𝑃𝒙

namely

𝑥′
𝑦′
1

=
𝜖 cos 𝜃
𝜖 sin 𝜃
0

− sin 𝜃
cos 𝜃
0

𝑡𝑥

𝑣

𝑥
𝑦
1

where 𝒗 = [𝑣1; 𝑣2] and 𝑣 ∈ ℝ (possibly zero)

While this transformation applies in ℙ2, it is not always possible to scale 

𝐻𝑃 to have 𝑣 = 1, as this might be zero.

𝐴 𝐭
𝒗⊺
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Homographies: Invariants

Homographies generalize an affine transformation, which is the 

composition of a general non-singular linear transformation of 

inhomogeneous coordinates and a translation.

Invariants: the cross ratio of four collinear points: a ratio of lengths on a 

line is invariant under affinities, but not under projectivities. However, a 

ratio of ratios or cross ratio of lengths on a line is a projective invariant.

𝑃3 − 𝑃1 𝑃4 − 𝑃2
𝑃3 − 𝑃2 𝑃4 − 𝑃1

𝑃1

𝑃2

𝑃3
𝑃4
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Homographies: Invariants

The matrix has nine elements with only their ratio significant, so the 

transformation is specified by eight parameters

A projective transformation between two planes can be computed from 

four point correspondences, with no three collinear on either plane.
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Homographies: Properties

Similarities have eight degrees of freedom: the four terms of 𝐴 and the 

translation vector [𝑡𝑥 , 𝑡𝑦]

𝑥′
𝑦′
1

=
𝜖 cos 𝜃
𝜖 sin 𝜃
0

− sin 𝜃
cos 𝜃
0

𝑡𝑥

𝑣

𝑥
𝑦
1

Rmk Homographies can be estimated from four point correspondences

Rmk ℓ∞ ≠ 𝐻𝑃
−⊺ℓ∞ when 𝒗 ≠ 𝟎, thus ideal points might become finite 

points. For instance given 𝒙 = 𝑥1; 𝑥2; 0 , then 

𝐻𝑃𝒙 =

…
…

𝑣1𝑥 + 𝑣2𝑦 + 𝑣0

𝐴 𝐭
𝒗⊺
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Homographies: Properties

Under a projective transformation ideal points may be mapped to finite 

points, and consequently ℓ∞ is mapped to a finite line. 

However, if the transformation is an affinity (𝒗 = [0, 0]), then ℓ∞ is not 

mapped to a finite line, but remains at infinity.

The image of 𝑙∞ is

𝐻−1 ⊺ 𝑙∞

𝜖 cos 𝜃
𝜖 sin 𝜃
0

− sin𝜃
cos 𝜃
0

𝑡𝑥

𝑣

0
0
1

=
𝑣1
𝑣2
𝑣

𝐴−⊺ 𝒗

𝒕−⊺𝐴−⊺
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Affine Trasformation and Line at Infinity

Rmk: 𝑙∞ is not fixed pointwise under an affine transformation

Under an affinity a point on 𝑙∞ (i.e., an ideal point) can be mapped to a 

different point on 𝑙∞. This is the reason why orthogonality is lost.
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Affine Rectification

Hartley Zisserman Fig.2.6
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Summarizing

Hartley Zisserman Tab 2.1
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Summarizing

Hartley Zisserman Tab 2.1

Transformations higher in the 

table can produce all the actions 

of the ones below
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Homographies: Properties

For a given affinity the areas are scaled of det 𝐴 anywhere on the plane; 

and the orientation of a transformed line depends only on its initial 

orientation, not on its position on the plane. 

In contrast, area scaling in homographies varies with position (e.g. under 

perspective a more distant square on the plane has a smaller image than 

one that is nearer)
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The Projective Space ℙ3



Giacomo Boracchi

Points and Planes in ℙ3

A point in ℙ3 is defined as 

𝑋 = 𝑥; 𝑦; 𝑧; 1

The incidence equation for a plane (i.e. 𝒙 ∈ 𝜋) is

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

Which can be written in matrix form as

𝑎, 𝑏, 𝑐, 𝑑 ⋅ 𝑋 = 0

And this implies that the plane is identified by a vector in ℙ3

𝜋 = 𝑎; 𝑏; 𝑐; 𝑑

Rmk planes have 3 degrees of freedom, since their equation holds up to a 
scaling of a parameter

Rmk planes in ℙ3 are plays the same role as lines in ℙ2

𝑥

𝑦

𝑧
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Lines in ℙ3

More difficult to represent. 

They have 4 degrees of freedom:

• Their direction

• The distance from the origin 

(along the plane orthogonal to the direction)

Lines in ℙ3 are defined as intersections of two planes

𝑥

𝑦

𝑧
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Number of parameters of a line

Hartley Zisserman Fig.3.1



Giacomo Boracchi

The Plane at infinity

The plane at infinity has the canonical position 

𝜋∞ = 0; 0; 0; 1

in affine 3D-space.

𝜋∞contains ideal points (directions) 𝑃∞ = [𝑥; 𝑦; 𝑧; 0], and enables the 

identification of affine properties such as parallelism. 

In particular:

• Two planes are parallel if and only if their line of intersection is on 𝝅∞

• A line is parallel to another line, or to a plane, if their point of 

intersection is on 𝝅∞
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The Plane at infinity
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Ideal Points in ℙ3

Ideal points in ℙ3 are defined similarly to ideal points in ℙ2

Ideal points are the intersection of parallel lines.

• All the parallel lines in the space intersect in the same ideal point 𝑃∞

𝑥

𝑦

𝑧
𝑃∞ ∈ 𝜋∞
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Planes in ℙ3 and ideal lines

• A plane 𝜋 contains infinite parallel lines along infinite directions

• Each set of parallel lines intersect in an ideal point (belonging to 𝜋∞)

• All these ideal points lie on the ideal line ℓ∞(𝜋): the line at infinity of 𝜋

𝐴∞ ∈ 𝜋∞

𝐶∞ ∈ 𝜋∞

𝜋

ℓ∞(𝜋)

𝐵∞ ∈ 𝜋∞
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Consider the plane of the earth
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Consider the plane of the earth, which contains

a few parallel lines
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These are not anymore parallel
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Homography is the mapping among two planes

Hartley Zisserman  Fig. 
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Vanishing point

𝑣
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A set of parallel lines in the world plane intersect

in a point in the image, the vanishing point

𝑣
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Vanishing points

Vanishing points are the projection in the image plane of ideal points in 

the 3D world

If a line has direction 𝒅, then it intersects 𝜋∞ in the point 𝑋∞ = [𝒅; 0]

Then the vanishing point 𝑣 is the image of 𝑋∞ by means of the camera 

matrix 𝑀 = 𝐾[𝐼3, 𝟎] (consider the camera center as the origin)

𝑣 = 𝑀𝑋∞ = 𝐾 𝐼3, 𝟎 ⋅ [𝒅; 0] = 𝐾𝒅

Hartley Zisserman Fig.8.14
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Vanishing points

When 𝑋 → ∞ along a line, its image converges to 𝑣, which is the 

intersection of the image plane with the line passing through 𝐶 and 

directed as 𝑋

Hartley Zisserman Fig.8.14

Equally spaced points
The spacing among

image points

monotinically

decreases
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Vanishing points

Vanishing points are the projection in the image plane of ideal points in 

the 3D world

Hartley Zisserman Fig.8.14
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Horizon 

Horizon or Vanishing line for a plane 𝜋 is the image of the line at the 

infinity of that plane, ℓ∞(𝜋)

Horizon helps humans to intuitively deduce properties about the image 

that might not be apparent mathematically.

We can understand when two lines are parallel in the 3D world, since they 

intersect with the horizon
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Horizon 
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Remember!

The horizon line holds for a single plane of the 3D world

When the image contains multiple planes,

there is an horizon line for each of these

And ideal points of lines in a plane

are often not the same of lines on other 

planes
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ℓ∞(𝜋3)

ℓ∞(𝜋1)

ℓ∞(𝜋2)

𝜋3
𝜋1

𝜋2



Giacomo Boracchi

Affine Rectification 

Idea: 

• Identify the ℓ∞ in the image

• transform the identified ℓ∞ to its canonical position of [0; 0; 1]

Let 𝑙 = (𝑙1; 𝑙2; 𝑙3) be the image of the line at the infinity with 𝑙3 ≠ 0,

A suitable homography which maps 𝑙 back to ℓ∞ = [0; 0; 1] is

𝐻 = 𝐻𝐴

1 0 0
0 1 0
𝑙1 𝑙2 𝑙3
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Affine Rectification 

Idea: 

• Identify the ℓ∞ in the image

• transform the identified ℓ∞ to its canonical position of [0; 0; 1]

Let 𝑙 = (𝑙1; 𝑙2; 𝑙3) be the image of the line at the infinity with 𝑙3 ≠ 0,

A suitable homography which maps 𝑙 back to ℓ∞ = [0; 0; 1] is

𝐻 = 𝐻𝐴

1 0 0
0 1 0
𝑙1 𝑙2 𝑙3

Rmk: 𝑙 can be rescaled to improve conditioning of 𝐻
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Affine Rectification

Hartley Zisserman Fig.2.12



Giacomo BoracchiHartley Zisserman  Fig. 2.13 
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Single-View Geometry
Giacomo Boracchi
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Outline

• DLT Algorithm for Least Squares Fitting in ℙ2

• Homography estimation

• Camera Calibration

• Applying Point Trasformations to Images

• Conics in ℙ2

• Conic Fitting



Giacomo Boracchi

DLT algorithm

HZ chapter 4
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DLT

Direct Linear Trasformation (DLT) algorithm, solves many relevant 

problems in Computer Vision

• 2D Homography estimation

• Camera projection matrix estimation (projections from 3D to 2D)

• Fundamental matrix computation

• Trifocal tensor computation
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Homography estimation

We consider a set of point correspondences 

𝒙𝒊
′, 𝒙𝒊 , 𝑖 = 1,… , 4

belonging to two different images. Our problem is to compute a 𝐻 ∈ ℝ3×3

such that 𝒙𝒊
′ = 𝐻𝒙𝒊 for each 𝑖.

Rmk if we look at 𝒙 as a 3d vector the equality 𝒙𝒊
′ = 𝐻𝒙𝒊 does not hold

Equality holds in ℙ2 (but linear systems are solved as in ℝ3).

What makes the DLT is distinct from standard cases since the left and 

right sides of the defining equation can differ by an unknown 

multiplicative factor which is dependent on the number of equations.
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DLT for Homography Estimation

In ℝ3, 𝒙𝒊
′ and 𝒙𝒊 have the same direction, but may differ in magnitude.

Therefore collinearity constraints can be written as 

𝒙𝒊
′ × 𝐻𝒙𝒊 = 𝟎 , 𝑖 = 1,… , 4

where 𝟎 = [0; 0; 0]

By Acdx - Self-made
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DLT for Homography Estimation

Let 𝒙𝒊 = 𝑥𝑖; 𝑦𝑖; 𝑤𝑖 and 𝐻 = [𝒉𝟏
⊺ ; 𝒉𝟐

⊺ ; 𝒉𝟑
⊺ ] being 𝒉1

⊺

Then the cross product can be written as..

𝒙𝒊
′ × 𝐻𝒙𝒊 =

𝑦𝑖
′𝒉𝟑

⊺ 𝒙𝒊 −𝑤𝑖
′𝒉𝟐

⊺ 𝒙𝒊
𝑤𝑖
′𝒉𝟏

⊺ 𝒙𝒊 − 𝑥𝑖
′𝒉𝟑

⊺ 𝒙𝒊
𝑥𝑖
′𝒉𝟐

⊺ 𝒙𝒊 − 𝑦𝑖
′𝒉𝟏

⊺ 𝒙𝒊
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DLT for Homography Estimation

And after some linear algebra, this can be expressed in a matrix form as

𝟎⊺

𝑤′𝑖𝒙𝒊
⊺

−𝑦′𝑖𝒙𝒊
⊺

−𝑤′𝑖𝒙𝒊
⊺

𝟎⊺

𝑥′𝑖𝒙𝒊
⊺

𝑦′𝑖𝒙𝒊
⊺

−𝑥𝑖𝒙𝒊
⊺

𝟎⊺

𝒉𝟏

𝒉𝟐

𝒉𝟑

= 0

This is a 3 × 9 matrix multiplied times a vector of 9 elements

Rmk The equation is an equation linear in the unknown vector 

𝒉 = 𝒉𝟏 ; 𝒉𝟐 ; 𝒉𝟑

Rmk the three rows of the matrix are linearly dependent (the third row is 

the sum of −𝑥𝑖/𝑤𝑖 times the first row and −𝑦𝑖/𝑤𝑖 times the second)
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DLT for Homography Estimation

Thus, keep only two rows giving rise to an homogeneous linear system

𝟎⊺

𝑤′𝑖𝒙𝒊
⊺
−𝑤′𝑖𝒙𝒊

⊺

𝟎⊺
𝑦′𝑖𝒙𝒊

⊺

−𝑥𝑖𝒙𝒊
⊺

𝒉𝟏

𝒉𝟐

𝒉𝟑

= 𝟎

Which can be written as 

𝐴𝑖𝒉 = 𝟎, 𝑖 = 1,… , 4

Rmk remember that 𝒉 has been unrolled row-wise, not column-wise



Giacomo Boracchi

DLT for Homography Estimation

Stacking 4 point correspondences gives an 8 × 9 matrix

𝐴𝒉 = 𝟎

We are not interested in the trivial solution 𝒉 = 𝟎

Solve it as 𝒉 = 𝑅𝑁𝑆(𝐴) and arbitrarily imposing 𝒉 = 1
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DLT in the overdetermined case

Let us assume 𝑛 > 4 point correspondences are given, such that 𝐴 is 

a 2𝑛 × 9 matrix

𝐴𝒉 = 𝟎

The system is overdetermined. We are not interested 

• in the trivial solution 𝒉 = 𝟎 and 

• not even in an exact solution, since typically this does not exist 

because of noise in the measurements 𝒙𝒊
′, 𝒙𝒊

Thus, impose the constraint 𝒉 = 1 and minimize a cost function

𝒉∗ = argmin 𝐴𝒉
𝟐
𝑠. 𝑡. 𝒉

𝟐
= 1
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DLT in the overdetermined case

The solution of this problem is obtained by

𝒉∗ = argmin 𝐴𝒉
𝟐
𝑠. 𝑡. 𝒉

𝟐
= 1

The solution is the (unit) eigenvector of 𝐴𝑇𝐴 with least eigenvalue. 

Equivalently, the solution is the unit singular vector corresponding to the 

smallest singular value of 𝑨. (See HZ A5.3(p592) )

Specifically, if 𝐴 = 𝑈𝐷𝑉⊺ with D diagonal with positive diagonal entries, 

arranged in descending order down the diagonal, then 𝒉 is the last 

column of 𝑉.

Rmk DLT algorithm minimizes the residual 𝐴𝒉 , which has to be 

interpreted as an algebraic error
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DLT and the reference system

Are the outcome of DLT independent of the reference system being used 

to express 𝒙′ and 𝒙? 

Unfortunately DLT is not invariant to similarity transformations. 

Therefore, it is necessary to apply a normalizing transformation to the 

data before applying the DLT algorithm. 

Normalizing the data makes the DLT invariant to the reference system, as 

it is always being estimated in a canonical reference

Normalization is also called Pre-conditioning
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Preconditioning

Needed because in homogeneous coordinate systems, components

typically have very different ranges

• Row and Column indexes ranges in [0 − 4𝐾]

• Third component is 1

Define a maping

𝑥 → 𝑇𝑥

That brings all the points «aronud the origin» and rescale each component 

to the same range (say at an average distance 2 from the origin)
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Preconditioning

𝒙 → 𝑇𝒙

ℙ2 (with 𝜃 = 0 since we do not need rotations)

𝑇 =
1/𝑠
0
0

0
1/𝑠
0

−𝑡𝑥/𝑠
−𝑡𝑦/𝑠

1

The preconditioning for a set of points 𝑋 of ℙ2 is defined as

𝑡𝑥 = mean 𝑋(1, : )

𝑡𝑦 = mean 𝑋(2, : )

Which brings the barycentre of 𝑋 to the origin, the scaling is

𝑠 =
mean std 𝑋, 2

2
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Homography estimation with preconditioning

Estimate the homography between two sets of points 𝑋, 𝑋′

1. Compute 𝑇, 𝑇’ preconditioning transformation of 𝑋, 𝑋′

2. Apply transformation

𝑋𝑐 = 𝑇𝑋, 𝑋𝑐
′ = 𝑇′𝑋′

1. Estimate the homography from 𝑋𝑐 and 𝑋𝑐
′ , 

𝐻 = 𝐷𝐿𝑇(𝑋𝑐 , 𝑋𝑐
′)

1. Define the transformation

𝐻𝑐 = 𝑇′
−1
𝐻𝑇
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How to apply linear transformations to an 
image?

pixel intensities
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Apply the inverse of the desired transformation on a grid 
covering the output image

H =

-1.0689   -2.9443         0

-0.8095    1.4384         0

0.0040    0.0010    1.0000
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Here is the grid of the transformed image
Pixel centers in the transformed image
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Place the grid transformed by 𝐻−1on the input image
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Place the grid transformed by 𝐻−1on the image
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Place the grid transformed by 𝐻−1on the image
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Define image intensity at blue points by means of bilinear 
interpolation 
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Bilinear Interpolation

Intensity value over the transformed grid (𝑥, 𝑦)
are defined by interpolating values of 

neighbouring pixels { 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1,2}. Several 

interpolation options are viable. Bilinear 

interpolation is a weighted average with weights 

proportional to the areas illustrated here.

By Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=21409164
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Bilinear Interpolation

Let (𝑥, 𝑦) be the point and 𝑓(𝑥, 𝑦) the value we 

want to estimate. 

Bilinear interpolation corresponds to 

• Perform a 1D-linear interpolation along 𝑥 axis 

to estimate 𝑓 𝑥, 𝑦1 and 𝑓 𝑥, 𝑦2

𝑓 𝑥, 𝑦1 =
𝑥2 − 𝑥

𝑥2 − 𝑥1
𝑓 𝑥1, 𝑦1 +

𝑥 − 𝑥1
𝑥2 − 𝑥1

𝑓 𝑥2, 𝑦1

𝑓 𝑥, 𝑦2 =
𝑥2 − 𝑥

𝑥2 − 𝑥1
𝑓 𝑥1, 𝑦2 +

𝑥 − 𝑥1
𝑥2 − 𝑥1

𝑓 𝑥2, 𝑦2

• Perform 1D-linear interpolation along 𝑦 axis 

but considering 𝑓(𝑥, 𝑦1) and 𝑓(𝑥, 𝑦2)

By Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=21409164
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Re-arrange the new estimated values over a regular 
grid to obtain the transformed image
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Black pixels are points out of the image grid
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Single-View Geometry
Giacomo Boracchi
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Outline

• Implications of image calibration

• Camera Center

• Viewing Rays

• Factorization of 𝑀

• Conics and Conic Fitting

• Comments on Error Minimization

• Measuring Angles

• Single View Rectification
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The Camera Center 𝐶

The 3D coordinates of the center of a camera having matrix 𝑀 ∈ ℝ3,4

satisfy

𝐶 ∈ 𝑅𝑁𝑆(𝑀)

Where 𝑅𝑁𝑆(⋅) denotes the Right Null Space. 

Note that when the 𝑅𝑁𝑆(𝑀) has dimension 1 (i.e. always but in 

degenerate cases) all the points 𝐶 ∈ 𝑅𝑁𝑆 𝑀 coincide in the 

homogenous space.
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The Camera Center 𝐶

Proof

Let us consider 𝐶 ∈ 𝑅𝑁𝑆(𝑀), then

𝑀𝑃 = 𝑀 𝑃 + 𝜆𝐶 ∀𝜆 ∈ ℝ, ∀𝑃 ∈ ℙ3

This means that the line 𝑃 + 𝜆𝐶 does not change its projection through

𝑀, thus 𝑃 + 𝜆𝐶 is a viewing ray. Since this has to hold ∀𝑃 ∈ ℙ3, this

means that 𝐶 is the camera center.

The converse is trivial because given the camera center 𝐶, then 

𝑀 𝑃 + 𝜆𝐶 = 𝑀𝑃 ∀𝑃 ∈ ℙ3 (since 𝑃 + 𝜆𝐶 is homogeneous coordinates

is the viewing ray), thus 𝐶 ∈ 𝑅𝑁𝑆(𝑀)
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Calibrated Cameras: Viewing Rays Coordinates

We can associate to each point on the image, a viewing ray

𝒗 = 𝐶 + 𝜆 𝐾𝑅 −1𝒑
0

Remember that 𝐶 = 𝑅𝑁𝑆 𝑀

X
Y

𝑍𝐶

Π

𝑐

𝑓

𝑥

𝑦

𝑃

𝒑

𝒗



Giacomo Boracchi

Once Calibrated

We can associate to each point on the image, a viewing ray

𝒗 = 𝐶 + 𝜆 𝐾𝑅 −1𝒑
0

In fact

𝑀𝒗 = 𝑀 𝐶 + 𝜆 𝐾𝑅 −1𝒑
0

𝑀𝒗 = 𝑀𝐶 + 𝜆𝐾 𝑅, 𝑇 𝐾𝑅 −1𝒑
0

𝑀𝒗 = 𝜆 𝐾𝑅,𝐾𝑇 𝐾𝑅 −1𝒑
0

𝑀𝒗 = 𝜆𝒑 = 𝒑 ∀𝜆
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Once Calibrated: Factorization of 𝑀

Once the camera has been calibrated we are want to factorize 𝑀 as  

𝑀 = 𝐾 𝑅, 𝒕

where 𝑅 is a rotation matrix, and 𝐾 is upper triangular.

By doing so we can:

• Compute viewing rays, which requires 𝐾𝑅 −1

• Preserve 𝐾 when the camera moves, since the intrinsic parameters do 

not change and do not need to be estimated from scratches.
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Factorization of 𝑀

For computing viewing rays we need to factorize the matrix 𝑀 estimated 

through camera calibration

𝑀 ≃ 𝐾[𝑅, 𝒕]

Let us write 

𝑀 = ෩𝑀,𝒎𝟒

Then we have to find a way to write ෩𝑀 = 𝐾𝑅, where 𝐾 is upper triangular 

and 𝑅 is a rotation matrix.
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Factorization of 𝑀

Let us compute the QR-decomposition of ෩𝑀−1 ( ෩𝑀 ∈ ℝ3×3)

෩𝑀−1 = ෩𝑄 ෩𝑇

where ෩𝑄 is orthogonal and ෩𝑇 is upper triangular. Since

෩𝑀−1 = 𝑅−1𝐾−1,

Then we need to set 

𝑅 = det ෩𝑄 ෩𝑄 ⊺, 𝐾 = ෩𝑇 −1

Since by doing so det 𝑅 > 0 (we are allowed changing the sign of a 

matrix, thus we obtain a rotation and no reflection)

Similarly we can multiply 
1

𝐾(3,3)
to have 1 in the bottom right entry of 𝐾

𝒕 = det ෩𝑄 𝐾−1𝒎𝟒
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Factorization of 𝑀

function [K,R,t] = krt (M)

%KRT Internal and external parameters from M

[Q,T] = qr_p(inv(M(1:3, 1:3))); %qr decomposition 

yielding positive diagonal values over T, to make 

qr factorization unique

s = det(Q);

R = s*Q’;

t = s*T*M(1:3,4);

K = inv(T./T(3,3));

end

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, ttp://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale

http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale
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A recap on Camera Projection
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The Coordinate Systems Involved in Camera Projection

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale

[𝑅, 𝒕]

World 3D 

reference

system

[meters]

Camera 3D 

reference

system

[meters]

2D Normalized

Coordinates

[meters]

Image 

Coordinates

[pixels]

http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale
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Conics
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Conics

By Pbroks13 - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=5919064
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Conics in ℙ2

A conic is a curve described by a second-degree equation in the plane.

In Euclidean coordinates a conic becomes

𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

𝑥 → 𝑥1/𝑥3, 𝑦 → 𝑥2/𝑥3 gives

𝑎𝑥1
2 + 𝑏𝑥1𝑥2 + 𝑐𝑥2

2 + 𝑑𝑥1𝑥3 + 𝑒𝑥2𝑥3 + 𝑓𝑥3
2 = 0

or in matrix form

𝒙⊺𝐶𝒙 = 0

where the conic coefficient matrix C is given by 𝐶 =

𝑎 𝑏/2 𝑑/2
𝑏/2 𝑐 𝑒/2
𝑑/2 𝑒/2 𝑓
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Conics in ℙ2

𝒙⊺
𝑎 𝑏/2 𝑑/2
𝑏/2 𝑐 𝑒/2
𝑑/2 𝑒/2 𝑓

𝒙 = 0

Rmk The conic coefficient matrix is symmetric, 

Rmk multiplying C by a non-zero scalar does not change. Only the ratios 

of the elements in 𝐶 are important, as for homogeneous points and for 

lines.

Rmk The conic has five degrees of freedom :

• the ratios {a : b : c : d : e : f} or equivalently 

• the six elements of a symmetric matrix less one for scale.
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Conic Fitting
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Conic fitting

Five points define a conic.

Let 𝒙 = [𝑥𝑖; 𝑦𝑖] ∈ ℝ2 a point belonging to a conic 

𝑎𝑥𝑖
2 + 𝑏𝑥𝑖𝑦𝑖 + 𝑐𝑦𝑖

2 + 𝑑𝑥𝑖 + 𝑒𝑦𝑖 + 𝑓 = 0

To determine the conic coefficients we need five such equations in 𝒄 =
𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ′, since the conic is determined up to a scaling factor.

In matrix expression

𝑥𝑖
2, 𝑥𝑖𝑦𝑖 , 𝑦𝑖

2, 𝑥𝑖 , 𝑦𝑖 , 1 𝒄 = 0

We re-arrange the first term as a matrix, the solution to solve is 
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Conic fitting

𝑥1
2, 𝑥1𝑦1, 𝑦1

2, 𝑥1, 𝑦1, 1

…

𝑥𝑁
2 , 𝑥𝑁𝑦𝑁, 𝑦𝑁

2 , 𝑥𝑁, 𝑦𝑁, 1

𝒄 = 0,

𝑖. 𝑒., 𝐴𝒄 = 0

Rmk: The system is 𝐴 ∈ ℝ𝑁×6, solved by 𝒄 ∈ 𝑅𝑁𝑆 𝐴 when 𝑁 = 5

Unique solution, when N= 4 the 𝑅𝑁𝑆 has dimension larger than one, any 

of the vectors in 𝑅𝑁𝑆(𝑃) is a solution
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Conic fitting

𝑥1
2, 𝑥1𝑦1, 𝑦1

2, 𝑥1, 𝑦1, 1

…

𝑥𝑁
2 , 𝑥𝑁𝑦𝑁, 𝑦𝑁

2 , 𝑥𝑁, 𝑦𝑁, 1

𝒄 = 0,

𝑖. 𝑒., 𝐴𝒄 = 0

Rmk: The conic identified by 𝒄 is the same as the one from 𝜆𝒄

So, when 𝑁 > 5 we are interested in solving 

𝒎∗ = argmin 𝐴𝒎
𝟐
𝑠. 𝑡. 𝒎

𝟐
= 1
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Lines tangent to a conic

Theorem The line 𝒍 tangent to 𝐶 at a point 𝒙 on 𝐶 is given by 𝒍 = 𝐶𝒙.

Proof (HZ result 2.7)

he line 𝒍 = 𝐶𝒙 passes through 𝒙, since 𝒍⊺𝒙 =
𝒙⊺𝐶𝒙 = 0. So, 𝒍 has at least one contact with the conic. 

Now we prove that 𝒙 is the only point belonging to both 𝒍 and 𝐶, thus 𝒍 is 

the tangent in 𝒙.

Suppose that 𝒍 meets the conic in another point 𝒚, such that 𝒚⊺𝐶𝒚 = 0
and 𝒍⊺𝒚 = 0. This also implies 𝒍⊺𝒚 = 𝒙⊺𝐶 𝒚 = 𝒙⊺𝐶𝒚 = 0. Then 

𝒙 + 𝛼𝒚 ⊺𝐶(𝒙 + 𝛼𝒚) = 0 for all 𝛼, which means that the line 𝒍 = 𝐶𝒙
joining 𝒙 and 𝒚 lies on the conic 𝐶, which is therefore degenerate.
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Matlab Example
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Comments on Error Minimization
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DLT and Error minimization

DLT algorithm minimizes the algebraic residual:

𝒉∗ = argmin 𝐴𝒉
𝟐
𝑠. 𝑡. 𝒉

𝟐
= 1

This does not have a physical meaning being 𝐴 (in case of homography 

estimation) made of rows like

𝟎⊺

𝑤′𝑖𝒙𝒊
⊺
−𝑤′𝑖𝒙𝒊

⊺

𝟎⊺
𝑦′𝑖𝒙𝒊

⊺

−𝑥𝑖𝒙𝒊
⊺

The norm of 𝐴𝒉 does not admit a straightforward geometric interpretation
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DLT and Error minimization

It would be better to measure the re-projection error, which has a physical

meaning and refers to metric quantities (e.g. cm)

1

𝑁
෍

𝑖

𝒙𝒊
′ −𝐻𝒙𝒊 2 + 𝒙𝒊 −𝐻−1𝒙𝒊′ 2

Provided the set of pairs 𝒙𝒊
′, 𝒙𝒊 , 𝑖 = 1,… ,𝑁

This indicates how far the mapped points are to the destination.

However, minimizing this error is non trivial.

Rmk. If we take only 4 pairs of points, the algebraic and geometric error is

zero
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DLT and Error minimization

It would be better to measure the re-projection error, which has a physical

meaning and refers to metric quantities (e.g. cm)

1

𝑁
෍

𝑖

𝒙𝒊
′ −𝐻𝒙𝒊 2 + 𝒙𝒊 −𝐻−1𝒙𝒊′ 2

Provided the set of pairs 𝒙𝒊
′, 𝒙𝒊 , 𝑖 = 1,… ,𝑁

This indicates how far the mapped points are to the destination.

However, minimizing this error is non trivial.

Rmk. If we take only 4 pairs of points, the algebraic and geometric error is

zero
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The standard procedure

1. Estimate the homography ෡𝐻 by minimizing the Algebraic error (e.g. 

through DLT)

2. Refine the estimated homography by minimizing the geometric error

through a numerical solver

• In this latter step, use ෡𝐻 as an initial guess for the nonlinear minimization
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Dual Conic
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Dual conics (conics envelopes)

Conics are defined by point equations 

𝒙⊺𝐶𝒙 = 0

However, point-line duality makes it possible to define conics by lines

A line 𝒍 tangent to the conic 𝐶 satisfies 

𝒍⊺𝐶∗𝒍 = 0

where 𝐶∗ is the adjoint of 𝐶 which in case of symmetric and non-singular 

matrix is 𝐶∗ = 𝐶−1
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Dual conics (conics envelopes)

Hartley Zisserman Fig.2.2

Point Conic Line Conic
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Homographies and lines and conics

An homography transform each point 𝒙 in a point 𝒙′ such that:

𝒙 → 𝐻𝒙 = 𝒙′

An homography transform each line 𝒍 in a line 𝒍′ such that:

𝒍 → 𝐻−1 ⊺ 𝒍 = 𝒍′

An homography transform each conic 𝐶 in a conic 𝐶′ such that:

𝐶 → 𝐻−1 ⊺𝐶𝐻−1 = 𝐶′

An homography transform each dual (line) conic 𝐶∗ in a dual conic 𝐶∗′

𝐶∗ → 𝐻𝐶∗𝐻⊺ = 𝐶∗′

We say that points transform contravariantly and lines and conics 

transform covariantly.
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Degenerate Conics

When the matrix 𝐶 is not of full rank, a point conic 𝐶 degenerates in

• two lines (𝐶 has rank 2), 

• or a repeated line (𝐶 has rank 1) 

A line conic 𝐶∗ degenerates in 

• two points (𝐶∗ has rank 2), 

• a repeated point (𝐶∗ has rank 1)

For instance, 𝐶∗ such that rank(𝐶∗) = 2

𝐶∗ = 𝒙𝒚⊺ + 𝒚𝒙⊺

Is the set of all the lines passing through 𝒙 and 𝒚 (not the that 𝐶∗

remains a 3 × 3 matrix)
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Circular Points and 
Conic dual to circular points
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Circular Points: 𝑰 and 𝑱

These are very special points in 𝒍∞

𝑰 =
1
𝑖
0

, 𝑱 =
1
−𝑖
0

These are called circular points since they correspond to the intersection

of any circle with 𝒍∞

Rmk a circle can be fit through 3 points. Or can be fit as a general conic

passing through 3 points + the two circular points

ℓ∞

𝑱𝑰
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Circular Points: 𝑰 and 𝑱

Circular points are fixed under an orientation-preserving similarity

𝐻𝑆𝑰 = 𝑰, 𝐻𝑆𝑱 = 𝑱

a reflection instead swaps 𝑰 and 𝑱

Rmk circular points are not fixed under projective transformations
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Conic dual to circular points: 𝐶∞
∗

𝐶∗

𝐶∗ = 𝒙𝒚⊺ + 𝒚𝒙⊺

F0r which rank(𝐶∗) = 2 and is the set of all the lines passing through 𝒙
and 𝒚 (note the that 𝐶∗ remains a 3 × 3 matrix)

We can compute the dual conic associated to circular points

𝐶∞
∗ = 𝑰𝑱⊺ + 𝑱𝑰⊺

which also is a degenerate line conic

𝑰 =
1
𝑖
0

, 𝑱 =
1
−𝑖
0

→ 𝐶∞
∗ =

1 0 0
0 1 0
0 0 0
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Conic dual to circular points: 𝐶∞
∗

Property 𝐶∞
∗ is fixed under an orientation-preserving similarity 

Property 𝐶∞
∗ in the Euclidean plane can be written as

𝐶∞
∗ =

1 0 0
0 1 0
0 0 0

Therefore, any homography transforms 𝐶∞
∗ like any other line conic

𝐶∞
∗ → 𝐶∞

∗ ′ = 𝐻𝐶∞
∗ 𝐻⊺

In an image, the equations of 𝐶∞
∗ ′ might be different from 

1 0 0
0 1 0
0 0 0
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Single Image Rectification From 𝐶∞
∗
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Single Image Rectification

𝐶∞
∗ =

1 0 0
0 1 0
0 0 0

𝐶∞
∗ ′ = ?

𝐻
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Single Image Rectification

𝐶∞
∗ =

1 0 0
0 1 0
0 0 0

𝐶∞
∗ ′ = ?

𝐻
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Single Image Rectification

Affine rectification: find the homography 𝐻𝑃 that sends 𝑙∞ in its canonical 

equation [0; 0; 1].  

Metric rectification: after applying 𝐻𝑃, determine an affine transformation 

𝐻𝐴 that maps circular points back to their canonical position [1;±𝑖; 0].

• Any similarity transformation applied next would not change the 

location of circular points

Rmk it is enough to find an homography that brings 𝐶∞
∗ ′ in 

1 0 0
0 1 0
0 0 0
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Single Image Rectification

Important Property after an affine rectification, 𝐶∞
∗ ′ can be written as

𝐶∞
∗ ′ = 𝐴𝐴⊺ 𝟎

𝟎⊺ 0

Being 𝐴 a 2 × 2 invertible matrix (cfr HZ example 2.26)

(this is the image of the canonical 𝐶∞
∗ through an affine transformation 

since similarities do not change 𝐶∞
∗ , and that projective transformation 

has been removed by the affine rectification)



Giacomo Boracchi

Single Image Rectification (after affine rectification)

Our goal is to estimate that 𝐻 in order to define the inverse mapping 𝐻−1

Assume now that that affine rectification has been already performed

𝐶∞
∗ =

1 0 0
0 1 0
0 0 0

𝐶∞
∗ ′ = 𝐴𝐴⊺ 𝟎

𝟎⊺ 0

𝐻
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Single Image Rectification

Our goal is to estimate that 𝐻 in order to define the inverse mapping 𝐻−1

𝐶∞
∗ =

1 0 0
0 1 0
0 0 0

Rectification can achieved by estimating 𝐶∞
∗ ′ (in this case 𝐴𝐴⊺) in the image

𝐶∞
∗ ′ = 𝐴𝐴⊺ 𝟎

𝟎⊺ 0

𝐻
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Single Image Rectification provided 𝐶∞
∗ ′

1. Perform affine rectification, such that 𝑙∞ = [0; 0; 1]

2. Fit an ellipse to 𝛾′ the image of a circle 𝛾

3. Compute 𝑰′, 𝑱′ by intersecting 𝛾′ with 𝑙∞

4. We have 𝐶∞
∗ ′ = 𝑰′𝑱′⊺ + 𝑱′𝑰′⊺

𝛾
𝛾′
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Single Image Rectification provided 𝐶∞
∗ ′

1. Perform affine rectification, such that 𝑙∞ = [0; 0; 1]

2. Fit an ellipse to 𝛾′ the image of a circle 𝛾

3. Compute 𝑰′, 𝑱′ by intersecting 𝛾′ with 𝑙∞

4. We have 𝐶∞
∗ ′ = 𝑰′𝑱′⊺ + 𝑱′𝑰′⊺

𝛾
𝛾′

𝛾′ ∩ 𝑙∞

𝑰′

𝑱′
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Single Image Rectification provided 𝐶∞
∗ ′

The SVD of 𝐶∞
∗ ′ can be used to define the rectifying homography 

transformation.

In fact, up to a similarity transformation that rescales eigenvalues we 

obtain 𝐶∞
∗ !

𝑆𝑉𝐷 𝐶∞
∗ ′ = 𝑈

1 0 0
0 1 0
0 0 0

𝑈⊺

So, it is enough to take 𝑈 to rectify the image, since the similarity 

transformation does not affect 𝐶∞
∗
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Single Image Rectification From Orthogonal
Lines 
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Recap: Angles in the Euclidean Plane

In Euclidean geometry the angle between two lines is computed from the 

dot product of their normals. For the lines 𝒍 = (𝑙1; 𝑙2; 𝑙3), and 𝒎 =
(𝑚1;𝑚2;𝑚3), the angle 𝜃 is such that

cos 𝜃 =
𝑙1𝑚1 + 𝑙2𝑚2

𝑙1
2 + 𝑙2

2 (𝑚1
2 +𝑚2

2)

We will see later interesting properties on projective plane



Giacomo Boracchi

Recap: Angles in the Euclidean Plane

In Euclidean geometry the angle between two lines is computed from the 

dot product of their normals. For the lines 𝒍 = (𝑙1; 𝑙2; 𝑙3), and 𝒎 =
(𝑚1;𝑚2;𝑚3), the angle 𝜃 is such that

cos 𝜃 =
𝑙1𝑚1 + 𝑙2𝑚2

𝑙1
2 + 𝑙2

2 (𝑚1
2 +𝑚2

2)

We will see later interesting properties on projective plane

Time has come!

Rmk the first two components of 𝒍 and 𝒎 do not have a pre-defined 

meaning in ℙ2
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Angles in the Projective Plane

An analogous expression, that is invariant to projective transformation, for 

the angle 𝜃 between lines 𝒍 = (𝑙1; 𝑙2; 𝑙3) and 𝒎 = (𝑚1;𝑚2;𝑚3), is

cos 𝜃 =
𝒍⊺𝐶∞

∗ 𝒎

𝒍⊺𝐶∞
∗ 𝒍 (𝒎⊺𝐶∞

∗ 𝒎)

Rmk when 𝐶∞
∗ =

1 0 0
0 1 0
0 0 0

and we are in homogeneous coordinates. The 

system the above equation becomes the same as in the previous slide
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Angles in the Projective Plane

Rmk it is easy to verify that 

cos 𝜃 =
𝒍⊺𝐶∞

∗ 𝒎

𝒍⊺𝐶∞
∗ 𝒍 (𝒎⊺𝐶∞

∗ 𝒎)

is invariant w.r.t. any projective transformation 𝐻
definition for an angle

(just replace 𝑙 → 𝐻−1 ⊺𝑙, and 𝐶∗ → 𝐻𝐶∗𝐻−1)

Rmk the image of two orthogonal lines 𝒍′,𝒎′ have to satisfy

𝒍′⊺𝐶∞
∗ ′𝒎′ = 𝟎
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Single Image Rectification from orthogonal lines

𝒍
𝒎

𝒍′

𝒎′

Let 𝒍′,𝒎′ be the images of two orthogonal lines 𝒍 and 𝒎 in the 3D space 

𝐶∞
∗ =

1 0 0
0 1 0
0 0 0

𝐶∞
∗ ′ = ?

𝐻



Giacomo Boracchi

Single Image Rectification from orthogonal lines

If 𝒍′ and 𝒎′ are images two orthogonal lines 𝒍 and 𝒎 (in the 3D world), 

then it has necessarily to hold

𝒍′
⊺
𝐶∞
∗ ′𝒎′ = 0

Let us use this information to compute 𝐶∞
∗ ′, thus compute 𝐻

Remember that, after an affine rectification

𝐶∞
∗ ′ = 𝐴𝐴⊺ 𝟎

𝟎⊺ 0

and that 𝑆 = 𝐴𝐴⊺ is a symmetric homogeneous matrix 𝐴𝐴⊺ = 𝐴⊺𝐴 , thus 

there are only 2 unknowns to identify 𝐶∞
∗ ′

Each pair of orthogonal lines yield a single equation

𝒍′ 1: 2 ⊺𝑆 𝒎′(1: 2) = 0
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Single Image Rectification from orthogonal lines

If 𝒍′ and 𝒎′ are images two orthogonal lines 𝒍 and 𝒎 (in the 3D world), 

then it has necessarily to hold

𝒍′
⊺
𝐶∞
∗ ′𝒎′ = 0

Let us use this information to compute 𝐶∞
∗ ′, thus compute 𝐻

Remember that, after an affine rectification

𝐶∞
∗ ′ = 𝐴𝐴⊺ 𝟎

𝟎⊺ 0

and that 𝑆 = 𝐴𝐴⊺ is a symmetric homogeneous matrix 𝐴𝐴⊺ = 𝐴⊺𝐴 , thus 

there are only 2 unknowns to identify 𝐶∞
∗ ′

Each pair of orthogonal lines yield a single equation

𝒍′ 1: 2 ⊺𝑆 𝒎′(1: 2) = 0

Two pairs of orthogonal lines are enough to identify 𝐶∞
∗ ′
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Stratified Rectification from Orthogonal Lines

𝒍′ 1: 2 ⊺𝑆 𝒎′(1: 2) = 0

Two pairs of (different, i.e. not parallel) orthogonal lines are enough to 

estimate 𝑆, (thus 𝐴 through Choleski decomposition)

Hartley Zisserman Fig.2.17
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Rectification from 5 pairs of orthogonal lines

Assume no affine rectification has been done before

In principle, any pair of lines 𝒍′,𝒎′ that in the scene are orthogonal 

provides a single equation

𝒍′
⊺
𝐶∞
∗ ′𝒎′ = 0

This is a linear constraint in the entries of 𝐶∞
∗ ′ (this is exactly like fitting a 

conic through 5 points).

Five of these equations are enough to set up a linear system

𝐴𝒄 = 0

where 𝒄 contains the six parameters of the conic. The solution is:

𝒄 = 𝑅𝑁𝑆(𝐴)
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Rectification from 5 pairs of orthogonal lines

Now the pairs of lines

(highlighted by solid white

lines) can also be parallel

in the 3D world (like the 

windows here), since 

affine rectification has not 

been performed, yet.

Hartley Zisserman Fig.2.17
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Rectification from 5 pairs of orthogonal lines

Now the pairs of lines

(highlighted by solid white

lines) can also be parallel

in the 3D world (like the 

windows here), since 

affine rectification has not 

been performed, yet.

Hartley Zisserman Fig.2.17
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Camera Calibration and the 3D world
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Normal to the horizon

Let 𝑀 = 𝐾[𝑅, 𝒕] be the projection matrix of a calibrated camera, the 

normal 𝑛 to the plane of an horizon 𝑙ℎ in the image is:

𝑛 = 𝐾𝑇𝑙ℎ

C

𝑛

lhoriz

π
l
∞

π'
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Normal to the horizon

Let 𝑀 = 𝐾[𝑅, 𝒕] be the projection matrix of a calibrated camera, the 

normal 𝑛 to the plane of an horizon 𝑙ℎ in the image is:

𝑛 = 𝐾𝑇𝑙ℎ

C

𝑛

lhoriz

π
l
∞

π'
Once the camera is calibrated we can 

compute the 3D orientation of any plane

for which we see the horizon
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Angle between vanishing points

Let 𝑣1 and 𝑣2 be the vanishing points of two directions 𝑑1 and 𝑑2, then

cos 𝜃 =
𝑑1 ⋅ 𝑑2

𝑑1 𝑑2

And the same can be also computed from the vanishing points

cos 𝜃 =
𝑣1
⊺𝝎𝑣2

𝑣1
⊺𝝎𝑣1 𝑣2

⊺𝝎𝑣2

C

d1

v2

v1
d2

𝜃
x1∞

x2∞
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Angles between two vanishing points

Let 𝑣1 and 𝑣2 be the vanishing points of two lines (having ideal points 

𝑋1∞ and 𝑋2∞), and let 

𝝎 = 𝐾𝐾⊺ −1

Then If 𝜃 is the angle between the two line directions, then 

cos 𝜃 =
𝑣1
⊺𝝎𝑣2

𝑣1
⊺𝝎𝑣1 𝑣2

⊺𝝎𝑣2
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Angles between two planes

Let 𝑙1 and 𝑙2 be the horizon of planes having normal 𝑛1 𝑛2

Then, the angle between the planes is

cos 𝜃 =
𝑛1 ⋅ 𝑛2

𝑛1 𝑛2

cos 𝜃 =
𝑙1
⊺𝝎−1𝑙2

𝑙1
⊺𝝎−1𝑙1 𝑙2

⊺𝝎−1𝑙2
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Camera Calibration from Vanishing Points

Vanishing points are images of points at infinity, and provide orientation 

information as fixed stars.

Ideal points are part of the scene and can be used as references. Their 

position in the image (i.e. the vanishing points) depend only on the 

camera rotation.
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Calibration From 3D Orthogonal Vanishing Points

Note that any pair of vanishing point 𝑣1, 𝑣2 corresponding orthogonal 

lines in the image yields a scalar equation in 𝝎

𝑣1
⊺𝝎𝑣2

𝑣1
⊺𝝎𝑣1 𝑣2

⊺𝝎𝑣2
= 0

𝑣1
⊺𝝎𝑣2 = 0

The matrix 𝝎 is symmetric (𝝎 = 𝐾𝐾⊺ −1), thus 5 unknonwns

𝝎 =

𝑤1 𝑤2 𝑤4

𝑤2 𝑤3 𝑤5

𝑤4 𝑤5 𝑤6

If the camera has zero skew 𝑤2 = 0

If pixels are squared 𝑤3 = 𝑤1
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Calibration From 3D Orthogonal Vanishing Points

The matrix 𝝎 is symmetric for a squared pixel and zeros-skew camera

𝝎 =
𝑤1 0 𝑤4

0 𝑤1 𝑤5

𝑤4 𝑤5 𝑤6

This has 4 unknowns (up to a scalar factor) -> three pairs of orthogonal 

lines can be used to compute 𝝎

Once 𝝎 has been computed, 𝐾 can be obtained by Cholesky factorization
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Recap

• Implications of image calibration

• Camera Center

• Viewing Rays

• Factorization of 𝑀

• Conics and Conic Fitting

• Comments on Error Minimization

• Measuring Angles

• Single View Rectification

Next Class, Epipolar Geometry

𝑥 𝑥′

𝑋

𝐶′𝐶

𝑒 𝑒′

𝜋

𝑙 𝑙′


