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Advanced Deep Learning for 3D Spatial Data

- Deep Learning in 3D for Robotics (a.k.a. too much for 4 hours) -

Prof Matteo Matteucci (matteo.matteucci@polimi.it)

Artificial Intelligence and Robotics Laboratory
Politecnico di Milano

ARTIFICIAL INTELLIMGENCE AMD ROBOTICS LAB



«Me, Myself, and I»

Matteo Matteucci, PhD

Full Professor

Dept. of Electronics, Information &
Bioengineering
Politecnico di Milano

matteo.matteucci@polimi.it

My research interests

* Robotics & Autonomous Systems
* Machine Learning

« Pattern Recognition

« Computer Vision & Perception

Courses | teach

Robotics (BS + MS)
Cognitive Robotics (MS)
Machine Learning (MS)
Deep Learning (PhD)

Enable physical and software autonomous systems to perceive, plan, and act
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without human intervention in the real world

M. Matteucci et al. — matteo.matteucci@polimi.it
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«Me, Myself, and I»
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A Recent Example
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A Recent Example




A Recent Example
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The DARPA Subterranean Challenge

Subterrc 'ngq_n Environments
using Leggred’ and Aerial Robots -

M. Kulkarni, - )
M. Dharmadhikari,
M. Tranzatto,

S. Zimmermann,
V. Reijgwart,

P. De Petris,

H. Nguyen, . -

N. Khedekani
CaPapachristos,

L. Off,

R. Siegwart,

M. Hutter,

K. Alexis
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Tasks for 3D Data in Robot Perception

\Wu et al. Infell Robot 2022-2(2)105-28 - -
DOI: 10.20517/r2021.20 Intelligence & Robotics

Review Dpen Access

Beside (simultaneous) localization and mapping, or N o
. . P - eep Ie_arn_lng for LiDAR-only and LiDAR-fusion 3D
autonomous navigation, we have “semantic” tasks too:;  perepton asumey

Danni Wu, Zichen Liang, Guang Chen

School of Automotive Studies, Tongji University, Shanghai 201804, China.

* 3D Shape Classification

* 3D Object Detection

* 3D Object Tracking

* 3D Segmentation

* 3D Instance Segmentation
* 3D Cooperative Perception
* 3D Place Recognition

WARNING !!!
It is going to be a quite dense
review of the literature, but ...

0O
We will look at some of these ...

OLITECNICO MILANO 1863 M. Matteucci et al. — matteo.matteucci@polimiit 8



I'm not alone!

This lecture has been prepared with the contribution of (in order of appearance)

Simone Mentasti Matteo Frosi Lorenzo Cazzella Daniele Cattaneo
simone.mentasti@polimi.it matteo.frosi@polimi.it lorenzo.cazzella@polimi.it daniele.cattaneo@disco.unimib.it
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Deep Learning in 3D for Robotics
- Object Detection in 3D Point Clouds -

Matteo Matteucci (matteo.matteucci@polimi.it) and Simone Mentasti (simone.mentasti@polimi.it)

Artificial Intelligence and Robotics Laboratory
Politecnico di Milano

ARTIFICIAL INTELLIMGENCE AMD ROBOTICS LAB



What is object detection?

The 2D scenario we all know....

S xS grid on input

POLITECNICO MILANO 1863

Class probability map

Final detections

You Only Look Once:
Unified, Real-Time Object Detection

Joseph Redmon*, Santosh Divvala*!, Ross Girshick?, Ali Farhadi*t
University of Washington® , Allen Institute for AI', Facebock Al Research’
http://pireddie.com/yolo/

Abstract

We present YOLO, a new approach o olject devecrion.
Prior work on object detecrion repurposes classifiers fo per-
form detection. Instend, we frame objecy devection ax a re-
gression problem to spavially separed bounding boxes and
associaied class probabilities. A single neural nerwork pre-
dicrs bownding boxes and class probabilities direcily from
full images in one evaluaiion. Since the whole detection
pipeling is a single nermwork, it can be opimized end-io-end
directly on detection performance.

Our unified archireciure is exiremely fast.  Our base
VOLO model processes images in real-time ar 45 frames
per second. A smaller version af the nerwork, Fast YOLO,
processes an asiownding 155 frames per second while
saill achieving dowble the mAP of other real-time detec-
rors. Compared 1o stare-af-the-art devection sysiems, YOLO
makes more localization errors bus is less likely to predict
false positives on background. Finally, YOLO leamns very
general represemations of objects. It superforms other de-
rection methods, including DPM and R-CNN. when pener-
alizing from nanral images o other domains ke armvork,

L. Introduction

Humans glance at an image and instantly keow what ob-
jects are in the image, where they are, and how they inter-
act The human visual system is fast and accurate, allow-
ing us to perform complex tasks like driving with little con-
scious thought. Fast, accurate algorithms for object detec-
tion would allow computers to drive cars withoul special-
izad semsors, enable assistive devices 1o convey real-time
scene information to human users, and unlock the potential
for peneral purpose, responsive mobotic systems.

Current detection systems repurpose classifiers to per-
form detection. To detect an object, these systems lake a
classifier for that object and evaluate it at various locations
and scales in a test image. Systems like deformable parts
muodels (DPM) use a sliding window approach where the
classifier is run &t evenly spaced bocations over the entire
image [11].

More recent approaches like R-CMN usa region proposal

1. Emie iesge.
3. Bues carrolwional rebeast.
EN T ——

Figure 1: The YOLO Delection System. Processing images
with YOLO is simple and straightforward. Our system (1) resizes
the input image o 448 = 448, (2) runs a single convalulional net-
work on the image, amd {3} threshokds the resulting detections by
the madel’s confidence.

methods to first generate potential bounding boxes in an im-
ape and then run a classifier on these proposed boxes. After
classification, post-processing is used 1o refine the bound-
ing boxes, eliminate duplicate detections, and rescore the
boxes based on other objects in the scene [ 1 2]. These com-
plex pipelines are slow and hard to optimize because each
individual component must be trained separately.

We reframe object detection as a single regression prob-
lem, straight from image pixels o bounding box coordi-
nztes and class probabilities. Using our system, you only
look once (YOLOY) at an image to predict what objects are
present and where they are.

YOLO is refreshingly simple: see Figure 1. A sin-
ale convolutional network simultaneously predicts multi-
ple bounding boxes and class probabilities for those boxes.
YOLAD trains on full images and directly optimizes detec-
tion performance. This unified model has several benefits
over iraditional methods of object detection.

Fimst, YOLO 15 extremely fast. Since we frame detection
as a regression problem we don't need a complex pipeline.
We simply mun our neural network on a new image at test
time to predict detections. Cur base network runs at 45
frames per second with no batch processing on a Titan X
GPU and a fast version runs at more than 150 fps. This
means we can process streaming video in real-time with
less than 25 milliseconds of latency. Furthermore, YOLO
achieves more than twice the mean average precision of
other real-time systems. For a demo of our system running
in real-time on a webcam please see our project webpage:
http://pijreddie. comfyolo,.

Second, YOLO reasons globally ahout the image when



What is object detection?

Yolo on BDD100k What TESLA was seeing (2022)

Real-time Object Detection for
Autonomous Driving using Deep
Learning

YOLOv1 on the BDD100OK Dataset

Duy Anh Tran, Pascal Fischer, Alen Smajic, Yujin So

CITY_STREETS = STOPS_BEV, HYDRANET_BACKUP, HYDRAMET_SELFIE, OBJECTSIO_MAIN, ORIECTSIO_NARROW,
https://github.com/alen-smajic/Real-time-Object-Detection-for-Autonomous-Driving-using-Deep-Learning MAIN -
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What changes with PointCloud?

3D data are a bit different....

LITECNICO MILANO 1863



What changes with PointCloud?

.. but we expect at least 3D bounding boxes

LITECNICO MILANO 1863 14



How was it done before deep learning?

I'M DOING 3D OBJECT DETECTION

?
ON A POINTCLOUD WITH DEEP LEARNING, RIGHT?

WITH DEEP LEARNING, RIGHT?

"I} POLITECNICO MILANO 1863



Sometimes data are not so informative

8 plane lidar 90° fov 16 plane lidar 360° fov

LITECNICO MILANO 1863



Sometimes data are not so informative

POLITECNICO MILANO 1863 17



Geometric-based solution still works

OLITECNICO MILANO 1863



Geometric-based solution still works

OLITECNICO MILANO 1863

Find clusters

Filtering based on:
- position
- Size

Retrieve a list of obstacle:

- (x,y) position

- (Lw,h) size

- Difficult to provide
class




Occupancy grid are 2D images

you can use deep learning...

Apollo FCNN-based Model (2D grid-based detector)
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3D data processing pipeline

3D Object Detection Model

(2) Feature Extraction (4) Detection
r : Network hesansassaassscssis .
(Predictions Final
. Refinement) i
Low-Dimensional [ > High-Dimensional &
/\ Local i
Features Global
Map Features
(1) Data Representation (3) Detection Network
2D Projection-based 2. Object Class
V Classification Flnal
Frustum-based R Predjctions
‘
| Voxel-based _> Feature Map 3. Bounding Box
— == Encoder Regression
Pillar-based S
_—
\ Contextual 4. Orientation
Features Classification
-—

Two-stage Smglé-stage
workflow workflow

Fernandes, D., Silva, A., Névoa, R., Simdes, C., Gonzalez, D., Guevara, M., ... & Melo-Pinto, P. (2021). Point-cloud based 3D object detection and classification methods for self-driving

applications: A survey and taxonomy. Information Fusion, 68, 161-191.

POLITECNICO MILANO 1863




3D data processing pipeline

1) Data Representation:
« Voxels
* Frustums

i P | | | a rS / 3D Object Detection Model i

(2) Feature Extraction (4) Detection

« /D projection

» Raw 3D points - =

[L777) POLITECNICO MILANO 1863



3D data processing pipeline

2) Feature extraction:
* Low-dimensional features
« High dimensional features

3D Object Detection Model

(2) Feature Extraction

[L777) POLITECNICO MILANO 1863



3D data processing pipeline

3) Detection Network:
* Heterogeneous architecture
 Second level feature extractor

 Two stage architectures: .
* Object proposal =

(2) Feature Extraction (4) Detection

* Prediction refinement p—  ge— ug_r_ |

AN Local
Features |~ || Global
. P || ||Features
 Produce I
(1) Data Representation ‘ (3) Detection Network
- 7\ 0P based ,.j 2 Object Class
— \;'
Feature ing B
os

8
i
Fe

*  (lass
* 3D Bounding box | | =
*  Qrientation \\

°  Speed 2
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Taxonomy of 3D detectors

POLITECNICO MILANO 1863

1. Data Representation

3D Object Detection

and Classification

2. Data Feature Extraction 3. Detection Module

1.1. Voxel-based e R"':;';;m"

1.2. Point-based

1.3. Frustum-based 2.3. Object-wise 3.3. Sliding Window

1.4. Pillar-based 2.4. 2D CNN-backbones

2.5. 3D CNN-backbones

4. Predictions Refinement
Network

4. 2. Global Features-
driven

4.3. Keypoint-based

Fernandes, D., Silva, A., Névoa, R., Simdes, C., Gonzalez, D., Guevara, M., ...
cloud based 3D object detection and classification methods for self-driving applications: A survey and
taxonomy. Information Fusion, 68, 161-191.

& Melo-Pinto, P. (2021). Point-




Data representation

Point-based: 7 e - _:

l PointNet

Works directly on the PointCloud “*"\,;, table?
Sparse representation car?

-

Extract a feature vector for each point Classthgation Part Segmentation ~ Semanic Scgmentation

i : - PointNet is just the starting point
First extract low-dimensional features ’ &P

from each point independently
Then aggregate these to form high-dimensional features
Mostly based on PointNet backbone

Qi, C. R,, Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 652-660).

Meyer, G. P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., & Wellington, C. K. (2019). Lasernet: An efficient probabilistic 3d object detector for autonomous driving. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (pp. 12677-12686).

Xu, D., Anguelov, D., & Jain, A. (2018). Pointfusion: Deep sensor fusion for 3d bounding box estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 244-253).

LITECNICO MILANO 1863



Data representation

Point cloud

L,
Ve

Voxel-based
* Volumetric picture element "
* PointCloud divided into equally spaced 3D voxels

° Feature extraction is applied to groups of points inside
each voxel

* Reduce PointCloud dimension
*  More efficient

ey, HC
CF o Skt ! g 4% T
B Byt S TN -‘u--_‘. I e SRR

Voxel

° Less memory required

Zhou, Y., & Tuzel, O. (2018). Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
4490-4499).

Deng, J., Shi, S., Li, P., Zhou, W., Zhang, Y., & Li, H. (2021, May). Voxel r-cnn: Towards high performance voxel-based 3d object detection. In Proceedings of the AAAI Conference on Artificial
Intelligence (Vol. 35, No. 2, pp. 1201-1209).

ITECNICO MILANO 1863




Data representation

Frustum-based |
* Portion of a solid (usually a cone or
pyramid) that lies between one or two
parallel planes cutting it
*  Crop PointCloud regions based on RGB
detector

*  Cropped areas are frustums

“Masked
Point Cloud

Discretisation

2D Box + Mask

Paigwar, A., Sierra-Gonzalez, D., Erkent, O., & Laugier, C. (2021). Frustum-pointpillars: A multi-stage approach for 3d object detection using rgb camera and lidar. In Proceedings of the

IEEE/CVF international conference on computer vision (pp. 2926-2933).
Qi, C. R,, Liu, W., Wu, C., Su, H., & Guibas, L. J. (2018). Frustum pointnets for 3d object detection from rgh-d data. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 918-927).

LITECNICO MILANO 1863



Data representation

Pillar-based

* Data organized in vertical columns

* Leverage mounting position of LIDARS (horizontal)
* 2D discretization on the plane

* (Condense Z information

———————————————————————————————————————————————— ~
* Compact representation | Stacked Learned Pseudo
i Features image !

|

l 1

: S :

: L I H Q |

| i °W i

\ )

Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J., & Beijbom, O. (2019). Pointpillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 12697-12705).

LITECNICO MILANO 1863



Data representation

Projection-based (previously seen)

* Different projections:
*  Bird’s eye view
*  Front view
* Range view

* Possible combination of different projections
* Compact and efficient representation

* Real-time and low power scenario

* Loss of information

LTRSSV —
—— R S P AL

gl el

LIDAR Front view
(FV)

Chen, X., Ma, H., Wan, J., Li, B., & Xia, T. (2017). Multi-view 3d object detection network for autonomous driving. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition (pp. 1907-1915).




Taxonomy of 3D detectors

3D Object Detection
and Classification

4. Predictions Refinement
Network

1. Data Representation 2. Data Feature Extraction 3. Detection Module

1.1. Voxel-based e R"':;';;m"

4. 2. Global Features-

1.2. Point-based driven

1.3. Frustum-based 2.3. Object-wise 3.3. Sliding Window 4.3. Keypoint-based

1.4. Pillar-based 2.4. 2D CNN-backbones

2.5. 3D CNN-backbones

Fernandes, D., Silva, A., Névoa, R., Simdes, C., Gonzalez, D., Guevara, M., ... & Melo-Pinto, P. (2021). Point-
cloud based 3D object detection and classification methods for self-driving applications: A survey and
taxonomy. Information Fusion, 68, 161-191.

POLITECNICO MILANO 1863



Feature extraction

Local (low level) features:
° First extracted in the pipeline
* Position of points

Global (high level) features:
* (Geometric structure

* Relative position of points
Different feature extractor:

* Point-wise, segment-wise, object-wise, CNN-based
Multiple extractor can be combined in the same model (compound)

[L777) POLITECNICO MILANO 1863



Feature extraction

Point-wise:
° Take as input the whole PointCloud
° Analyze and label each point

. . MLP
* PointNet, PointNet++
: . Object
° N points times Y features Classification
o
* Computational heavy o
Shared E
%
45
=
Object
Location
Input Point Features Local Features Global Features

Qi, C.R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 652-660).
Qi,C.R.,Yi, L., Su, H., & Guibas, L. J. (2017). Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems, 30.

|} POLITECNICO MILANO 1863



Feature extraction

Segment-wise:

* Exploits voxel, pillars, frustum N B
*  Segment the PointCloud into g,_ . _ 2
volumetric scale scenes e el -1 o | e
*  Pointwise classification mode| = - B | Lk
ol Fomtoe Exracto (VFE B

applied to each segment

* (Can work with multiple layers to improve
resolution

Zhou, Y., & Tuzel, O. (2018). Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.

4490-4499).
Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J., & Beijbom, O. (2019). Pointpillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition (pp. 12697-12705).
Yan, Y., Mao, Y., & Li, B. (2018). Second: Sparsely embedded convolutional detection. Sensors, 18(10), 3337.

OLITECNICO MILANO 1863



Feature extraction

ObJeCt_Wlse R i depth to point cloud '_, By

° Leverage a-priori information
of the scene

*  Combine 2D detector with 3D data

*  Process only areas of the PointCloud 2D region (from CNN) to 3D frustum
where object are detected by other sensors

* Drastically reduce computational requirements
*  Dependent on the accuracy of the input detector
* Frustum-based detector generally belong to this class

Qi, C. R,, Liu, W., Wu, C., Su, H., & Guibas, L. J. (2018). Frustum pointnets for 3d object detection from rgh-d data. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 918-927).
Chen, X., Ma, H., Wan, J., Li, B., & Xia, T. (2017). Multi-view 3d object detection network for autonomous driving. In Proceedings of the IEEE conference on Computer Vision and Pattern




Feature extraction

CNN-based (2D)

* 2D backbone from image processing
* Exploit projection-based data representation

* Treat the PointCloud as image  werze—————————————— 0" : |
| G2 P o
. . . . l \'{.ﬂn,.\ f.m- . - I "l.: | ‘ ' | i"' "
. Efﬁoent' and ||ghtvve|g ht I IR i T SRRl égu
* Loss of information | KPR | b
| P4 u "TIS e, | Compute Graph of Apolio FCNN
*  RCNN/Yolo-based approaches TS,
| Coavl 2 ‘o ?\._\'l ",
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Feature extraction

CNN-based (3D)
* 3D backbone
° Sparse data

* Can'tuse 3D T
convolution on PointCloud directly

* Sparse representations are employed to
maintain efficiency

* Sparse Convolution, Submanifold Sparse
Convolution

Wang, G., Tian, B., Ai, Y., Xu, T., Chen, L., & Cao, D. (2020). Centernet3d: An anchor free object detector for autonomous driving. arXiv preprint arXiv:2007.07214.
Yan, Y., Mao, Y., & Li, B. (2018). Second: Sparsely embedded convolutional detection. Sensors, 18(10), 3337.

[577)) POLITECNICO MILANO 1863



Feature extraction

CNN-based (Voting scheme)

* Solve the problem of 3D convolution
* 3D grid discretization
* Feature vector built from 3D grid

*  Cells in empty space are not stored
* Only non-zero vectors cast a vote

° Sparse voting is mathematically
equivalent to a convolution on a sparse grid

Wang, D. Z., & Posner, |. (2015, July). Voting for voting in online point cloud object detection. In Robotics: science and systems (Vol. 1, No. 3, pp. 10-15).
Che, E., Jung, J., & Olsen, M. J. (2019). Object recognition, segmentation, and classification of mobile laser scanning point clouds: A state of the art review. Sensors, 19(4), 810.

POLITECNICO MILANO 1863



Taxonomy of 3D detectors

3D Object Detection
and Classification

4. Predictions Refinement

1. Data Representation Network

2. Data Feature Extraction 3. Detection Module

1.1. Voxel-based e R"':;';;m"

4. 2. Global Features-

1.2. Point-based driven

1.3. Frustum-based 2.3. Object-wise 3.3. Sliding Window 4.3. Keypoint-based

1.4. Pillar-based 2.4. 2D CNN-backbones

2.5. 3D CNN-backbones

Fernandes, D., Silva, A., Névoa, R., Simdes, C., Gonzalez, D., Guevara, M., ... & Melo-Pinto, P. (2021). Point-
cloud based 3D object detection and classification methods for self-driving applications: A survey and
taxonomy. Information Fusion, 68, 161-191.
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Detection and prediction refinement network

more taxonomy

Detection network

Architecture Detection Settings Feature Learning

* Single stage . '
g g Bounding Box Prediction

pyramid
Integrated
features
Fusion on
Fusion

* Dual Stage * Segmentation

OLITECNICO MILANO 1863

Prediction Techniques

Region
proposal
Anchorless
Sliding window
Hybrid




Detection and prediction refinement network

Architecture:
° Similar to image:
*  Dual stage (R-CNN)
«  Single stage (SDD)
° Heads are still required to

refine the region proposal
output

° Single stage used in real time
applications thanks to
efficiency

a: Aggregate View Object Detection (AVOD)

('RGB image [ K
I front view front view % |
| 2D CN prolechon & pooling projection & pooling r g :
[ 3D fu3|on ] fusion | & |
| | anchors y + > |
Q
| bird view T bird view @ |
: projection & pooling projection & pooling Q :
| Bird'sview  ————————— J
b: Frustum-Polntnet _ _ _ _ _ _ _ _
[ gq\|
I i 2|
I region Dbox | I
| 2D image 2D Rols | frystum | Point cloud estimation E;E_ |
: detector in frustum x |
@ |
RGB image
Il imag point cloud %}I

— ——— — — — — — — ——

point-wise

(" = ™y
feature vector|—— bottom-up 3D

proposal generation

w

=

o

kS

T \ ©
”‘_[ point cloud } »| canonical 3D > &
>

o

o

A

™)

segmentation || ffoint cloud| poy refinement
Rol pooling
[ 3D proposal ]
Point cloud — generation )
—_——— e =) = )

Shi, S., Wang, X., & Li, H. (2019). Pointrcnn: 3d object proposal generation and detection from point cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition (pp. 770-779).

Wu, X., Sahoo, D., & Hoi, S. C. (2020). Recent advances in deep learning for object detection. Neurocomputing, 396, 39-64.
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Detection and prediction refinement network

Detector settings: L S :[
* Like for images: - sk

EEINER
——

- Cuboid i Cland S T o TSy Con G0N

*  Segmentation mask —— m, o
* Cuboid based retrieve 3D bounding ' ‘ i

boxes Al

. Sparse convolution

° Are the most common approach

* Most dataset provide ground truth as
bounding boxes

Yan, Y., Mao, Y., & Li, B. (2018). Second: Sparsely embedded convolutional detection. Sensors, 18(10), 3337.

Zhou, Y., & Tuzel, O. (2018). Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 4490-4499).

Wang, L., Fan, X., Chen, J., Cheng, J., Tan, J., & Ma, X. (2020). 3D object detection based on sparse convolution neural network and feature fusion for autonomous driving in smart
cities. Sustainable Cities and Society, 54, 102002.
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Detection and prediction refinement network

Detector settings: —

of input scene feature vector

* Like for images: 5. | [ coxcemeion
28|lgs| |77 &
- Cuboid 3558 “d
o o | ,| Foreground Point
. =3 Segmentation . =, :
¢ Seg meﬂtatlon maSk ai""_lﬁ:r:roﬂu’ndMas]g_"’fJ
. . ’n‘:Z:I::QZ.__'____”—”"ﬁ"*—-—-’ b: Canonical 30 Box Refinement
°® _ . . .
P |Xe | Wl Se m a S |< Semantic Features Merged Features ) 30 boxes uld&teifm:l objects i

Bin-based 3D
Box Refinement ]

s N
@& & \

Local Spatial Points Canonical
@@ @ ™ Transformation

Point Cloud
Encoder

Confidence
Prediction

. 4

* Foreground/background points i

*  Employ point-based feature
extractors (e.q., PointNet++)

*  Specific tasks, e.g.,road segmentation

| | Pelnt Cloud Region Pooling

[t —— o

Shi, S., Wang, X., & Li, H. (2019). Pointrcnn: 3d object proposal generation and detection from point cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 770-779).
Zarzar, J., Giancola, S., & Ghanem, B. (2019). PointRGCN: Graph convolution networks for 3D vehicles detection refinement. arXiv preprint arXiv:1911.12236.
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Detection and prediction refinement network

Prediction technigues: e :
I Conv ' —» Proposal Classification :
« Region proposal-based: - R :
| .
*  Handle multiple scales : [ Proposal Locaton |
. ) Point Cloud | Region Proposal Generation |
* Same size filters Feature map oot T TTTmmmmssses
. . . | .
* Translation invariant o j— Fine Ot
I I T CIaSS|f|cat|on
) | 1 1x1 Conv
Low number of anchors Coordinates = -
*  Efficient : T -
* Requires as input sparse 4D tensor : L
i) Predictions Refinement ; Classification & Regression
I Network I I Head Network

Li, B. (2017, September). 3d fully convolutional network for vehicle detection in point cloud. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1513-

1518). IEEE.

Li, B. (2017, September). 3d fully convolutional network for vehicle detection in point cloud. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1513-

1518). IEEE.

Yan, Y., Mao, Y., & Li, B. (2018). Second: Sparsely embedded convolutional detection. Sensors, 18(10), 3337.
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Detection and prediction refinement network

Prediction techniques: i
N @%E..a ‘
» Sliding window-based: % E

*  Widely used in computer vision —
* Rarely used for PointClouds

*  Window search in 3D is very exhaustive
* Heavy computation

* Combined with voting techniques to
reduce computation time

Wang, D. Z., & Posner, |. (2015, July). Voting for voting in online point cloud object detection. In Robotics: science and systems (Vol. 1, No. 3, pp. 10-15).

Engelcke, M., Rao, D., Wang, D. Z., Tong, C. H., & Posner, I. (2017, May). Vote3deep: Fast object detection in 3d point clouds using efficient convolutional neural networks. In 2017 IEEE
International Conference on Robotics and Automation (ICRA) (pp. 1355-1361). IEEE.
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Detection and prediction refinement network

Prediction technigues:

* Anchorless detectors:
* Each point contribute to
the 3D reconstruction Input 3D Point Cloud
* Initially designed for static/indoor scenes
* As for images can struggle with occlusions

* Solve the issue of the large number of anchors generate by anchor-based
models (100k anchors)

('
Global Features

Point Features

Yang, B., Wang, J., Clark, R., Hu, Q., Wang, S., Markham, A., & Trigoni, N. (2019). Learning object bounding boxes for 3D instance segmentation on point clouds. Advances in neural information
processing systems, 32.

Wang, W., Yu, R., Huang, Q., & Neumann, U. (2018). Sgpn: Similarity group proposal network for 3d point cloud instance segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 2569-2578).

Yang, B., Luo, W., & Urtasun, R. (2018). Pixor: Real-time 3d object detection from point clouds. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 7652-
7660).

LITECNICO MILANO 1863



Detection and prediction refinement network

Prediction technigues:

* Hybrid detectors:

* Rely on anchors and point
masks

* Dual stage architectures

* First: anchor generation
and filtering

*  Second: PointNet
architecture for offset,
orientation, score

Backbone

Score Feature

XYZ .
;[ PointNet }» = -P‘ Proposal }' g
g
. - 2
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Yang, Z., Sun, Y., Liu, S., Shen, X., & Jia, J. (2019). Std: Sparse-to-dense 3d object detector for point cloud. In Proceedings of the IEEE/CVF international conference on computer vision (pp.

1951-1960).
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Detection and prediction refinement network

a: Aggregate View Object Detection (AVOD)

('RGB image @ @ — — H“l
: f front view front view % |
Refinement networks: | P aocmw| | ) proecion 8 pouing) | {prolecton & peolng) | 5
. Hangr?ms | fusion ols 1: FE]—»;}E_ I
* Rol are noisy and not accurate | zj{ N ] . )J g
. . projection & pooling projection & pooling @ |
* Refinement network refine the | = )
imperfect bounding box biFrustum-Pointnet R
2|
proposals ragion g
: i 0 intcloud | estimation :g
* Combine global and local B ool | ustum | |
features point cloud E :
_______________________________ J
° Common in many multi-stage _c: Our approach (PointRCNN)
T pointwise —— —pogomupad 0 Y 2)
mOde|S | feature, vector proposal generation % |
| pointcloud || I canonical 3D E I
| { segmentation J point cloud | poy refinement| & |
: 3D proposal Rol pooling é |
| Point cloud =7 [ generation J L ) 3)!

Shi, S., Wang, X., & Li, H. (2019). Pointrcnn: 3d object proposal generation and detection from point cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 770-779).

Chen, Y., Liu, S., Shen, X., & Jia, J. (2019). Fast point r-cnn. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9775-9784).

Zarzar, J., Giancola, S., & Ghanem, B. (2019). PointRGCN: Graph convolution networks for 3D vehicles detection refinement. arXiv preprint arXiv:1911.12236.
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Some famous models

Data Architecture Data feature Detection Encoder | Multi-scale feature Detection Prediction
representation extraction learning settings refinement net.

Volumetric

Points

Projection

3D FCN
VoxelNet
SECOND

PointPillars

Voxel-fpn

PointRCNN

STD

LaserNet
HDNet
RT3D

Pixor

Single-stage
Single-stage
Single-stage

Single-stage

Single-stage

Dual-stage

Dual-stage

Single-stage
Single-stage
Dual-stage

Single-stage

3D CNN Anchorless Masks
Compound Region proposal Integrated features Bounding Box -
Compound Region proposal Integrated features Bounding Box =
Compound Region proposal Multiple prediction Bounding Box -
pyramid
Segment Region proposal Multiple prediction Bounding Box Global features
pyramid
Segment Anchorless Prediction pyramid Mask Per-region data
fusion
Segment Anchorless - Masks Per-region
data fusion
3D CNN Anchorless - Bounding Box -
2D CNN Anchorless Prediction pyramid Bounding Box -
2D CNN Region proposal Prediction pyramid Bounding Box =
2D CNN Anchorless Prediction pyramid Bounding Box -
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How to train (Public Datasets)

KITTI NuScenes

100

200

300

0 200 400 600 800 1000 1200

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The Kitti dataset. The International Journal of Robotics Research, 32(11), 1231-1237.
Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., ... & Beijbom, O. (2020). nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (pp. 11621-11631).



How to train (Public Datasets)

A2D?2

Waymo

:.
| n
-
¥ |

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., ... & Anguelov, D. (2020). Scalability in perception for autonomous driving: Waymo open dataset. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition (pp. 2446-2454).Geyer, J., Kassahun, Y., Mahmudi, M., Ricou, X., Durgesh, R., Chung, A. S., ... & Schuberth, P. (2020). A2d2:

Audi autonomous driving dataset. arXiv preprint arXiv:2004.06320.
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How to train (Public Datasets)

Kitti [119,120]

NuScenes[121] Waymo [122] A2D2 [123]
Lidar Sensor 1 (64 channels) 1 (32 channels) 1+4 aux. (64 5 (16 channel)
channel)

Horizontal FoV 360° 360° 360° 360°

(degrees)
Cameras 4 (0.7 MP) 6 (1.4 MP) 3(2.5 MP)+ 2 (1.7 6(2.3 MP)

MP)

Vehicle Bus GPS+IMU - Velocity and angular  GPS, IMU, steering angle, brake, throttle,

Data velocity odometry, velocity, pitch roll
Location urban, one city urban, two cities (Boston and Sinagpore) 3 urban regions urban, highways, country, roads, three cities

(Karlsruhe) (USA) in Germany
Hours day day, night day, night day
Weather sunny, cloudy various weather various weather various weather
Objects 3D 3D 3D, 2D 3D, pixel
Last Update 2015 2019 2019 2020
N° classes 3 (car, pedestrian Up to 23 (“animal”, “human.pedestrian.adult™, “vehicle.bicycle” 4 (vehicle, 14 (car, truck, pedestrian, cyclist, Van, Bus,
and cyclist) or “vehicle.emergency.police”, “vehicle.moving”, “pedestrian. pedestrian, cyclist Trailer, motorcycle, Emergency vehicles,
standing” or “pedestrian.moving”, etc.) and sign) animals among others)

Annotated 20k 40k 230k 12k

Frames
3D Boxes 200k 1.4M 12M MN.S
Size (Hours) 1.5 2.5 6.4 MN.5
Frames per 10 20 2 10

second
Average points 120k 34k 177k N.S

per frame
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How do they perform?

Data Model (Year) Inference Time Cars Pedestrians Cyclist
Representation (ms) E M H E M H E M H
Volumetric 3D FCN (2016) [28] 1000 . . . . - . - . .
VoxelNet (2017) [25] 225 77.47=!  §5.11*'"  57.73*' 3048+ 3369*' 31.51*' 61.22*'  48.36%! 4437
Vote3Deep (2017)[24] 1100 - - - - - - - - -
SECOND-V1.5 (2018) [29] 20 84.65 75.96 68.71 . - . - . .
HR-SECOND (2018) [29] 110 84.78 75.32 68.70 45.31 35.52 33.14 75.83 60.82 53.67
Patch Refinement — Patches - 50 89.84 78.41 73.15 - - - - - -
EMP (2018) [30]
Patch Refinement — Patches 150 B8.67 77.20 71.82 . . - . - .
(2018) [30]
PointPillars (2018)[49] 16 82,58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92
Fast Point R-CNN (2019) [31] 60 85.29 77.40 70.24 - - . - . -
VOXEL-FFN (2019) [32] 50 85.64 76.70 69.44 . - . - . -
PV-RCNN (2019) [33] 80 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65
MEGVII (2019)[27] - - - - - - - - - -
HotSpotNet-Dense (2019)[95] - gg.12*'  7E34*'  7349'  47.14*"  s3972*' 3725 7909+ s272*! 5676
HotSpotNet-Direct (2019) - B6.49=!  77.74*' 72907+ 51.20¢'  4481*' 41.13%' 7R70*'  63.16%! 57.16%
[95]
3DBN (2019) [34] 130 83.77 73.53 66.23 . - . - . .
Fusion of Fusion Net (2020) 50 84.15 74,45 66.97 49,44 41.21 36.42 75.36 59.65 53.03
[35]
Point A*-anchor (2020)[36] 80 87.81 78.49 73.51 53.10 43.35 40.06 79.17 63.52 56.93
Point A*-free (2020)[36] 80 8g.48**  7R06%° 7836 7073 6413 5745 /18 73357 7075+
HVMNet (2020) [62] 31 8721 77.58* 71.79*% 60.13*° @41  5042¢° F7.21*Y 73.75%7  GR.OB*S
Points IPOD (2018) [39] 20 7975+  72.57*%  6R.33*%  56.02%°  44.68*°  42.30*7 71.40%°  5346%7  48.34%7
STD (2019) [40] 80 87.95 79.71 74.16 53.29 42.47 38.35 78.60 61.59 55.30
PointRCNN(2019)[10] 100 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53
R-GCN only (2019) [41] 160 83.42 75.26 68.73 . - . - . .
PointRGCN (2019) [41] 260 85.97 75.73 70.60 . - . - . .
R-GCN (2019) [41] 160 83.42 75.26 68.73 . - . - . .
C-GCN (2019) [41] 147 83.49 73.62 67.01 . - . - . .
LaserNet (2019) [42] 30 . . . . - . - . .
Projection Vehicle FCN detection (2016) - - - - - - - - - -
[50]
HDNet (2018) [53] 50 . . . . - . - . .
BirdNet (2018) [52] a9 40,99 27.26 25.32 22.04 17.08 15.82 43.98 30.25 27.21
RT3D (2018) [54] a0 23.74 19.14 18.86 . - . - . .
Pixor (2019) [55] 35 - - - - - - - - -
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Future directions

Still an open problem, multiple improvements:
° lLeverage data sparsity:
* Improved kernel and convolution technigues

* Data representation:

- Compressed representation
without loss of information

°  Multimodal perception:
« Combine multiple sensors data

° Motion information integration

° Employ more recent architectures, e.q.,
transformers

*  Optimization for real time requirements
°  Deploy in real scenarios and drive
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Deep Learning in 3D for Robotics
- 3D Point Clouds Segmentation -

Matteo Matteucci (matteo.matteucci@polimi.it), Matteo Frosi (matteo.frosi@polimi.it)

Artificial Intelligence and Robotics Laboratory
Politecnico di Milano
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What is point cloud se

POLITECNICO MILANO 1863

gmentation?

Segmentation requires the
understanding of both the
global geometric structure
and the fine-grained details
of each point.

According to the granularity,
3D point cloud segmentation
methods can be classified
into three categories:
semantic segmentation
(scene level), instance
segmentation (object level)
and part segmentation (part
level).

57



From images to point clouds
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Cloud segmentation is challenging!

Unlike pixels, points are unstructured,
making it difficult to apply well known
architectures

Clouds have translational variance, i.e., the
same object can appear different if located at
different positions

Sparsity and disorder

Computational inefficiency, due to the high
amount of data in a single point cloud
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Segmentation evolution timeline
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Some references

3D Point Cloud Segmentation: A survey

Anh Nguyen' Bac Le?

Abstract— 3D point cloud tion is the process of
classifying point clouds into multiple homogeneous regions, the
points in the same region will have the same properties. The
segmentation is challenging because of high redundancy, uneven
sampling density, and lack explicit structure of point cloud
data. This problem has many applications in robotics such as
intelligent vehicles, autonomous mapping and navigation. Many
authors have different app and
In this survey, we examine methods that have been proposed
to segment 3D point clouds. The advantages, disadvantages,
and design mechanisms of these methods are analyzed and
discussed. Finally, we outline the promising future research
directions.

L. INTRODUCTION

Fully three di are now widely
In particular, with scanners such as Light Detection and
Ranging (LIDAR) and Microsoft Kinect, 3D point clouds
can be easily acquired for different purposes. The explosion
of point cloud data need a library to process them. Point
Cloud Library (PCL) [11] was introduced in 2011. This
library contains state of the art algorithms for 3D perception.
‘With the development of hardware and PCL, processing point
clouds gains more and more attraction in robotics, as well
as other fields.

The segmentation of point clouds into foreground and
background is a fundamental step in processing 3D point
clouds. Given the set of point clouds, the objective of the
segmentation process is to cluster points with similar char-
acteristics into homogeneous regions. These isolated regions
should be meaningful. The segmentation process could be
helpful for analyzing the scene in various aspects such as
locating and recognizing objects, classification, and feature
extraction.

In p graphics, i hes have been done
w decompose 3D model into functionally meaningful re-
gions. The general way is build a graph from the input mesh,
and cluster the graph to produce a segmentation by using
information such as normal direction, smoothness, or concav-
ity along boundaries. Shamir [7] survey variety of methods
have been proposed for this problem: convex decomposition,
watershed analysis, hierarchical clustering, region growing,
and spectral clustering. Many of these approaches have been
used widely to segment point cloud data, especially in region
based methods [26] [32] [21] [19] [43].

*Anh Nguyen is Graduate Research Fellow at Computer Science De-
partment. Information Technology Faculty, University of Science. Victnam
ngEnhEfic. homus.edu.va

‘Dr. Bac Le is Associate Professor and dean of Computer Science De-
parument, Information Technology Faculty, University of Science, Vietnam
1hbacRfit.hcmus.edu.vn

978-1-4799-1201-8/13/831.00 ©2013 IEEE

In computer vision, segmenting 2D images is a classic
problem and has been studied for several decades. It attracts
a significant amount of work [10] [40] [27]. One of the most
popular approach is graph clustering (e.g. Graph Cuts [4]
including Normalised Cuts [36] and Min Cuts [14]). The idea
of these methods have been used widely to segmenting 3D
point cloud data [9] [12] [44]. However, Anand [2] showed
that when a 2D image is formed from the corresponding 3D
world, we will lost a lot of valuable information about the
3D shape and geometric layout of objects.

The work of Anguelov [9] suggested a 3D point cloud
segmentation algorithm should have three important proper-
ties. First, the algorithm should be able to take advantage
of several qualitatively different kinds of features, such as
trees will have distinguished features from cars. When the
number of features grows, segmentation algorithm should be
able to learn how to trade them off automatically. Second,
segmentation algorithm should be able to infer the label of
points which lie in sparsely sampled regions based on the
information of their neighbors. Third, the segmentation algo-
rithm should adapt to the particular 3D scanner used, because
different laser scanners produce qualitatively different point
cloud data, and they may have different properties even with
the same scene.

In the next section, we outline the main challenges of
the field as these motivate the various approaches. Then,
we briefly describe the common available 3D point cloud
datasets. We classify and discuss in detail segmentation
methods in section 3. While many works have been proposed,
we do not intend to give complete coverage of all works in
the area. In section 4. we discuss limitations of the state of
the art and outline future directions.

II. CHALLENGES AND DATASETS

A. Challenges

We can precisely determine the shape, size and other
properties of the objects in 3D data. However, segmenting
objects in 3D point clouds is not a trivial task. The point
cloud data are wsuvally noisy, sparse, and unorganized. The
sampling density of points is also typically uneven due to
varying linear and angular rates of the scanner. In addition,
the surface shape can be arbitrary with sharp features and
there is no statistical distribution pattern in the data [31].
Moreover, due to the limitations of the 3D sensors, the
foreground is often highly entangled with the background.
These problems present a difficult challenge when designing
a segmentation algorithm.
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Deep Learning for 3D Point Clouds: A Survey

‘Yulan Guo ™, Hanyun Wang ™, Qingyong Hu®, Hao Liu, Li Liu @, and Mohammed Bennamoun®

Abstract—Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer
vision, autonomous driving, and robotics. As a dominating technique in Al, deep learning has been successfully used to solve various

2D i

ion problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of

point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods
being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of
recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object

detection and tracking, and 3D point cloud
together with insightful observations and i

It also presents ive resulls pubiicly avail 1
ring future research directions.

Index Terms—Deep learning, point clouds, 3D data, shape classification, shape retrieval, object detection, object tracking, scene flow,
instance segmentation, semantic segmentation, part segmentation

1 INTRODUCTION

1TH the rapid development of 3D acquisition technolo-
nges, 3D sensors are becoming increasingly available
and affordable, including various types of 3D scanners,
LiDARs, and RGB-D cameras (such as Kinect, RealSense and
Apple depth cameras) [1]. 3D data acquired by these sensors
can provide rich geometric, shape and scale information [2],
[3]. Complemented with 2D images, 3D data provides an
opportunity for a better understanding of the surrounding
environment for machines. 3D data has numerous applica-
tions in different areas, including autonomous driving,
robotics, remote sensing, and medical treatment [4].
3D data can usually be represented with different formats,
including depth images, point clouds, meshes, and volumet-
ric grids. As a commonly used format, point cloud representa-
tion preserves the original geometric information in 3D space
without any discretization. Therefore, it is the preferred repre-
sentation for many scene understanding related applications
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such as autonomous driving and robotics. Recently, deep
learning techniques have dominated many research areas,
such as computer vision, speech recognition, and natural lan-
guage processing. However, deep learning on 3D point clouds
still face several significant challenges [5], such as the small
scale of datasets, the high dimensionality and the unstruc-
tured nature of 3D point clouds. On this basis, this paper
focuses on the analysis of deep learning methods which have
been used to process 3D point clouds.

Deep learning on point clouds has been attracting more
and more attention, especially in the last five years. Several
publicly available datasets are also released, such as Model-
Net [6], ScanObjectNN [7], ShapeNet [8], PartNet [9], S3DIS
[10], ScanNet [11], Semantic3D [12], ApolloCar3D [13], and
the KITTI Vision Benchmark Suite [14], [15]. These datasets
have further boosted the research of deep learning on 3D
point clouds, with an increasingly number of methods being
proposed to address various problems related to point
cloud processing, including 3D shape classification, 3D
object detection and tracking, 3D point cloud segmentation,
3D point cloud registration, 6-DOF pose estimation, and 3D
reconstruction [16], [17], [18]. Few surveys of deep learning
on 3D data are also available, such as [19], [20], [21], [22].
However, our paper is the first to specifically focus on deep
learning methods for point cloud understanding. A taxon-
omy of existing deep learning methods for 3D point clouds
is shown in Fig. 1.

Compared with the existing literatures, the major contri-
butions of this work can be summarized as follows:

1) To the best of our knowledge, this is the first sur-
vey paper to comprehensively cover deep learning
methods for several important point cloud under-
standing tasks, including 3D shape classification,
3D object detection and tracking, and 3D point
cloud segmentation.

2)  Asopposed to existing reviews [19], [20], we specifi-
cally focus on deep learning methods for 3D point
clouds rather than all types of 3D data.
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Abstract: With the rapid development of sensor technologies and the widespread use of laser ing
equipment, point clouds, as the main data form and an important information carrier for 3D scene
analysis and understanding, play an essential role in the realization of national strategic needs, such
as traffic scene perception, natural resource management, and forest biomass carbon stock estimation.
As an imf research direction in 3D vision, point cloud semantic segmentation has
attracted more and more researchers” attention. In this paper, we systematically outline the main
research problems and related research methods in point cloud semantic segmentation and summarize
the mainstream public datasets and common performance evaluation metrics. Point cloud semantic
segmentation methods are classified into rule-based methods and point-based methods according
to the representation of the input data. On this basis, the core ideas of each type of segmentation
method are introduced, the representative and innovative algorithms of each type of method are
elaborated, and the experimental results on the datasets are compared and analyzed. Finally, some
promising research directions and potential tendencies are proposed.

Key ds: deep I ing; point cloud ; convolutional neural network;

feature representation learning; computer vision

1. Introduction

In recent years, with the booming development of a large group of emerging industries,
such as smart cities, automotive navigation systems, augmented reality, and environmental
assessment, a large amount of research related to 3D scene perception has been motivated.
This research invariably requires the processing and analysis of huge amounts of 3D data.
How to enhance the understanding of 3D scenes and extract effective high-level features
has become an important scientific problem in 3D computer vision.

As a key form and essential information carrier of 3D data, a point cloud is a collection
of points representing the information of objects in 3D scenes, which can be used as a digital
representation of the real world. Point clouds usually contain coordinates, color, intensity
values, and other attributes so that the original geometric structure of the object in 3D
scenes can be retained to the maximum extent. As a key step in understanding 3D scenes,
point cloud semantic segmentation is a technique that divides the original point cloud into
several subsets with diffe ic inf ion and classifies each point into specific
groups according to the degree of attribute similarity. At present, point cloud semantic
segmentation has been widely applied to national strategic needs, such as autonomous
driving [1], augmented reality [2], and transmission line inspection [3]. It has important
research significance and broad development prospects.

In recent years, deep learning techniques have made breakthroughs in computer
vision, and more and more computer vision tasks rely on convolutional neural networks
(CNNS), recurrent neural networks (RNNs), generative adversarial networks (GANs), and




Classic era: how was it done before deep learning?
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Classic era: How was it done before deep learning?

[ Classic approaches ]

Edge-based Region-based Attribute-based
. methods methods methods
Model-based Graph-based

i methods approaches

Nguyen, Anh, and Bac Le. "3D point cloud segmentation: A survey." 2013 6th IEEE conference on robotics, automation and mechatronics (RAM).
IEEE, 2013.
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Edge-based approaches

They detect the boundaries of several regions in the point clouds to obtain regions. The principle of the
methods is to locate the points that have rapid change in intensity.

Advantages:
+ Fast segmentation

Disadvantages:

» Very low accuracy

« Sensitive to noise and
density

 Require a middleman
representation (e.qg.,
range images)

Sappa, A., and M. Devy. "Fast range image segmentation byan edge detection strategy." Proceedings of the3rd International Conference on 3D
Digital Imagingand Modeling. 2001.
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Region-based approaches

They use neighborhood information to combine nearby points with similar properties, to obtain isolated
regions, and to find dissimilarity between different regions. They are further classified in seeded (left) and

unseeded (right) methods.

(a) Scanned data.

f’ I

’”)l"

; \\\\g\vﬁ

(d) All the planes and inter-
sections are recovered. (Sec-
tion 4)

" \ )
:\\
|

Advantages:
« Resistant to noise

(b) Points are clustered and
representative planes are fit-
ted. (Section 3.1 and 3.2)

(c) Some of the plane inter-
sections are computed.
tion 3.3)

(Sec-

Disadvantages:

« Over and under
segmentation issues

 Borders are fuzzy

« Slower than other
methods

(e) Some of the faces of
the target polyhedron are ex-
tracted. (Section 5)

(f) User intervention incorpo-
rated, the final model is recon-
structed.

Ning, Xiaojuan, et al. "Segmentation of architecture shape information from 3D point cloud." Proceedings of the 8th International Conference on
Virtual Reality Continuum and its Applications in Industry. 2009.

Chen, Jie, and Baoquan Chen. "Architectural modeling from sparsely scanned range data." International Journal of Computer Vision 78 (2008):

223-236.
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Attribute-based approaches

These methods include two separate steps: attribute computation (e.g., Euclidean distance, density,
normals) and attribute-based clustering.

Advantages:
« Spatial relations are
considered

* Multi-cue clustering

Disadvantages:

« Accuracy heavily
depends on attribute
quality

 Precise computation can
be slow

Biosca, Josep Miquel, and José Luis Lerma. "Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy
clustering methods." ISPRS Journal of Photogrammetry and Remote Sensing 63.1 (2008): 84-98.
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Model-based approaches

They use geometric primitive shapes (e.g., sphere and plane) for grouping points. The points which have the
same mathematical representation are grouped as one segment.

Advantages:
e Fast
« Robust to outliers

Disadvantages:

« Inaccurate when dealing
with different point
cloud sources

Schnabel, Ruwen, Roland Wahl, and Reinhard Klein. "Efficient RANSAC for point-cloud shape detection." Computer graphics forum. Vol. 26. No. 2.
Oxford, UK: Blackwell Publishing Ltd, 2007.
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Graph-based approaches

They consider the clouds in terms of a graph. In a simple model, each vertex corresponds to a point and the
edges connect to certain pairs of neighboring points

Advantages:
« Can segment complex
scenes

« Can handle noise or
uneven density

Disadvantages:

« Cannot run in real-time

« Computationally
demanding

(a) Colored lidar scan (b) True-color segmentation results

Strom, Johannes, Andrew Richardson, and Edwin Olson. "Graph-based segmentation for colored 3D laser point clouds." 2010 IEEE/RSJ
international conference on intelligent robots and systems. IEEE, 2010.
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Deep era: attention is all you ne... wait
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Let the metrics resume

N
The overall accuracy (OA) is the ratio of the number OA — Zf:o M;;
of samples correctly predicted by the segmentation o EN ZN M.
algorithms to the total number of samples. 1=0 &j=0 """y

The mean class accuracy (mAcc) is an
improvement of OA, which calculates the precision 1 N
for each category separately, and then averages the mAcc =

summed results according to the number of N+1= EN:[} M;;
categories.

The mean intersection over union (mlIol) is the

most important index to evaluate the performance of N
the segmentation methods, which first calculates the mloU = 1 Mz‘i

ratio between the intersection of the predicted and : N 5 N ML
true regions of the models for each category, and N+ 11:0 Z,f:U MIJ - Z:1'=U MJI M;;
then calculates the average value of the summed

results according to the number of categories.

Assuming that there are N + 1 semantic classes (including empty class), Mij denotes the number of units with actual semantic type i but predicted type j and vice versa for Mji. Mii
denotes the number of units with actual semantic type i and predicted type i.
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Well known datasets
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(a) ShapeNet

(d) Semantic3D (e) SemantchlT TI

POLITECNICO MILANO 1863



WELL KNOWN datasets (up to 2022)

Name Year Type AEE:;C::;;m Category Size Sensor
ModelNet10 [15] 2015 S Oc 10 49 Tm e S --> Synthetic Environment
ModelNet40 [15] 2015 S Oc 10 12.3 Tm - .
ScanObjectNN [23] 2019 R Oc 15 15 To - « R --> Real Environment
ShapeNet [19] 2015 S Ps 55 51.3 Tm
ShapeNet Part [24] 2016 S Ps 16 169 Tm - . o .
SUN RGB-D [14] 2015 R s 47 1035 Tf Kinect « Oc --> Object classification
S3DIS [16] 2016 R Is 13 273.0 Mp Matterport ° PS -—> Pa rt Seg mentatlon
ScanNet [20] 2017 R Is 22 242.0 Mp RGB-D ]
MIMAP [25] 2020 R Is - 225 Mp XBeibao « Is --> Indoor Seg mentation
AYCHF:]] 2020 R g‘ 10 102.74 Mp TLSS  Os --> Outdoor segmentation
KITTI [2 2012 R s 3 179.0 Mp ML ] )
Semantic3D [21] 2017 R Os 8 4000.0 Mp MLS * Hs --> Heritage segmentation
Paris-rue-Madame [28] 2018 R Os 17 20.0 Mp MLS ° U S --> U rba n seg men ta tl on
Paris-Lille-3D [18] 2018 R Os 9 143.0 Mp MLS
ApolloScape [29] 2018 R Os 24 140.7 Tf RGB-D
SemanticKITTI [22] 2019 R Os 25 4549.0 Mp MLS « Tm --> Thousand models
Toronto-3D [30] 2020 R Os 8 78.3 Mp MLS
A2D2 [17] 2020 R Os 38 413 Tf TLS « Tf --> Thousand frames
SemanticPOSS [31] 2020 R Os 14 216 Mp MLS . L -
WHU-TLS [32] 2020 R Os - 1740.0 Mp TLS To > Thousand o b-] ects
nuScenes [33] 2020 R Os 31 34.1Tf X%idgg - M p--> Million POl nts
PandaSet [34] 2021 R Os 37 16.0 Tf MLS
Panoptic nuScenes [35] 2022 R Os 32 1100.0 Mp MLS ° ALS -—> AII‘bOI"ne Laser Scannlng
TJ4DRadSet [36] 2022 R Os 8 7.75 Tf 4D Radar _ _
DALES [37] 2020 R Us 8 505.0 Mp ALS « MLS --> Mobile Laser Scanning
S : S - .
EASDUT — : = ° 2 AL « TLS --> Terrestrial Laser Scanning
SensatUrban [39] 2022 R Us 13 2847.0 Mp tolgj;:ﬂzy
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Deep segmentation: a high-level classification

~
(SD Point Cloud Segmentation

S

We will focus on this! : i

-
\ Semantic Segmentation [Instanee Segmentation] (Part Segmentation]
\.

— — — i —— —

Projection-based Discretization-based Hybid Methods | \ |

| Proposal-free |

/ Methods

l _l AN J|

Y N r——————— |[ Point-based Method lrp Fbased ),

| Multi-view | : Dense Discretization | | { oint-based Methods | | rol{;)/losta;l-dase |

| Representation | Representation I AN cthods Ji

| | | | L — e e e = /
: Spherical | : rSparse DiscretizationN I — _ N
Representation | Representation I [ Pointwise MLP | |
| J |\: ________ ) Methods I
P \ |
| | Point Convolution | !
| | Methods |
| I
Guo, Yulan, et al. "Deep learning for 3d point clouds: A survey." IEEE | RNN-based :
transactions on pattern analysis and machine intelligence 43.12 | Methods |
(2020): 4338-4364. | |
Zhang, Rui, et al. "Deep-Learning-Based Point Cloud Semantic | Graph-based I
Segmentation: A Survey." Electronics 12.17 (2023): 3642. L Methods J
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Semantic Segmentation

The goal of semantic segmentation is to
separate a cloud into subsets according to the
semantic meanings of points.

There are four paradigms for semantic
segmentation: projection-based,
discretization-based, point-based, and hybrid
methods.

(a) Multi-View Representation (b) Spherical Representation

« Both the projection and discretization-

based methods transform a point cloud to ) O O Q \\._\
an intermediate representation, such as / 4 \
multi-view, spherical, volumetric, \ O O O. Q O
permutohedral lattice, and hybrid. Q O C5 O
« Point-based methods directly work on
irregular point clouds. i
(¢) Dense Discretization (d) Sparse Discretization

Representation Representation
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Semantic Segmentation — From 201/ to 2021

sSSP
(Landrieu and

Bussaha, 2019)

DeepPrass 3DContexiNet DGCNN A-SCN Vi-Net PointCony KPConv  MinkowskiNet ShellMet RandLA-Net LatticeNet
(Lawin et al) T ) Z :I k: {', ; (Wang et al) (XNie et al) (Meng ei al) (Wuetal) ( Thomas et all) (Choy et al.) (Lhang er al) (Hu et al) (Rosu et al)
\Leng el dl. )
SnapNet { G ScanComplete | RSNet 3DMV TangentCony FCPN PAT LSANet PyramNet SPH3D-GCN | RangeNet+ PointGCR
(Bouleh et al) Simonovski) (Dai et al) (Huang et al ) (Dai ang Nigfiner) | Tatarchenko ef al) (Rethage et al) (Yang et al') Nchen gt al) | (Kang gnd Liu.) (Leietal) (Milioto er al) (Ma et al)
f 2018 T I 1 2019 f i f
2017} 1 l 1 l l 1 1 l 1 1 l 2020 >
PointMet SqueezeSeg ) 4 o )
(Qietal)  SEGCloud (Wueral) SparseConvNet G+RCU MCCN UFB Engelman A=CNN GACNet DARNet HEPIN MVPNet
l (Tchapmi et al.) (Graham et al.y MEngelman et al.) (Hermosilla et al) (Chiang et al) (Engelman et al ) Y Komarichev et al ) | (Wang et aly } (Zhao et al ) JJiang et al)) (Jaritz et al')
PointNet++ SqueezeSeg2l PointCNN SPLATNet PointSIFT 3P-RNN ConvPoint PointWeb InterpCNN DPC DPAM MPRM
(O et al) (Wu et al, 2018) (Lietal) (Suetal) (Siane et al) (Yeetal) (Bowlch et al) (Lhao erf al.) (Mao er all) (Engelmann et al.) (Linetal) (Wei et al)
m Multi-view Representation Spherical Representation == Volumetric Representation = Lattice Representation === Hybrid Representation
=== Point-wise MLP === Point Convolutions === RNN bhased === (Graph based
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Projection-based methods

These methods usually project a 3D point cloud into 2D images, including multi-view and spherical images.
Those images are then segmented using state-of-the-art methods for image segmentation, and the results
are back-projected in 3D.

"% tesRBPPFPIAT

o W—
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Projection-based methods: Multi-view representation (1)

1. The input point cloud is projected into multiple
virtual camera views, generating 2D color depth and
surface normal images.

2. The images for each view are processed by a multi-
stream CNN (VGG16) for segmentation.

3. The output predication scores from all views are
fused into a single prediction for each point.

[ Image Segmentation ] [ Image Segmentation ] [ Image Segmentation ]

U [ U

U

Score Fusion. ]

Lawin, Felix Jaremo, et al. "Deep projective 3D semantic segmentation." Computer Analysis
of Images and Patterns: 17th International Conference, CAIP 2017, Ystad, Sweden, August
22-24, 2017, Proceedings, Part I 17. Springer International Publishing, 2017.




Projection-based methods: Multi-view representation (2)

1. The local surface geometry around each point is
projected to a virtual tangent plane, defining a set
of tangent images.

2. Every tangent image is treated as a regular 2D

m 32 32 482 326 n grid that supports planar convolution.
3. Tangent convolutions are directly operated on the
surface geometry.
32 64 6d 128 64 a2
= pool )

> unpool
64 128 64

- skip
Ci'n, L C:','n, L Cuut
g(u) F(g(u)) conv
| M F
N — N N out
Tatarchenko, Maxim, et al. "Tangent convolutions for dense prediction in 3d." Proceedings

of the IEEE conference on computer vision and pattern recognition. 2018.




PrOJectlon -based methods: Spherical representation (1)

Labeled
Synthetic

GTA-LiDAR

data

Unlabeled
Real KITTI
data

intensity’

Intensity Rendering
Network

intensity

(a) Pre-training: Learned Intensity Rendering

Input
Distribution Layer-i Distribution

Output

(c) Post-training: Progressive Domain Calibration

1.

Improved architecture over SqueezeSeg over
training loss, batch normalization, and extra input
channel.

Domain adaptation training is exploited to allow
generalization over synthetic data (GTA-V).
Pipeline comprises learned intensity rendering,
geodesic correlation alignment and progressive
domain calibration.

ﬁ\\t&\ R R G O TR IR G
A R 520 o \\‘be \\\“ \°° o ~\°° R

) 1-, R &
{\\.L\‘%\\‘c v NG \\(" \\‘ W \‘\“ \\"‘" \\‘ o g \\'C et ?@@“

Wu, Bichen, et al. "Squeezesegv2: Improved model structure and unsupervised
domain adaptation for road-object segmentation from a lidar point cloud." 2019
international conference on robotics and automation (ICRA). IEEE, 2019.




Projection-based methods: Spherical representation (2a)

spherical projectio

n

raw output filtered utput

—= v

[DOWNSAMF’LE BLOCK (STRIDE 2 IN WIDTH)][ UPSAMPLE CONV. (FACTOR 2 IN WIDTH) ]

Milioto, Andres, et al. "Rangenet++: Fast and accurate lidar semantic segmentation." 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2019.
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ical representation (2b)

Spher

based methods
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Projection-based methods: Spherical representation (3a)

"’*"Lf_' it Bl W0 s Conv7x7 / K2, .
& : == Sigmoid i
Coordlnate map (3, S S)
4 (IK2, S, S)
> = —
—W" Multiply Convix3 /1
Input feature | (IK2, S, S) (IK2, S, S) D
(I, S, S) -~

— sAC sac sAC sac - SAC
Projected point cloud , -
t t t

]Sphencal projection Loss Loss Loss Loss Loss

Restoration
L

Prediction P ,..! A
. e .__,_} p TN ™
o, . i e e NAT Prediction
Original point cloud %:55 U  upsample block Conv3x3, S2 Conv3x3 @ Add i A\
g e

Xu, Chenfeng, et al. "Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmentation." Computer Vision-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XXVIII 16. Springer International Publishing, 2020.
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Projection-based methods: Spherical representation (3b)

Spatially Adaptive Convolution (SAC) is
spatially-adaptive, since W depends on

Yim.,p,ql =0 Wi(Xg)m,n,p,q,1,7] x X|n, +:f, + 7]).
the location (p, q), and content-aware [m. p.q (Z (Xo)l 2L [n.p q+7))

: : : . n5n
since W is a function of the raw input XO.
- 1 —mgew | Conv7x7 /K2, _, | Repeat
__ Conv7x7 /K2, ' p—— Sigmoid
g id oordinate map
rdinate map s (3.3, 3) (K2, S, 8) (IK2, S, 8)
(3,8, 8)
{[l{ﬂ,ls, S) Ik E|emim_m59 Convix1 /1
Unfold Input feature Muliply Convax3 /1
Inout feat Element-wise __, Convix1/1 (I, S, S) &
np ure Multiply Convax3 /1 l
L. 5, 8) (IKZ, 5, 5) (IK2, 5, 5) ®
(IKZ S, 8) (K%, s, 8) é
(¢) SAC-SK
) SAC-ISK
- ) Conv7x7 /1, . k= ===
%—- Convix1/1, — "Coordinate ma p
Coordinate map Sigmoid Spatially Convasa / 1 (3,8.8) (I, S, §)
(3.8, §) 1 S, 8) multiply " Convax3 /1 l
Input feature Element-wise Conv3x3 /1,
(1,S,5) v (LS, S) Multiply Conv3x3 /1
Input feature @ — l
(18.5) v (LS, S)
(b) SAC-S (d) SAC-IS
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Projection-based methods: Spherical representation (3¢)

Multi-layer Cross Entropy Loss

1. During training, from stagel to stage5, a prediction layer
at each stage’s output is added

2. For each output, the ground truth label map is

5 C / . downsampled by 1x, 2x, 4x, 8x, and 10x, and the maps are
I — Z o ZHi,Wi Ec:l We = Ye - Og(yc) used to train the output of stagel to stage5, respectively
i=1 H“. X W";’ 3. wcis anormalized factor, Hi and Wi are the height and

width of the output in i-th stage, yc is the prediction for
the c-th class in each pixel and “yc is the label

4. The intermediate supervisions guide the model to form
features with more semantic meaning
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Projection-based methods: Spherical representation (3d)

3 Z

. [& .
ol ° E = E g Hlo ¢
(SemanticKitti) o D S 4 E T T 2 = = Tl = Z
T 5 ¢ 3T S -2 s ¢ foxio. gz
| = £ =T £ £ 2 £ =2 2 z = = 2 2 = 2 2 E| g E
Method SR 2 8 © a 2 & S5 2 ® a & 5 B & a B g vl

41.4 129 31.0 46 176 24 3.7 |14.6 2
62.3 16.9 46.5 13.8 30.0 6.0 8.9 [20.1 0.1

PNet 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7
PNet++ [36] 53.7 1.9 0.2 0.9 02 09 1.0 0.0 72.0 18.7 41.8
SPGraph [22]68.3 0.9 45 09 08 1.0 6.0 0.0 495 1.7 242 68.2 22.5 59.2 27.2 17.0 18.3 10.5{20.0 0.2
SPLAT 66.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 704 0.8 41.5 68.7 27.8 72.3 35.935.8 13.8 0.0 |22.8 1
TgConv 86.8 1.3 12.7 11.610.217.120.2 0.5 82.9 15.2 61.7 9.0 82.8 44.2 75.5 42.5 55.5 30.2 22.235.9 0.3
RLNet 94.0 19.8 21.4 42.7 38.747.548.8 4.6 90.4 56.9 67.9 15.5 81.1 49.7 78.3 60.3 59.0 44.2 38.150.3 22

SSG [56] 68.8 16.0 4.1 3.3 3.6 12.913.1 0.9 85.4 26.9 54.3 4.5 57.4 29.0 60.0 24.3 53.7 17.5 24.5/29.5 65
SSGi 68.3 18.1 5.1 4.1 4.8 165173 1.2 84.9 284 54.7 4.6 61.5 29.2 59.6 25.5 54.7 11.2 36.3|30.8 53
SSGV2 81.8 18.5 17.9 13.414.020.1 25.1 3.9 88.6 45.8 67.6 17.7 73.7 41.1 71.8 35.8 60.2 20.2 36.3|39.7 50
SSGV2i 82.7 21.0 22.6 14.515.920.224.3 2.9 88.5 424 65.5 18.7 73.8 41.0 68.5 36.9 58.9 12.9 41.0/39.6 39
RGN21 85.4 26.2 26.5 18.6 15.6 31.8 33.6 4.0 91.4 57.0 74.0 26.4 81.9 52.3 77.6 48.4 63.6 36.0 50.0(47.4 20
RGN53 86.4 24.5 32.7 25.522.6 36.2 33.6 4.7 91.8 64.8 74.6 27.9 84.1 55.0 78.3 50.1 64.0 38.9 52.2(49.9 12
RGN53* 91.4 25.7 34.4 25.723.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9/52.2 11
SSGV3-21 84.6 31.5 32.4 11.320.9 39.4 36.1 21.3 90.8 54.1 72.9 23.9 81.1 50.3 77.6 47.7 63.9 36.1 51.7/48.8 16
SSGV3-53 87.4 35.2 33.7 29.0 31.9 41.8 39.1 20.1 91.8 63.5 74.4 27.2 85.3 55.8 79.4 52.1 64.7 38.6 53.4(52.9 7
SSGV3-21* 89.4 33.7 34.9 11.3 21.5 42.6 44.9 21.2 90.8 54.1 73.3 23.2 84.8 53.6 80.2 53.3 64.5 46.4 57.6|51.6 15
SSGV3-53* 925 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9/55.9 6

= O O =
= o & | other-ground
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Projection-based methods: Comparison (early 2022)

Performance
Y D ibuti
Method ear ataset OA mAcc mloU Contribution
MVCNN [43] 2015 ModelNet40 90.1% - - The first multiview CNN
SnapNet [48] 2017 Sun RGB-D _ 67.4% i} Generate RGB and depth views
Semantic3D 88.6% 70.8% 59.1% by 2D image views
SnapNet-R [49] 2017 Sun RGB-D 78.1% - 38.3% Improvements to SnapNet
Grouping module to learn
GVCNN [44] 2018 ModelNet40 93.1% - - the connections and differences
between views
SqueezeSeg [50] 2018 KITTI . - 29.5% Data conversion from 3D to 2D
using spherical projection
SqueezeSegV2 [52] 2018 KITTI i - 3979 ~ ntroducing a context aggregation
module to SqueezeSeg
PVRNet [45] 2019  ModelNetd0  93.6% i i Consider relationships between
points and views, and fuse features
o GPU-accelerated postprocessing
RangeNet++ [46] 2019 KITTI - - 52.2% +RangNet++
SqueezeSegV3 [53] 2020  SemanticKITTI - i 55.9% Proposing the spatially adaptive
and context-aware convolution
S3DIS - - 74.4% Introducing an attention scheme
Robert et al. [47] 2022 L. 2 I
ScanNet ] _ 71.0% for multiview image-based methods
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Discretization-based methods

These methods usually convert a point cloud into a dense/sparse discrete representation, such as volumetric
and sparse permutohedral lattices.
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Discretization-based methods: Dense representation (1a)
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Tchapmi, Lyne, et al. "Segcloud: Semantic segmentation of 3d point clouds." 2017 international conference on 3D vision (3DV). IEEE, 2017.
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Discretization-based methods: Dense representation (1b)
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Input 3D Fully Convolutional Neural Network Output
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Tchapmi, Lyne, et al. "Segcloud: Semantic segmentation of 3d point clouds." 2017 international conference on 3D vision (3DV). IEEE, 2017.
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Discretization-based methods: Dense representation (1¢)
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Tchapmi, Lyne, et al. "Segcloud: Semantic segmentation of 3d point clouds." 2017 international conference on 3D vision (3DV). IEEE, 2017.
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Discretization-based methods: Dense representation (1d)

Table 1: Results on the Semantic3D.net Benchmark (reduced-8 challenge)

Method rnan-m.ade natur.al hi gh. low. buildings hard scanning cars mIOU  mAcc?
terrain terrain  vegetation  vegetation scape  artefacts

TMLC-MSR [27] 89.80 74.50 53.70 26.80 88.80 1890 3640 4470 | 54.20 68.95

DeePr3SS [41] 85.60 83.20 74.20 32.40 89.70 18.50  25.10  59.20 | 58.50 88.90

SnapNet [6] 82.00 77.30 79.70 22.90 91.10 1840 3730 64.40 | 59.10 70.80

3D-FCNN-TI(Ours) 84.00 71.10 77.00 31.80 89.90 27.70 2520  59.00 | 58.20 69.86

SEGCloud (Ours) 83.90 66.00 86.00 40.50 91.10 3090 2750 64.30 | 61.30 73.08

Table 2: Results on the Large-Scale 3D Indoor Spaces Dataset (S3DIS)

Method|ceiling floor wall beam column window door chair table bookcase sofa board clutter‘mIOU mAcc

PointNet [53] | 88.80 97.33 69.80 0.05 392 46.26 10.76 52.61 58.93 40.28 5.385 26.38 33.22|41.09 48.98
3D-FCNN-TI(Ours) | 90.17 96.48 70.16 0.00 11.40 33.36 21.12 76.12 70.07 57.89 37.46 11.16 41.61 | 47.46 5491
SEGCloud (Ours) | 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60 | 48.92 57.35

Table 3: Results on the NYUV2 dataset

Method Bed Objects Chair Furniture Ceiling Floor Deco. Sofa Table Wall Window Booksh. TV |mIOU mAcc glob Acc
Couprieetal. [14] |38.1 8.7 341 424 626 873 404 246 102 86.1 159 137 6.0 - 36.2 524
Wang et al. [65] |47.6 124 235 167 68.1 84.1 264 39.1 354 659 522 450 324| - 422 -
Hermansetal. [29] | 684 8.6 419 37.1 834 915 358 285 27.7 71.8 46.1 454 384| - 48.0 54.2

Wolfetal. [69] |74.56 17.62 62.16 47.85 82.42 98.72 26.36 69.38 48.57 83.65 25.56 54.92 31.05|39.51 55.6+£0.2 64.9+0.3
3D-FCNN-TI(Ours)| 69.3 40.26 64.34 64.41 73.05 95.55 21.15 55.51 45.09 84.96 20.76 42.24 23.95|42.13 539 67.38
SEGCloud (Ours) |75.06 39.28 62.92 61.8 69.16 95.21 34.38 62.78 45.78 78.89 26.35 53.46 28.5|43.45 5643 66.82

Table 4: Results on the KITTI dataset.

Meth0d|building sky road vegetation sidewalk car pedestrian cyclist signage fence I mIOU mAcc

Zhangetal.[75]| 8690 - 89.20 5500 2620 500 4900 193 517 21.1| - 49.80
3D-FCNN-TI(Ours) | 85.83 - 90.57 70.50 2556 65.68 4635 7.78 2840 4.51|35.65 47.24
SEGCloud (Ours) | 85.86 - 88.84 6873  29.74 67.51 5352 7.27 39.62 4.05|36.78 49.46
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Discretization-based methods: Dense representation (2a)

split + RBF(-) Represent
ﬁ *--l'll'l.-l-ll
Point Cloud Scaled Voxel RBF voxels
(Dx Wx H) Cf'" i Latent space representation
O (Dx WxHxI)
VAE ol

latent laver
Encoder Il . Decoder
Subvoxels ' Reconstriction

kxkxk k=4) (kxkxk k=4)

Meng, Hsien-Yu, et al. "Vv-net: Voxel vae net with group convolutions for point cloud segmentation." Proceedings of the IEEE/CVF international conference on computer vision. 2019.
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Discretization-based methods: Dense representation (2b)

poimntnet per group convoluton output scores
Latent space scprescniation point feature senalized feature
(DxWxHx1 A

1

Conv3D | | ConviD = ConviD | Conv3D | ConviD MaxPooliD L.
Ixlx1x16 | 3x3x3x8 3x3x3xB | Ix3xdxd | 3xdxdx2 I3 Serialized Feature

Group Convolution Stacked Feature Map

Meng, Hsien-Yu, et al. "Vv-net: Voxel vae net with group convolutions for point cloud segmentation." Proceedings of the IEEE/CVF international conference on computer vision. 2019.
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Discretization-based methods: Sparse representation (1)

Downsample

ResNet Block
ResNet Block

ResNet Block

ResNet Block

Upsample

ResNet Block

DeformSlice

Linear

Rosu, Radu Alexandru, et al. "Latticenet: Fast point cloud segmentation using permutohedral lattices." arXiv preprint arXiv:1912.05905 (2019).
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Discretization-based methods: Comparison

Performance
Method Y Dataset ibuti
etho ear atase OA mAce mIoU Contribution
VoxNet [55] 2015 ModelNet10 _ 92.0% - The first method to process raw point clouds
ModelNet40 85.9% 83.0% - using voxelization
ShapeNet Part - - 79.4%

ScanNet 73.0% 3 - Combining 3DFCNN with fine representation
SEGCloud [58] 2015 S3DIS - 57.4% 48.9% using trilinear interpolation and conditional
random field

Semantic3D 88.1% 73.1% 61.3%
KITTI - 49.5% 36.8%
ModelNet10 90.0% - - . . . :
OctNet [59] 2017 oderYe Divide the space into nonuniform voxels using
ModelNet40 83.8% - - unbalanced octrees
ModelNet4 2% - - . . . .
O-CNN [60] 2017 odelNet40 %0 Making 3D-CNN feasible for high-resolution
ShapeNet Part - - 85.9% voxels
SPLATNet [56] 2018 ShapeNet Part - 83.7% - Hierarchical and spatially aware feature learning
o Using the radial basis function to compute
VV-Net [61] 2019 ShapeNet Part ] ] 87.4% the localized continuous representation within
S3DIS 87.8% - 78.2% each voxel
ShapeNet Part - 83.9% - P ) | elic
. o roposing a novel slicing operator
LatticeNet [57] 2020 ScanNet } } 64.0% for computational efficiency
SemanticKITTI - - 52.9%
PCSCNet [62] 2022 nuScenes - B} 72.0% Reducing the voxel discretization error
SemanticKITTI - - 62.7%
SIEV-Net [63] 2022 KITTI - - 62.6% Effectively reduces loss of height information
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Point-based methods: MLP

Classification Network
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Segmentation Network

Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
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Point-based methods: Neighboring Feature Pooling (1a)

skip link concatenation

W PRI EL LT R E R L I R e R L L L R e R R R e T AL E T

Hierarchical point set feature learning Segmentation

unit it
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Qi, Charles Ruizhongtai, et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space." Advances in neural information processing systems 30 (2017).
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Point-based methods: Neighboring Feature Pooling (1b)

Method Error rate (%) Method Input  Accuracy (%)
Multi-layer perceptron [24] 1.60 Subvolume [21] VOX 89.2
LeNet5 [11] 0.80 MVCNN [26] img 90.1
Network in Network [13] 0.47 PointNet (vanilla) [20] pc 87.2
PointNet (vanilla) [20] 1.30 PointNet [20] pc 89.2
PointNet [20] 0.78 Ours pc 90.7
Ours 0.51 Ours (with normal) pc 91.9
Table 1: MNIST digit classification. Table 2: ModelNet40 shape classification.
=—e— PointNet vanilla
90 — e P .
lg%i_p‘oints 512 Eqil}ts 256 points 128 points _._ ZT;:T:;;HM ©F)
‘!\:-#"-‘-._3 S RN ; ’.I.. I ... - . -. . g N —— — Ours (SSG+DP)
) Nl g —s— Ours (MSG+DP)
i o g —s— Ours (MRG+DP)
ke 4"3:. '4? ';,:: s ":?:-‘. ¥ < 80
g < " . . . N 75
) ; " . - 1000 800 600 400 200

» d . Number of Points

Figure 4: Left: Point cloud with random point dropout. Right: Curve showing advantage of our
density adaptive strategy in dealing with non-uniform density. DP means random input dropout
during training; otherwise training is on uniformly dense points. See Sec.3.3 for details.
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Point-based methods: Neighboring Feature Pooling (2a)
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Figure 7. The detailed architecture of our RandLLA-Net. (N, D) represents the number of points and feature dimension respectively. FC:
Fully Connected layer, LFA: Local Feature Aggregation, RS: Random Sampling, MLP: shared Multi-Layer Perceptron, US: Up-sampling,
DP: Dropout.

Hu, Qingyong, et al. "Randla-net: Efficient semantic segmentation of large-scale point clouds." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2020.
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Point-based methods: Neighboring Feature Pooling (2b)
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Point-based methods: Neighboring Feature Pooling (2¢)

mloU (%) OA (%) man-made. natural. highveg. lowveg. buildings hardscape scanningart. cars

SnapNet_ [4] 59.1 88.6 82.0 71.3 79.7 229 91.1 18.4 37.3 64.4
SEGCloud [52] 61.3 88.1 83.9 66.0 86.0 40.5 91.1 30.9 275 64.3
RF_MSSF [53] 62.7 90.3 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6

MSDeepVoxNet [46] 65.3 88.4 83.0 67.2 83.8 36.7 92.4 313 50.0 78.2
ShellNet [69] 69.3 93.2 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2
GACNet [56] 70.8 91.9 86.4 71.7 88.5 60.6 94.2 37.3 435 77.8

SPG [26] 73.2 94.0 97.4 92.6 87.9 44.0 83.2 31.0 63.5 76.2

KPConv [54] 74.6 0929 90.9 82.2 84.2 47.9 94.9 40.0 77.3 79.7

RandLA-Net (Ours) 77.4 94.8 95.6 914 86.6 515 95.7 S1.5 69.8 76.8

Table 2. Quantitative results of different approaches on Semantic3D (reduced-8) [17]. Only the recent published approaches are compared.
Accessed on 31 March 2020.

E S Z
f ) ] 9 oo
@ \2, - 8 B E "qc': 5 = T>)5 gﬂ
5 B T 2 ® = & & = 7§ g g =2 B i
= & = 2 [3) c - ° - ‘= 2 =] o=
S s ° 5 < ) = S > 2 () & = £ Z = = 9 K E
Methods Sizz B & & =2 8 € B2 8 E £ B8 € ¢ B 8§ & 2 g8 & & B8
PointNet [43] 146 3 616 357 158 14 414 463 01 13 03 08 310 46 176 02 02 00 129 24 37
SPG [26] 174 025 450 285 06 06 643 493 01 02 02 08 489 272 246 03 27 0.1 208 159 08
SPLATNet[49] S50Kpts 184 08 646 39.1 04 00 583 582 00 00 00 00 711 99 193 00 00 00 231 56 00
PointNet++ [14] 201 6 720 418 187 56 623 537 09 19 02 02 465 138 300 09 10 00 169 60 89
TangentConv [51] 409 04 839 639 334 154 834 908 152 27 165 121 795 493 581 230 284 81 490 358 285
SqueezeSeg [55] 295 1 854 543 269 45 574 688 33 160 41 36 600 243 537 129 131 09 290 175 245
SqueezeSegV2[59] (40040 397 1 886 676 458 177 737 818 134 185 179 140 718 358 602 201 251 39 411 202 363
DarkNet21Seg [3] ° . ° 474 25 914 740 570 264 819 854 186 262 265 156 77.6 484 636 318 336 40 523 360 500
DarkNets3Seg [3]  P7°° 499 50 91.8 746 648 279 841 864 255 245 327 226 783 501 640 362 336 47 550 389 522
RangeNet53++ [10] 522 50 91.8 752 650 278 874 914 257 257 344 230 805 551 646 383 388 4.8 586 479 559
RandLA-Net (Ours) S0Kpts 539 124 907 737 603 204 869 942 401 260 258 389 814 613 668 492 482 72 563 492 477

Table 3. Quantitative results of different approaches on SemanticKITTI [3]. Only the recent published methods are compared and all scores
are obtained from the online single scan evaluation track. Accessed on 31 March 2020.
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Point-based methods: Neighboring Feature Pooling (3)
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between the proposed
PointNeXt and the
classical PointNet++ are
highlighted in red
borders.

Qian, Guocheng, et al. "Pointnext: Revisiting pointnet++ with improved training and scaling strategies." Advances in Neural Information Processing Systems 35 (2022): 23192-
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Point-based methods: MLP / NFP Comparison

Performance
M Y D ibuti
ethod ear ataset OA mAce  mloU Contribution
ModelNet40 90.7% - -
: hapeNet Part - - 85.1% Improvements to PointNet and design
PointNet++ [65] 2017 Shap X . )
ScanNet 84.5% - 34.3% of hierarchical network architecture
S3DIS 81.0% - 54.5%
ModelNet10 94.1% - - O
" M for modeling the spatial distribution
SO-Net [68] 2018 ModelNet40 90.8% - - of points
ShapeNet - - 84.6%
PointSIFT [66] 2018 ScanNet 86.2% _ _ Integration of‘ multidi:ef:tional featur-'es
S3DIS 88.7% - 70.2% using orientation-encoding convolution
PointWeb [67] 2019 ModelNet40 92.3% 89.4% _ Proposing an adaptive feature adjustment
S3DIS 86.9% 66.6%  60.3%  module for interactive feature exploitation
ScanNet 852% - - Proposing an efficient point cloud
ShellNet [69] 2019 S3DIS 87.1% 66.8% processing network using statistics
Semantic3D 93.2% i 69.4% from concentric spherical shells
Semantic3D 94 8% - 77.4% Proposing a lightweight network that
RandLA-Net [71] 2020 exploits large receptive fields and keeps
SemanticKITTI - - 53.9% geometric details through LFAM
ModelNet10 95.9% - -
PonASNLO] Mol o - Ppoing b mede i
ScanNet - - 63.0% &
S3DIS - - 68.7%
ModelNet40 94.1% 91.5% -
PointMLP [72] 2022 - A pure residual MLP network
ScanObjectNN 86.1% 84.4% -
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Point-based methods: Attention-based aggregation
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Zhao, Chenxi, et al. "Pooling scores of neighboring points for improved 3D point cloud segmentation.”
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Point-based methods: Local-Global concatenation
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Wang, Yue, et al. "Dynamic graph cnn for learning on point clouds." ACM Transactions on Graphics (tog) 38.5 (2019): 1-12.
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Point-based methods: Point convolution (a)
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Engelmann, Francis, Theodora Kontogianni, and Bastian Leibe. "Dilated point convolutions: On the receptive field size of point convolutions on 3d point clouds." 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2020.
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Point-based methods: Point convolution (b)
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Fig. 2. (Left) Point Convolutions. Schematic illustration of point convolutions. The continuous feature function f(-) assigns a feature value to continuous
point positions p. (Right) Dilated Point Convolutions. We propose dilated point convolutions as an elegant mechanism to significantly increase the receptive
field of point convolutions resulting in a notable boost in performance at almost no additional computational cost (see Table IV). Instead of computing
the kernel weights g(-) over the k nearest neighbors, we propose to compute the kernel weights over a dilated neighborhood obtained by computing the

sorted k - d nearest neighbors and preserving only every d-th point.
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Hybrid-based methods (1)
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Chiang, Hung-Yueh, et al. "A unified point-based framework for 3d segmentation." 2019 International Conference on 3D Vision (3DV). IEEE, 2019.
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Hybrid-based methods (2)1

2D Encoder- i R
Bt B PointNet++
view Decader & I feature
selection concatenate £258: - aggregation
— [ — — — 3 § —>
. 4 2D feature dense unprojected spérge input semantic label
video stream RGB images maps point cloud point cloud prediction

C concatenate

o
. geo upsample
|II I|| || Bimg B mix

Early

|!|I

Late Intermedlate

Jaritz, Maximilian, Jiayuan Gu, and Hao Su. "Multi-view pointnet for 3d scene understanding." Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops.
2019.
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A brave new world
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Transformers

Output
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Residual connections
and layer normalization _ Linear ]
\ \\ Y e ™\
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\
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N |V
. p—>-| Add & Norm |
- . Masked
Encoder self-attention: —__|[ "~ s |
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Feed-forward network:
after taking information from
other tokens, take a moment to
think and process this information

!

Decoder-encoder attention:
target token looks at the source

gueries — from decoder states; keys
and values from encoder states

T

Decoder self-attention (masked):
tokens look at the previous tokens

queries, keys, values are computed
from decoder states




Transformers — Point Transformer

- SortNet sorted local
features permutation
invariant
Y ; .
—_— ” \.K o N eatures
learned score  Top-K selection |H 100&1—glf3bal
- attention
Global Feature Generation - -
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Shape Classification
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\
* FG FF
Y
" £ 3 )
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Transformers — Point Transformer

pent rFF s Pl g
>
s =—= el query +
Top-K .
2 shared op- s . \'\ ) feature agg. concat
learned score Top-K selection
N x1 K x D
|
Input
N x D

Engel, Nico, Vasileios Belagiannis, and Klaus Dietmayer. "Point transformer." IEEE access 9 (2021): 134826-134840.
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Transformers - SAT

R L L P
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i t |
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Zhou, Junjie, et al. "SAT: Size-Aware Transformer for 3D Point Cloud Semantic Segmentation." arXiv preprint arXiv:2301.06869 (2023).
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Transformers - SAT
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Transformers: Comparison

Performance

Meth Y D i i
ethod ear ataset OA mAce mloU Contribution

ModelNet40 91.7% - -

Pioneering Transformer-based processing

PAT [94
2] 2019 S3DIS - - 64.28% of point clouds
PCT [91] 2021 ModelNet40 93.2% - - Proposing a coordinate-based embedding
S3DIS - 67.7% 61.33% module and an offset attention module
0 -
Point Transf 92 ModelNet40 737%  906% Facilitating interactions between local
o (2;1323 :::ﬁr 2l 2021 S3DI5 90.2%  81.9% 73.5% feature vectors through residual
- ShapeNet Part - - 86.6% transformer blocks
. ModelNet40 92.8% - -
Point Transformer [93] 2021 ° Proposing a multihead attention network
(Engel et al.) ShapeNet - - 85.9%

ModelNet10 95.5% - -
ModelNet40 92.9% - -

Proposing a multilevel multiscale

MLMST [53] 2021 ShapeNet Part - - 86.4% Transformer
S3DIS - - 62.9%
ModelNet40 92.9%  90.4% - Proposing a novel dual-point cloud
DTNet [96] 2021 ShapeNet Part - i 85 6% Transformer architecture

ShapeNet Part 86.6% Adaptive contextual relative position

- - . 0 . . . 3

Stratified Transformer [97] 2022 encoding and point embedding effective
ScanNet - - 73.7% learning of long-range contexts
SAT [98 02 ScanNet } - 74.2% Proposing a multigranular attention
[98] 023 S3DIS _ 78.8%  72.6% scheme and a reattention module
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Transformers — Towards a Multimodal Approach

door:v chair:v ... bathtub:)( '3D (12D [][]data token OOclass token

7
% encoders
| decoder
4 odd even\

layers layers

Q

ﬁ :
L

multi-view 2D images

=

Yang, Cheng-Kun, et al. "2D-3D Interlaced Transformer for Point Cloud Segmentation with Scene-Level Supervision." Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2023.
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Multimodal Interlaced Transformer (MIT)
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. —| fop |—
Resnet 50 2! |
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14 e l
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Large Multimodal Models (LMM)

At a high level, a multimodal system
consists of the following
Language projection com ponents .
matrix W, 1.An encoder for each data
S Multimodal modality to generate the
embedding

<<X>> o oftext embeddings for data of that
modality.

haﬁpy htippie Text 023 0.19 : 2.A way to aIign embEddingS of
amster encoder different modalities into the

Text embedding (D) Cosine

> similarity same multimodal embedding

score

Image embedding (D) Spa ce

Image 031 | . |. |owm | 3. [Generative models only]

encoder

A language model to generate

3 | e text responses. Since inputs can

embedding contain both text and visuals, new

of image techniques need to be developed

Vision projection | . to allow the language model to
matrix W

(o, x 0} condition its responses on not just
text, but also visuals.
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LMM classification
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CLIP2SCENE

Annotation-free

( How CLIP benefits
3D scene
understanding?

! CLIP2Scene |— '

A
| NS SERNRS /5. SRR G R~y SRR SRS (T T SR SR
e =,
) CLIP
[ [
I B ‘ Text :
| — Encoder !
! ‘ I Semantic and
! i ! Span?l-Temporal
I 1 Consistency
: Encoder : Tl
\ ; Regularization

Chen, Runnan, et al. "CLIP2Scene: Towards Label-efficient 3D Scene Understanding by CLIP." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
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CLIP2SCENE
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CLIP2SCENE — 3D Feature Extractor

MinkUNet

_ Batch Normalization +

" relu
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stride=[1,1,1]

[ Batch Normalization |

A 4

Relu

Convolution
#ilters=32,
kernel=[33,3],
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OLITECNICO MILANO 1863

ConvTranspose Block 8
#ilters=986, #ilters=985,
kernel=[2 2 2], * kernel=[33 3],
siride=[2 2 2] stride={1,1,1]
ConvTranspose Block 7
#filters=96, #filters=96,
— kemel=[2.2.2]. kernel=[33.3],
stride=[2,2 2] stride=[1,1.1]
Block 2 ConvTranspose Block 6
#filters=64, #ilters=128, * #ilters=128,
kernel=[3,3,3]. kemel=[2,2 2], kernel=[3,3,3],
stride=[1,1,1] siride=[2.2 2] siride=[1,1,1]
Convolution Block 3 ConvTranspose Block 5
#filters=64, #ilters=128, #ilters=128, #ilters=128,
kernel=[2,2,2], kernel=[3,3,3], kernel=[2,2,2], kernel=[3,3,3],
stride=[2 2 2] stride=[1,1,1] stride=[2 2 2] stride=[1,1,1]
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BT Block 4 - #ilters=256 #ilters=256 Pl'etral n
#ilters=128, #iltars=256, kemel=[1,1,1] kemel=[1,1,1]
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stride=[2 2 2] stride=[1,1,1] - T
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CLIP2SCENE — 2D Feature Extractor
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CLIP2SCENE - Training strategy

e The 2 regularization
are in practice
losses

e EverylOtraining
steps, there is a
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A
photo

| Thisis
| the {}
in the
scene;

ofa{};

CLIP V! Semantic Consistency Regularization -
| .
| - .
- ) | T pulling foree
5 g | : ) Ti‘ L I:xrcmhoddjng;
& " : i — r— | () () point feature |
. p
o S s — — ~ e
i 'textembedding | i T ﬂ- - . ~.
) ! | . wan e '\_I' .’ ¥ \_
pixel~to—t,éx‘t- mapprng ! point-text pairs r ™~ [ i \
— 1 I - \ . ‘5. e o
N B i -~ O e,
1 - -1" . - e
1 "‘-.\ R R R R R R R R R
i ' D I T T T e ey
i : i Spatial-Temporal Consistency Regularization
B E - .| e S PR
3D Network n;fnagc feature. @ pixel feature
etwork

\ —

T
Multi-sweep
calibration

Iapoouy
wio g

Losses:

pixel-to-paint n'fapping
: ]

() () point feature

i 0
X
\ .I

3 o MK Semantic-guided fusion features

erid 1

pixel-point-text pairs

Semantic = crossentropy ( pairing_points, prediction)

Spatial = mean (1- Cosine (image_features, points_features))
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CLIP2SCENE — Evaluation

Table 1. Comparisons (mloU) among self-supervised methods on
the nuScenes [24], SemanticKITTI [ 2], and ScanNet [20] val sets.

nuScenes SemanticKITTI ScanNet

Initialization 1% 100% | 1%  100% | 5%  100%
Random 42.2 69.1 32.5 52.1 46.1 63.3
PPKT [44] 48.0 701 | 391 531 | 475  64.2

SLidR [51] 48.2 704 | 39.6 54.3 479 649
PointContrast [55] | 47.2  69.2 | 37.1 52.3 47.6  64.5

CLIP2Scene 56.3 71.5 | 42.6 095.0 48.4 65.1

Table 2. Annotation-free 3D semantic segmentation performance
(mloU) on the nuScenes [24] and ScanNet [20] val sets.

Method | nuScenes | ScanNet
CLIP2Scene | 20.80 | 25.08
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UniSeg
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Liu, Youquan, et al. "Uniseg: A unified multi-modal lidar segmentation network and the openpcseg codebase." Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2023.
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UniSeg — Learnable Cross-Modal Association (LMA)
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UniSeg — Learnable Cross-View Association (LVA)

¢74: Multiplication
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o5 : Addition

range image range image
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UniSeg - Evaluation

Table 2: Quantitative results of UniSeg and SoTA LiDAR semantic segmentation methods on the SemanticKITTI zest set.
Method | mloU | car | bicy | moto | truc | o.veh | ped | blist | mlist | road | park | walk | o.gro | build | fenc | veg | trun | terr | pole | sign

AMVNet [33] | 65.3 | 96.2 | 59.9 | 54.2 | 488 | 45,7 | TLO | 65.7 | 11.0 | 90.1 | 71.0 | 75.8 | 32.4 | 92.4 | 69.1 | 85.6 | 7L7 | 69.6 | 62.7 | 67.2
JS3C-Net [51] | 66.0 | 958 | 593 | 52.9 | 54.3 | 46.0 | 69.5 | 65.4 | 399 | 8.9 | 61.9 | 721 | 31.9 | 925 | 70.8 | 84.5 | 69.8 | 67.9 | 60.7 | 638.7
SPVNAS [43] | 66.4 | 97.3 | 51.5 | 50.8 | 59.8 | 58.8 | 65.7 | 65.2 | 43.7 | 90.2 | 67.6 | 75.2 | 16.9 | 91.3 | 65.9 | 86.1 | 73.4 | TLO | 64.2 | 66.9
Cylinder3D [62] | 68.9 | 97.1 | 67.6 | 63.8 | 50.8 | 585 | 73.7 | 69.2 | 48.0 | 92.2 | 65.0 | 77.0 | 323 | 90.7 | 66.5 | 85.6 | 72.5 | 69.8 | 62.4 | 66.2
AF283Net [V] | 69.7 | 945 | 654 | 86.8 | 39.2 | 41.1 | 80.7 | 80.4 | T4.3 | 91.3 | 68.8 | 72,5 | 53.5 | 87.9 | 63.2 | 70.2 | 68.5 | 53.7 | 61.5 | 7TLO
RPVNet [45] | 7T0.3 | 97.6 | 68.4 | 68.7 | 44.2 | 61.1 | 759 | 744 | 734 | 93.4 | 70.3 | 80.¥ | 33.3 | 93.5 | 721 | 86.5 | 75.1 | 71.7 | 64.8 | 61.4
SDSeg3D [29] | T0.4 | 974 | 58.7 | 54.2 | 549 | 65.2 | T0.2 | 74.4 | 52.2 | 909 | 69.4 | 76.7 [ 41.9 | 93.2 | 71.1 | 8G.1 | 74.3 | TL.1 | 65.4 | 70.6
GASN [54] | T0O.7 | 96.9 | 65.8 | 58.0 | 59.3 | 61.0 | 80.4 | 82.7 | 46.3 | 89.8 | 66.2 | 746 | 30.1 | 92.3 | 69.6 | 87.3 | 73.0 | 725 | 66.1 | 71.6
PVKD [20] | 7L2 | 97.0 | 679 | 69.3 | 53.5 | 60.2 | 75.1 | 73.5 | 50.5 | 91.8 | 70.9 | 77.5 | 4L.0 | 924 | 694 | 86.5 | 73.8 | TL9 | 64.9 | 65.8
2ZDPASS [52] | 729 | 97.0 | 63.6 | 63.4 | 61.1 | 61.5 | 77.9 | 81.3 | T4.1 | 89.7 | 674 | 747 | 40.0 | 93.5 | 72,9 | 86.2 | 73.9 | 71.0 | 65.0 | 70.4
RangeFormer [24] | T3.3 | 96.7 | 694 | 73.7 [ 59.9 | 66.2 | 781 | 75.9 | 581 | 924 | 73.0 | 788 | 424 | 92,3 | 70.1 | 86.6 | 73.3 | 72.8 | 66.4 | 66.6

UniSeg (Qurs) | 75.2 | 97.9 | 719 | 75.2 63.6 741 789 | 748 | 60.6 | 926 | 74.0 | 79.5 | 46.1 | 934 727 87.5 763 731 | 683 | 685

Table 3: Quantitative results of UniSeg and SoTA LiDAR semantic segmentation methods on the nuScenes test set.

Method | mloU | barr ‘ bicy | bus | car ‘ const ‘ motor | ped | cone | trail | truck | driv ‘ other ‘ walk | terr | made | veg

PMF [63] | 77.0 | 82.0 | 40.0 | 81.0 | 88.0 | 64.0 | 79.0 | 80.0 | 76.0 | 81.0 | 67.0 | 97.0 | 68.0 | 78.0 | 74.0 | 90.0 | 88.0
Cylinder3D [62] | 77.2 | 82.8 | 298 | 843 | 894 | 630 | 793 | 772 | 734 | 846 | 69.1 | 97.7 | 70.2 | 803 | 755 | 904 | 87.6
AMVNet [3] | 77.3 | 80.6 | 32.0 | 81.7 | 889 | 67.1 843 | 76.1 | 735 | 849 | 673 | 975 | 674 | 794 | 755 | 91.5 | 88.7
SPVCNN [42] | 774 | 80.0 | 30.0 | 919 | 908 | 647 | 79.0 | 756 | 709 | 81.0 | 746 | 974 | 69.2 | 80.0 | 76.1 | 89.3 | 87.1
AF283Net[V] | 783 | 789 | 522 | 899 | 842 | 774 | 743 | 773 | 720 | 839 | 738 | 97.1 | 665 | 775 | 740 | 87.7 | 86.8
2D3DNet [17] | 80.0 | 83.0 | 59.4 | 88.0 | 85.1 | 63.7 844 | 820 | 760 | 848 | 719 | 969 | 674 | 79.8 | 76.0 | 92.1 | 89.2
GASN [54] | 804 | 855 | 432 | 905|921 | 647 86.0 | 83.0 | 733 | 839 | 758 | 97.0 | 71.0 | 81.0 | 77.7 | 91.6 | 90.2

|

|

2DPASS [52 80.8 | 81.7 | 553 | 92.0 | 91.8 | 73.3 86.5 | 785 | 725 | 847 | 755 | 976 | 69.1 | 799 | 755 | 90.2 | 88.0
LidarMultiNet [52 814 | 804 | 484 | 943 | 90.0 | 715 87.2 | 852 | 804 | 869 | 748 | 978 | 673 | 80.7 | 76,5 | 92.1 | 89.6

UniSeg (Ours) | 83.5 | 85.9 | 712 | 92.1 | 91.6 | 80.5 | 88.0 | 809 | 76.0 | 86.3 | 76.7 | 97.7 | 718 | 80.7 | 767 | 913 = 888
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Zero-shot point cloud segmentation

Semantic-Visual Semantic-Guided
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Lu, Yuhang, et al. "See more and know more: Zero-shot point cloud segmentation via multi-modal visual data." Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2023.
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Deep Learning in 3D for Robotics

- Cooperative 3D Point Clouds Perception -
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Beyond single-vehicle perception

V2VNet: Vehicle-to-Vehicle
Communication for Joint Perception
and Prediction

Tsun-Hsuan Wang', Sivabalan Manivasagam2(®9), Ming Liang!, Bin
Wenyuan Zeng!2, and Raquel Urtasun!+2

! UberATG, Pittsburgh, USA
2 University of Toronto, Toronto, Canada
{tsunhsuan.wang,manivasagam,ming.liang, byang, wenyuan,urtasun}Qu

Abstract. In this paper, we explore the use of vehicle-to-vehicle (V<
communication to improve the perception and motion forecasting g
formance of self-driving vehicles. By intelligently aggregating the ini
mation received from multiple nearby vehicles, we can observe the sa
scene from different viewpoints. This allows us to see through occlusi
and detect actors at long range, where the observations are very spe
or non-existent. We also show that our approach of sending compres
deep feature map activations achieves high accuracy while satisfying cc
munication bandwidth requirements.

Keywords: Autonomous driving + Object detection + Motion forece

1 Introduction

While a world densely populated with self-driving vehicles (SDVs) m
futuristic, these vehicles will one day soon be the norm. They will proy
cheaper and less congested transportation solutions for everyone, ever;
core component of self-driving vehicles is their ability to perceive the wc
sensor data, the SDV needs to reason about the scene in 3D, identify
agents, and forecast how their futures might play out. These tasks are ¢
referred to as perception and motion forecasting. Both strong perce]
motion forecasting are critical for the SDV to plan and maneuver throt

+n oot Fromm ono noint to anathor oafalsr .
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A Survey of Collaborative Machine Learning
Using 5G Vehicular Communications

Salvador V. Balkus

, Honggang Wang

, Fellow, IEEE, Brian D. Cornet,

Chinmay Mahabal“, Graduate Student Member, IEEE, Hieu Ngo, and Hua Fang

Absiract—By enabling autonomous vehicles (AVs) to share
data while driving, 5G vehicular communications allow AVs
ate on solving driving tasks.
AVs often rely on machine learning models to perform such
tasks; as such, collaboration requires leveraging vehicular com-
munications to improve the performance of machine learning
algorithms. This paper provides a comprehensive literature sur-
ey of the intersection between mx('.hine learning for autonomous
driving and vehi Thr the paper, we
explain how vehicle-to-vehicle (V2V) and vehicle-to-everything
(V2X) ti are used to imp ine learning
in AVs, answering five major questions regarding such systems.
These questions include: 1) How can AVs effectively transmit data
wirelessly on the road? 2) How do AVs manage the shared data?
3) How do AVs use shared data to improve their perception of
the environment? 4) How do AVs use shared data to drive more
safely and efficiently? and 5) How can AVs protect the privacy of
shared data and prevent cyberattacks? We also summarize data
sources that may support research in this area and discuss the
future research potential surrounding these five questions.

Index Te i ti ine learning.

I. INTRODUCTION

S AUTONOMOUS vehicles (AVs) enter the commer-

cial market and advance towards full autonomy, more
AVs will be present on the world’s roadways [1]. Today, AVs
rely on sensors including cameras and LiDAR to monitor the
road in order to drive safely and efficiently [2]. However, if
other AVs are also present on the road, the vehicles can send
data between each other in a process called vehicle-to-vehicle

1) Pedeslian is occluded
from view of Vehisle A

— -~
4] Vehicls A can row
perceive podastrion

due to transmittzd data

2) Venicle B perceives
padestrian that is
oceluded fiom Venicle A

3) vehicls B transmits lacatan
of psdsstrian 1o VeNicls A
Jsng V2V communication

Fig. 1. Depiction of occlusion. The pedestrian is occluded from the top left
vehicle by the building, but the lower right vehicle can detect the pedestrian
and communicate this information to the top left car.

referred to as vehicle-to-infrastructure (V2I) communication.
The term vehicle-to-everything (V2X) encompasses both V2V
and V2I paradigms.

As AVs become more ubiquitous, V2V and V2I commu-
nications can provide improvements to common autonomous
driving tasks. They will also serve to connect AVs to the
Internet of Things as a whole, allowing for an interconnected
world (Fig. 2). 5G communication technoluges are largely
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information could be raw data, intermediate features, single
CAV’s detection output, and metadata e.g., timestamps and
poses. Despite the big potential in this field, it is still in
its infancy. One of the major barriers is the lack of a large
open-source dataset. Unlike the single vehicle’s perception
area where multiple large-scale public datasets exist [12],
[13], [14], most of the current V2V perception algorithms
conduct experiments based on their customized data [15],
[16], [17]. These datasets are either too small in scale and
variance or they are not publicly available. Consequently,
there is no large-scale dataset suitable for benchmarking
distinct V2V perception algorithms, and such deficiency will
preclude further progress in this research field.

To address this gap, we present OPV2V, the first large-
scale Open Dataset for Perception with V2V communication.
By utilizing a cooperative driving co-simulation framework
named OpenCDA (18] and CARLA simulator [19], we col-
lect 73 divergent scenes with a various number of connected
vehicles to cover challenging driving situations like severe
occlusions. To narrow down the gap between the simulation
and real-world traffic, we further build a digital town of
Culver City, Los Angeles with the same road topology and
spawn dynamic agents that mimic the realistic traffic flow on
it. Data samples are shown in Fig. 1 and Fig. 2. We bench-
mark several state-of-the-art 3D object detection algorithms
combined with different multi-vehicle fusion strategies. On
top of that, we propose an Attentive Intermediate Fusion
pipeline to better capture interactions between connected
agents within the network. Our experiments show that the
proposed pipeline can efficiently reduce the bandwidth re-
quirements while achieving state-of-the-art performance.

II. RELATED WORK

‘Vehicle-to-Vehicle Perception: V2V perception methods
can be divided into three categories: early fusion, late fusion,
and intermediate fusion. Early fusion methods [11] share raw
data with CAV's within the communication range, and the ego
vehicle will predict the objects based on the aggregated data.

These methods preserve the plete sensor
but require large bandwidth and are hard to operate in
real time [15]. In contrast, late fusion methods transmit
the detection outputs and fuse received proposals into a
i prediction. Foll g this idea, Rauch et al. [20]
propose a Car2X-based perception module to jointly align




Beyond single-vehicle perception

Single-vehicle perception comes
with some intrinsic notable
imitations:

e (Observations can be limited
by occlusions, restricted
sensor field of view and
sensor resolution.

* Perception robustness is
affected by sensor errors that
can derive from adverse
weather or hardware failures.

Wang, D., Fu, W., Song, Q., & Zhou, J. (2022). Potential risk assessment for safe driving of autonomous vehicles under occluded vision. Scientific reports, 12(1), 4981.

Image from Palffy, A., Kooij, J. F., & Gavrila, D. M. (2019, June). Occlusion aware sensor fusion for early crossing pedestrian detection. In 2019 IEEE Intelligent Vehicles
Symposium (V) (pp. 1768-1774). |EEE.
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What is cooperative perception?

Cooperative perception has
emerged to address the single-
vehicle perception limitations by
means of interactions among
collaborating agents.

. enhance
and trough
increased perception quality
and robustness.

Image from https://mobility-lab.seas.ucla.edu/opv2v/



The Grand Cooperative Driving Challenge 2011

The Grand Cooperative Driving
Challenge (GCDC) 2011 -
« Aim: support and accelerate the

introduction of cooperative and

automated vehicles through a
driving challenge.

 9international teams. Vehicle platooning: close and coordinated

hall : f lab : following mechanism of vehicles without any
oLhe chge. perform coild orative mechanical linkage while mantaining a safe

platooning to save ]CU€|, improve distance, to reduce carbon footprint and traffic
Safety and throughput congestion, and enhance road safety.

Lauer, M. (2011). Grand cooperative driving challenge 2011 [its events]. IEEE Intelligent Transportation Systems Magazine, 3(3), 38-40.
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The Grand Cooperative Driving Challenge 2016

The Grand Cooperative Driving
Challenge (GCDC) 2076

- AIM: to further boost the
introduction of cooperative
automated vehicles by means of
wireless communications.

* [hree scenarios requiring close
cooperation among teams through
wireless communication:

*  Cooperative platoon merge;
*  Cooperative intersection passing;
*  Passage of an emergency vehicle.

Englund, C., Chen, L., Ploeg, J., Semsar-Kazerooni, E., Voronov, A., Bengtsson, H. H., & Didoff, J. (2016). The grand cooperative driving challenge
2016: boosting the introduction of cooperative automated vehicles. IEEE Wireless Communications, 23(4), 146-152.
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The Grand Cooperative Driving Challenge 2016

GCDC 2016 challenges:

o o, & 6 & &
| cz cz
H 8 E’\ @ = o ‘: ) ,EK@@ H [ I
|| 08| | || S| | |8 EE (1) |
= @ O\
EX CHE ] =) |
HEINS . \H N : @
SRR ] : | |
WP . 3 ;
Cooperative Non-cooperative Virtual platoon
A B A B A | 8 A B A B 5 vehicle vehicle
l@GAP ready (2)STOM 3)FV handover @) Merge J Original Scenario Virtual Scenario
Pace making  Simultaneous pair-up Sequential pair-up, FV handover, merge Final platoon

Cooperative intersection passing: vehicle 1 transmits
its intention to turn left. The cooperative vehicles’s
goal is to facilitate intersection passing for vehicle 1.

Cooperative platoon merge: two platoons driving
on a motorway must merge into one platoon due
to an upcoming construction site.

Englund, C., Chen, L., Ploeg, J., Semsar-Kazerooni, E., Voronov, A., Bengtsson, H. H., & Didoff, J. (2016). The grand cooperative driving challenge
2016: boosting the introduction of cooperative automated vehicles. IEEE Wireless Communications, 23(4), 146-152.
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Enabling cooperative perception with wireless communications

Cooperative perception can currently
be enabled by 5" Generation (5G) Vehicle-to-Network Vehicle-to-Vehicle
Cellular Vehicle-to-Everything (C-V2X) ®)

communications, including: \ / m

*  Vehicle-to-Vehicle (V2V)

*  Vehicle-to-Infrastructure (V2I)
°  Vehicle-to-Network (V2N) g Vehicle-to-Infrastructure
Vehicle-to-Pedestrian

*  Vehicle-to-Pedestrian (V2P)

In the cooperative automotive . / \
framework, the connected agents are
usually referred to as CAVSs

(Connected Autonomous Vehicles).

5GAA Automotive Association: https://5gaa.org/; 3GPP: https://www.3gpp.org/
5GAA. White Paper C-V2X Use Cases: Methodology, Examples and Service Level Requirements. https://5gaa.org/content/uploads/2019/07/5GAA 191906 WP CV2X UCs v1-3-1.pdf
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https://www.3gpp.org/
https://5gaa.org/content/uploads/2019/07/5GAA_191906_WP_CV2X_UCs_v1-3-1.pdf

Open challenges in V2X for cooperative perception

«  Which point selection and representation

;trateges can be devised to cope with
limited communication resources?

« How can vehicles work together to solve
security issues ensuring that V2V
communications are secure?

 How can VZ2X communications ensure
that messages arrive fast enough to
inform the AV's decision-making system?

*  What assumptions on the CAV sensor
data can be made in a dynamic vehicular
environment?

«  What are the scalability limits of
cooperative perception and how do they
impact on the coordination of the driving
movements of a large number of CAVs?

Balkus, S. V., Wang, H., Cornet, B. D., Mahabal, C., Ngo, H., & Fang, H. (2022). A survey of collaborative machine learning using 5G vehicular communications.
IEEE Communications Surveys & Tutorials, 24(2), 1280-1303.
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The cooperative perception problem(s)

Communication and
sensing resources
allocation

Vehicular data
acquisition Cooperative
2 2D 2

vehicles association

Knowledge sharing Distributed
—_——m— (V2X Communication) sensor fusion
Ea———————

Data acquisition at
the Infrastructure

Centralized / Distributed / Federated

We will focus on point clouds representation for data sharing
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Why is point cloud cooperative perception useful?

Among the main point cloud processing
downstream tasks to which cooperative
perception is beneficial are:

* 3D object detection

* 3D object tracking

* Semantic and instance point cloud
segmentation

*  Map generation
* Localization

We will focus on 3D object detection.
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From raw data... to results

Typ|ca||y, three types Of percepﬂon data A collaborative scheme among CAVs can be
are generated from heterogenous associated to each of the perception data types

perception nodes:
Early
4l collaboration

* Raw sensor data (e.g., camera RGB

images or LiDAR point cloud data);

* Feature data, containing meaningful

features extracted by classic statistical eature data [
methods or, usually, based on deep “

collaboration

Results data Cate .
48 collaboration

learning (e.q., through neural networks),

* Results data, containing the results of the
semantic perception information (like the
bounding boxes coordinates ofr a
detected object or its classification).

Bai, Z., Wu, G., Barth, M. J., Liu, Y., Sisbot, E. A., Oguchi, K., & Huang, Z. (2022). A survey and framework of cooperative perception: From heterogeneous singleton to
hierarchical cooperation. arXiv preprint arXiv:2208.10590.
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Vehicle collaboration schemes

CAV 1
& Observation 1 R m Feature 1 -
[F1, p1]= [Feature 1, Pose 1] [Ry, 1]= [Result 1, Pose 1]
.' S = P ¢-=~
I 1 i 1 |
! Final ! ﬁ ! Final ! ! Final
| , Resuilts 1 i Resuilts 1 I " Resullts 1
: 0 ! : [F1, p1] : [Rb 221 :
I | ! 1 i
: [02,p2]) | | [F2, p2] | Rz, p2l| |
I | 1 1 |
| | : % : |
! — i ! —_— ! i
I o~ 1 I - ! |
' ! ' [ Final I ' ' Final
i & | E & I | Results 2 i I Results 2
| | |
! Early ! | Intermediate ! : Late '
1 | |
! I ! ] : ]

Collaboration

—e— e e mm = = o= = o= == _—— = =

Collaboration _

[F3, p2]= [Feature 2, Pose 2] [R2, p2]= [Result 2, Pose 2]

Observation 2

CAV 2

T [0z, p2]= [Observation 2, Pose 2]

Huang, T, Liu, J., Zhou, X., Nguyen, D. C., Azghadi, M. R., Xia, Y., & Sun, S. (2023). V2X cooperative perception for autonomous driving: Recent advances and
challenges. arXiv preprint arXiv:2310.03525.
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Vehicles collaboration pipeline

Collaboration Stage , ' E ~
Sinal ot Pe eptl . Infrastructure
ngle-ag rc on |
I
I
I
| | fels Egocav
I
I .
| : CAV 2
| Collaborative Agent Selection |
| . I Cooperative
: Selected R I CAM  Awareness
| Agents’ K . R ; Message
. : CPMs | [cPm4 i h;?ndmg | Collective
Ry ——> CAM4 & CPM4 : L 4 = oo TConversion : CPM Perception
: .”'—""f’ T . % ﬁg AN Message )
| \ @@ O :
: \HH“”- :”’fr'-”b““"\ V2x | )
Yaw N A - 80 | Communication I .
/ | ... @ 7 e’ CPM  CPMs :Algorithm y
(x,y, 2) & Features ' Perception | : . I Module
/ ' Information Selection Col abora.t“"e Perception :
Rol  pi : Information Information !
Pitch | Preparation for Transmission Alignment Fusion ,'
N r
e e e e e e e e e e e e e e e e e e e e e e -

Huang, T, Liu, J., Zhou, X., Nguyen, D. C., Azghadi, M. R., Xia, Y., & Sun, S. (2023). V2X cooperative perception for autonomous driving: Recent advances and
challenges. arXiv preprint arXiv:2310.03525.
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Early collaboration (share the point clouds)

The CAVs share the collected raw sensor data at
the pre-processing stage.

Pros:
° Raw data is shared and integrated to build a .

holistic view.
* Effectively copes with occlusions and long- //

range obstacles acquired in single-vehicle

. Point
perception.
cons:

° Low tolerance to noise and transmission delays.
* Constrained by the communication resources.

Example: Cooper (Chen et al.)

Chen, Q,, Tang, S., Yang, Q., & Fu, S. (2019, July). Cooper: Cooperative perception for connected autonomous vehicles based on 3d point clouds. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS) (pp. 514-524). IEEE.
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Intermediate collaboration (share the features)

The CAVs extract features from the acquired raw sensor &
data and share the features.

Pros:
* High tolerance to noise, transmission delays S @K
with respect to early collaboration.

*  More robust to differences between nodes and //

sensor models.

Cons. . . oo PoINn D Xtracteo
° Requires suitable model training. cloud data features

* Itis complex to find a systematic method for

model design. @
Examples: F-Cooper, V2VNet, OPV2V, Pillargrid

Bai, Z., Wu, G., Barth, M. J., Liu, Y., Sisbot, E. A., & Oguchi, K. (2022, October). Pillargrid: Deep learning-based cooperative perception for 3d object detection from onboard-roadside
lidar. In 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC) (pp. 1743-1749). IEEE.

Xu, R., Xiang, H., Tu, Z., Xia, X., Yang, M. H., & Ma, J. (2022, October). V2x-vit: Vehicle-to-everything cooperative perception with vision transformer. In European conference on
computer vision (pp. 107-124). Cham: Springer Nature Switzerland.
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Late collaboration (share the results)

The CAVs process the perceived raw data and share the

perception results. W@
Pros:

° Easier to design and deploy in a real-world \M &«X M

cooperative perception system.

* (Can achieve better real-time performance.
Cons: / /
° Limited by wrong perception results or I Perception
differences between the sources. R
° Accuracy is usually lower with respect to early @

and intermediate collaboration.

Examples: Rauch et al., Zhang et al. g

Rauch, A., Klanner, F., Rasshofer, R., & Dietmayer, K. (2012, June). Car2x-based perception in a high-level fusion architecture for cooperative perception systems. In 2012 IEEE
Intelligent Vehicles Symposium (pp. 270-275). IEEE.

Zhang, Z., Wang, S., Hong, Y., Zhou, L., & Hao, Q. (2021, May). Distributed dynamic map fusion via federated learning for intelligent networked vehicles. In 2021 IEEE International
conference on Robotics and Automation (ICRA) (pp. 953-959). IEEE.
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Cooper - Cooperative Perception for CAVs on 3D point clouds

Cooper is an early collaboration
system which aims to improve the
detection performance on low-density
point clouds.

° Introduces Sparse Point-cloud Object
Detection (SPOD) method to increase
object detection performance in low-
density point clouds.

*  The transmission of low-density point
clouds (e.g., from 16-channels LiDARs)
relaxes the communication bandwith
requrements.

*  The authors collect a real-world
dataset (T&J dataset) explicitly
designed to assess object detection in
cooperative perception conditions.

Chen, Q,, Tang, S., Yang, Q., & Fu, S. (2019, July). Cooper: Cooperative perception for connected autonomous vehicles based on 3d point clouds. In 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS) (pp. 514-524). IEEE.
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Cooper - Sparse Point-cloud Object Detection

4 N )

Point clouds

re-processin Sparse Region
arF:d vgxel featugre 2 | convolutional [ 25| Proposal
middle layers Network

extraction

\ J \ J SPOD detection results

* |Input 3D lidar points are represented by a tuple of cartesian coordinates and reflection value (x, v, z, r).
* In the pre-processing, point clouds are projected onto a sphere to generate a dense representation.

* Voxel-wise features are extracted by means of Voxelnet.

* Sparse convolutional middle layers are applied.

* The Region Proposal Network is built using the SSD object detection architecture.

Liu, Wei, et al. "Ssd: Single shot multibox detector." Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016.

Zhou, Yin, and Oncel Tuzel. "Voxelnet: End-to-end learning for point cloud based 3d object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
Chen, Q,, Tang, S., Yang, Q., & Fu, S. (2019, July). Cooper: Cooperative perception for connected autonomous vehicles based on 3d point clouds. In 2019 IEEE 39th

International Conference on Distributed Computing Systems (ICDCS) (pp. 514-524). IEEE.
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Cooper - Sparse Convolutional Neural Networks

) input feature maps
input feature maps

Sparse Convolutional Neural Networks
tackle the reduction of computational
complexity in common CNN models

e X
* Introduce sparse decomposition in the
CNN filtering steps. mmmmm

channel
basis

&

convolution kernels

« Sparse decomposition can significantly

. . 4
cut down the cost of computation while
maintaining accuracy. g

 Each sparse convolutional layer can be output feature maps
performed with a few convolution
kernels followed by a sparse matrix
multiplication. output feature maps

Liu, Baoyuan, et al. "Sparse convolutional neural networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

Chen, Q., Tang, S., Yang, Q., & Fu, S. (2019, July). Cooper: Cooperative perception for connected autonomous vehicles based on 3d point clouds. In 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS) (pp. 514-524). IEEE.

sparse
kernel
matrix

&

®
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F-Cooper — Feature-based cooperative perception

F-Cooper is an intermediate
collaboration method introducing
feature-level data fusion.

« Shows that feature fusion allows to
achieve higher object detection
performance.

« Achieves faster edge computing with a
low communication delay (owing to
the features smaller size w.rt. the raw
point cloud data).

Model code and dataset: https://github.com/Aug583/F-COOPER

Chen, Qj, et al. "F-cooper: Feature based cooperative perception for autonomous vehicle edge computing system using 3D point clouds." Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing. 2019.
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https://github.com/Aug583/F-COOPER

F-Cooper — Architecture

I
! Sparse !
Convolutional --» D;tac'll;" !
Layer Network esu I
1
-— -— -_— — -— -— — -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -_— -— -_— —-— -— — — -_— — -_— -_— -_— -_— ’
Paradigm |: Voxel Feature Fusion (VFF)
ot } VDIEI — -_— -_— -_— -— -_— -_— -— -— -_— -— -— —-— -— -— — -— -— — -— -— -_— -_— - -_— -_— -_— -_— -_— -_— -_— —-—
Feature ~ \
Sparse Spatial 1
LIDAR data from Car 1 Convolutional [----»| Feature
Layer !
Fused Region . i
oo Spatel o>t popose > SN |
_____ Voxel Feature| o  voxel Feature Netwoark I
Enmding Feature —_———
Sparse Spatial | 1
Convolutional [----- Feature |
LIDAR data from Car 2 Layer 1
7’

O O O I O O O O O O O D O O B N B B D B D D D S S O e e e Ee

Paradigm Il: Spatial Feature Fusion (SFF)
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F-Cooper — Voxel Features fusion

Voxel features Voxel features fusion

 Key Value
) 012,043, ..., 0.86]
) [0.66, 0.23, ..., 0.10]
By y,,j,zV;) [0.03, 0.97, ..., 0.23]
) [0.56, 0.60, ..., 0.47]

/ / ]
[ EESTEEEEYE CEY SRRy
1 A

(
/1 ] (
(
(

! I = / T

I-Q-=f=—=—f=== -~y

* Afeature is associated to each non-empty
point cloud voxel.
* Voxels containing more than 35 points are

randomly sampled. , _ :
+ The points in a voxel are provided to the Voxel Voxels sharing the same location are fused by max function.

Feature Encoding (VFE) layer, which produces a
128-dimensional vector
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F-Cooper — Spatial Features fusion

Spatial features fusion
Spatial feature maps

Car1 H,

c Car2 Hy

* The spatial feature maps are generated by a set

of sparse convolutional layers. X (x1.y9) : H,
« (Hy,W,) is the size of the LiDAR bird-eye view. 1-‘ Pt
* Cisthe number of output channels of thelast 7 w7

sparse convolutional layer.
Spatial features are fused channel-wise using maxout.
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F-Cooper — Results

(a) Car 1 (Receiver) (b) Car 2 (Sender) (c) Fusion Detection Result on Car 1

Chen, Qij, et al. "F-cooper: Feature based cooperative perception for autonomous vehicle edge computing system using 3D point clouds." Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing. 2019.



Machine Learning on Graphs Code graphs

V2V communication networks
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3D data processing Drug design/
(e.g., point clouds, meshes) Molecular modelling




Graph structured data

A graph G = (V, E) is represented by
A set of nodes (or vertices) v; €V
e Asetof edges €ij = (vi,vj) eEE

The neighborhood of a node v is
the set of nodes directly connected
toviN(w)={ueV|(v,u) €E}

“7) POLITECNICO MILANO 1863

Directed graph: its edges are directed from one node to the other.
Undirected graph: a pair of edges with inverse direction is defined
among all connected nodes.




Graph representation — Adjacency matrix

The adjacency matrix A of a Undirected graph Directed graph
V2 Uy

graph G = (V, E) with n nodes
IS an n X n matrix with:

Aij = 1, ”c el-j eEE
° Al] =0, otherwise

0 1 0 1 1 0 1 0 0 1
1 0 0 1 1 0O 0 0 0 1
A=1(0 0 0 0 1 A=10 0 0 0 1
1 1.0 0 O 1 1 0 0 O
11 1 0 0 00 0 0 0
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Graph representation — Adjacency list

The adjacency list reports for each
node the list of nodes it is
connected to

* [tis more efficient for some
applications, e.g., in large and
sparse networks.

* |t allows to retrieve all the -
. . . acenc
neighbors in a single lookup. N P

U
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Graph representation — Edge list

The edge list is the list of all the
edges in the graph.

* It requires an additional step to
retrieve the neighborhood of a
node.

|t is more efficient for the
message-passing interface.

(.577) POLITECNICO MILANO 1863
Vil

Edge list

(1, 2)
(1, 5)
» (2,5)
(3,5)
(4,1)
(4, 2)




Attributed graphs

We consider attributed graphs,
where a feature vector can be
associated to each node or to
each edge.

Node features
x,, € R%, forv; €V
l

Edge features

.X'Si,vj (S ]RC, for eij = (Ui, U]) e E
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What is a Graph Neural Network?

A Graph Neural Network (GNN) is a neural
network architecture suited to effectively
process graph data.

From several domains, graph data comes
with complex relationships and object
interdependencies, posing challenges on
existing ML algorithms.

GNNSs exploit the potentials of deep
learning processing while accounting for
the features of graph data.

Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.
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Hidden Iayer

S

-

Activation function

Hidden Iayer

[ &

2

Activation function




Graph Neural Networks (GNNs)

/ Recurent GNNs \

Pioneer works on GNNs
that inspired later research
on Convolutional GNNs.

AIM: Learn node
representations exploiting
recurrent neural
architectures.

o J

/Convolutional GNNS\

Generalize the convolution
operation from grid data to
graph data.

AIM: Generate a nodes’
representation aggregating
its own features and
neighbors’ features

\_ /

/Graph autoencoders\

Unsupervised learning
frameworks.

AIM: Encode nodes/graphs
into a latent vector space
and reconstruct graph data
from the latent encoding.

o J

K:‘.patiaI—TemporaI GNNS\

Consider spatial and
temporal dependences
at the same time.

AIM: Learn hidden
patterns from spatial-
temporal graphs.

\_ /

Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.
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GNN downstream tasks

Node level — E.g., node classification

The outputs of a GNN can focus on x . jq;
different analytic tasks operating at %

d|ffereﬂt |e\/e|S c;: vector of classification scores for node vj

» Node level: outputs relate to node fEdge T —— ~
regression and node classification tasks.

+ Edge level: outputs relate to edge . o«

classification and link prediction tasks.

\ si;: link activation score for edge e”)
 Graph level: outputs relate to the graph
C|aSSiﬂca’[iOﬂ taSk. /Graph level — E.g., graph classification \
- R
\ c: vector of classification scores for the input grapy

Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.
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Convolutional GNNs

Convolutional GNNs (ConvGNNs) stack
multiple graph convolutional layers to
extract high-level node representations.

/ Spectral-based ConvGNNs \ / Spatial-based ConvGNNs \

Activation function
Activation function

Define graph convolutions Define graph convolutions by
introducing filters from the point of information propagation (message
view of graph signal processing. passing), analogously to applying

convolutions on images in
(E.g., Spectral CNN, GCN, AGCN). conventional CNNSs.

(E.g., MPNN, NN4G, DCNN,

k / k GraphSage, GAT). /

Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020): 4-24.
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Message Passing Neural Networks (MPNNS)

i : Neighbors’ information aggregation
Spatial ConvGNNs treat convolutions as a ° eeres

message passing process, in which (B z Mo (D p(k=1) e
information can be passed from one Y k( voooow ”“)

UeEN (v
node to the other along edges. @
. I k —
In message-passing neural.networks | hf, ) _ U, (h,(,k ”,mf,"))
(MPNNSs) a graph convolution operation
is divided into:
- aggregation of the information from f s the layer index |
) . . h,, " is the hidden representation of node v
nelghborlng nodes, hl(,o) = x,, i.e., the input features of node v
- combination of the local node features N(v) s the is of neighboring nodes of v
_ . / M, () is a learnable message passing function
with the aggregated nelghbors data. U, (+) is a learnable update function

MPNN: Gilmer, Justin, et al. "Neural message passing for quantum chemistry." International conference on machine learning. PMLR, 2017.
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GNNs — Permutation invariance and equivariance

For node-level tasks, the GNN output
should respect the input order of the
graph nodes. That is, the GNN must be an
equivariant function with respect to input
nodes permutations.

2D

For graph-level tasks, the GNN output

should not change if the input order of the D
graph nodes is different. That is, the GNN

must be an invariant function with respect

to input nodes permutations.

[L777) POLITECNICO MILANO 1863

f(X,A) e R4
f(PX,PAPT) = Pf(X,A)

f (X, A): function representing the GNN

X € R™?: nodes features matrix

A € R™": graph adjacency matrix

P € R™™: arbitrary nodes permutation matrix

f(X,A) e R?
f(PX,PAPT) = f(X, A)




V2VNet - Joint perception and prediction in V2V communications

SDVs Topology

VZ2VNet is an intermediate collaboration
method that improves the detection and
motion-forecasting performance under

V2V communication constraints by:

* Introducing a spatially aware GNN to
intelligently combine the information
received from the nearby CAVs.

* Integrating a variational compression
algorithm to compress the intermediate The recently introduced approaches

representations to be shared. that perform joint detection and
motion forecasting are named

perception and prediction (P&P)

Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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V2V Net - Architecture

' Broadcast V2V Messages | 'Receive V2V Messages . (At, Ap, 2)
@- - ﬁ'\ - N 4 Intermediate
——ap - LI —’ 1 LI Time delay l representation
=Ll =% L B X ) Relative pose
’ 1
Compressor Decompressor
v
Cross-vehicle
e Aggregation
oY e 4’.«{-:*:
Point Cloud LiDAR Conv Output Net PnP Output

Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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V2VNet — LiDAR Conv block

Output Net PnP Output

The LIDAR Conv block processes raw sensor
data and creates a compressible intermediate
representation.

 The past 5 LIDAR point cloud sweeps are |

voxelized (into 15.6 cm voxels). 3 conv. layers with 3 X 3 filters
P and strides of (2, 1, 2) produce a

4x downsampled feature map.

+ Several convolutional layers are applied.

« The output feature maps have dimensions
HXW x C, where HX W is the scene
range in BEV, and C is the number of
feature channels.

Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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V2VNet — Data compression

Data compression is achieved in
V2VNet training a variational

compression module by Ballé et al.

* The left side shows an image
autoencoder architecture.

* The right side is an autoencoder
implementing a hyperprior.

* The hyperprior allows to
effectively capture spatial
dependencies in the latent
representation.

Broadcast V2V M Receive V2V M X : (At,Ap,2)
- — < 4 Intermed
N o - __1?“ (o} medey ) representat
Pl Li[J [—I Relative pose
| Compressor | | Decompressor |I
——
=A
=, Cross-vehicle
. Aggregation
Point Cloud LiDAR Conv Output Net PnP Output
9, h,
—_— — — — —_— — — —
— o —
@ ~ ~ ~ o Z o ~
~ ~ ~ ~ ™ =~ ~
2| | |2 2 2 I 2 2 2
X X X
N = = = LN ) ™M = n =)
E|lx 28 o9 ob % S X g X g 2
=2 = Q| |= O |z Q| |= Y 4 Z o =4
=Y > > > > E > >
El | |5 : g £ § 5 2
o e o] s} = o 8
S J _ _ N S — _J
gS . l hs
— — — — —— I.I.I 1 — — —
c — — — — " i 1 — —
o o~ o~ o~ N o~ o~
° ~ ~ ~ ~ [ P ~ ~
2| % 73 = i = in = n gl |=2 ™ =) é -] Lﬁ
[ [a) (&) (] o5 I | x - -
t‘; X 0] x G] x o x D [ s D < X [0} x
c ¥ — =z — = — = o o = o’ =
G > > > > = > >
3 | |5 c g g 5 £ 5
= o s} O 5] = 8 S
J S — __J N J —J _J

Conventional compression and hyperpriors
Using a VAE architecture, the entropy model given by Shannon
cross-entropy corresponds to the prior of the latents. In turn,
side information can be seen as a prior on the parameters of
the entropy model, which makes it an hyperprior of the latents.

Ballé, Johannes, et al. "Variational image compression with a scale hyperprior." arXiv preprint arXiv:1802.01436 (2018).

Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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V2VNet — Cross-vehicle Aggregation

Output Net PnP Output

The cross-vehicle aggregation
module integrates the received

information from other vehicles

=&
to produce an updated &f @
intermediate representation. EE'I]";H ;& sender (O
 This module has to handle ==, 1,0
data from CAVs located at intermediate x4 Relativ pose

different locations and seeing

actors at different timeStampS- A spatially aware GNN is used to aggregate
e The intermediate feature the data received from the nearby CAVs

representations have to be
spatially aware.

Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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Broadcast V2V M Receive V2V M

X : (At, Ap, 2)

V2VNet — Spatially aware GNN f&fl; lf-rfﬁaf“ﬁ: e

m | Cross-vehicle I \\\

Aggregation

Point Cloud LiDAR Conv Output Net PnP Output

Fach vehicle uses a fully-connected
GNN as aggregation module.

Algorithm 1. Cross-vehicle Aggregation

1: input: representation z;, relative pose Ap;, and time delay At;_., for each SDV i
) 2: for each vehicle ¢ do

® EaCh G N N ﬂOde IS the State 3 h§°) =CNN (2, At;—) || O > Compensate time delay, init. node state
. 4: end for

representation of a connected 5: for [ iterations do > Message passing

] ) ) 6: for each vehicle ¢ do > Processed in parallel

CAV (including the CAV itself). n m, = ONNT(D,&i) b)) Mimi > Spatially transform message

_ . 8: R = ConvGRU (B, ¢ (Vieniiy,s mgiz])) > Node state update

 Since the other CAVs are in the 9 end for

: end for

same |Oca| a rea, th en Od e 11: z,fL) = MLP(th)) > Output updated intermediate representation

representations will have

overlapping fields of view. A GNN is a natural choice oo oo \

. to handle dynamic graph /| ke T(hj, <. 2) i

* Overlappmgs can be used to topologies which arise / E ! " % !
enhance the CAV's scene in the V2V setting. ! o ]
understanding. ", Spatally aware message passing |

Schlichtkrull, Michael, et al. "Modeling relational data with graph convolutional networks." The Semantic Web: 15th International Conference, ESWC 2018.
Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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V2VNet — Spatially aware GNN

Spatial transformation message

(l) CNN( (h(l),&_)k) h(l)) %_)k

T ]

Spatial transformation and Masking for non-overlapping
resampling of the feature areas between the fields of view
state via bilinear interpolation.

With this design, the message
keeps spatial awareness.

Broadcast V2V M Receive V2V M X : (At, Ap, 2)
ﬁ" . ﬁ‘\ — 4 Intermedi te
D/B\_ =y _ /B\l_ Lo Time del:j representation
o1 B = = [ 1) Relative pos
| Compressor | | Decompressor |
ﬁ A\
Cross-vehicle
| Aggregation I
Point Cloud LiDAR Conv Output Net PnP Output

&Lk is a spatial transformation that warps
the intermediate state of the i-th node to
send a GNN message to the k-th node.

J

The spatially aligned feature maps of both
nodes are processed through a CNN.

J

A mask is applied to non-overlapping
areas bewteen the nodes’ fields of view.

Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,

August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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Receive V2V M = : (At, Ap, %)

Broadcast V2V M
ﬁ Sy 4 Intermediate
= =" b | e representation

V2VNet — Spatially aware GNN ] el L

|Compressor| | Decompressor |

f—ﬁ W\
Cross-vehicle
| Aggregation I

Point Cloud LiDAR Conv Output Net PnP Output

Node state update
¢y is @ mask-aware

l [ [

mg—)ﬁc — CNN(T(hz(‘ ),&_Jf), h](f )) - Mk permutation-invariant
function aggregating the

h§l+1) — ConfUGRU(hEl) ’ fb_ﬂ,/-’([vjEM’ mgllz])) received messages.

/ \ g

Function aggregating Neighboring nodes
the received messages

The node state is updated
using a convolutional Gated
The gating mechanism enables information Recurrent Unit (ConvGRU).

selection for the accumulated messages
based on the current receiving node belief.

Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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V2VNet — Output Network

Output Net PnP Output

« The output network consists in
a 4 Inception-like convolutional

blocks that efficiently capture | | (x,y,w, h,0)
multi-scale context. Objeif;ljte:t'on » ] o ] o \

* The reSUltlng feature map IS Position Size Orientation
processed by two network
branches to output object
detection and motion (X, ye)
forecasting estimates. Motion forecasting

7 outputs 2» 1

Object location
at future time step ¢t

Inception blocks: Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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V2VNet — Evaluation dataset

SDVs Topology - %, SDVs Topology

The V2V-Sim is a simulated large-scale
V2V communication dataset.

* Based on the LIDARsIim high-fidelity
simulation system.

» Leverages traffic scenarios captured in
the real-world ATG4D dataset.

« Composed by 51,200 total frames,

» 10 candidate vehicles per sample on
average (max: 63, variance: 7).

Manivasagam, Sivabalan, et al. "Lidarsim: Realistic lidar simulation by leveraging the real world." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020.
Yang, Bin, Wenjie Luo, and Raquel Urtasun. "Pixor: Real-time 3d object detection from point clouds." Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition. 2018.
Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,

August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.



V2VNet - Results

3D object detection and tracking results on the V2V-Sim dataset

Method AP@IoU 1 | #2 Error (m) | TCR |
0.5 0.7 |1.0s 2.0s |3.0s |7=0.01
No Fusion 77.3 [68.5 10.43 0.67 [0.98 |2.84
Output Fusion | 90.8 | 86.3 1 0.29|0.50 | 0.80 |3.00
LiDAR Fusion | 92.2 | 88.5 | 0.290.50|0.79 |2.31
V2V Net 93.1  89.9 /0.29 1 0.50 0.78 | 2.25

£, error is evaluated at recall 0.9 at different timestamps.

TCR: Trajectory Collision Rate
NMS: Non-maximum Suppression

Draco 3d data compression (2019) - https://github.com/google/draco
Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,

August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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Baselines

No Fusion: Single vehicle setting,
without V2V communication.

Output Fusion (late collaboration): each
vehicle sends post-processed outputs,
i.e., bounding boxes with confidence
scores, and predicted future
trajectories after NMS.

LIDAR Fusion (early collaboration): the
raw LiDAR point clouds received from
the other vehicles are referred to the
receiver coordinate frame and direct
aggregation is performed. Draco has
been used to compress the LiDAR
fusion messages.



https://github.com/google/draco

V2VNet - Results

3D object detection results on the V2V-Sim dataset varying the number of LiDAR points
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Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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V2VNet - Results

3D object detection results on the V2V-Sim dataset for different velocities
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Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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V2VNet - Results

3D object detection results on the V2V-Sim dataset for varying percentage of CAVs
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SDV: Self-driving vehicle (alternative definition to CAV used in the article)

Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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V2VNet - Results

3D object detection results on the V2V-Sim dataset for different time delays in data exchange
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Wang, Tsun-Hsuan, et al. "V2vnet: Vehicle-to-vehicle communication for joint perception and prediction." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part Il 16. Springer International Publishing, 2020.
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V2VNet - Results

3D object detection results on the V2V-Sim dataset for noisy vehicles’ relative pose estimates
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Benchmarks and datasets — OPV2V

OPV2V is a large-scale simulated
dataset for perception with V2V
communication

°  pbased on OpenCDA and CARLA;

° aggregated sensor data from
multi-connected CAVs,

° /3 scenes, 6 road types, 9 cities; | Velodyne HDL-64E LIDAR
12K frames of LIDAR point clouds Sy :
and RGB camera images, 230K . p—
annotated 3D bounding boxes,

° comprehensive benchmark with 4
LIDAR detectors and 4 different
fusion strategies.

OPV2V: https://mobility-lab.seas.ucla.edu/opv2v/; OpenCDA: https://github.com/ucla-mobility/OpenCDA; CARLA: https://carla.org

Xu, R., Xiang, H., Xia, X., Han, X., Li, J., & Ma, J. (2022, May). Opv2v: An open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle
communication. In 2022 International Conference on Robotics and Automation (ICRA) (pp. 2583-2589). IEEE.
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https://mobility-lab.seas.ucla.edu/opv2v/
https://github.com/ucla-mobility/OpenCDA
https://carla.org/

Benchmarks and datasets - V2XSet

VZ2XSet is a large-scale simulated
dataset for perception with V2X
communication
*  Based on OpenCDA and CARLA.
* Contains 11,447 frames.

* Explicitly considers real-world
noises during V2X communication.

* Considers V2X communications
(includes also the communication
infrastructure), with respect to
OPV2V, which restricts to V2V

Dataset and model website: https://github.com/DerrickXuNu/v2x-vit; OpenCDA: https://github.com/ucla-mobility/OpenCDA; CARLA: https://carla.org

Xu, R., Xiang, H., Tu, Z., Xia, X., Yang, M. H., & Ma, J. (2022, October). V2x-vit: Vehicle-to-everything cooperative perception with vision transformer. In European conference on



https://github.com/DerrickXuNu/v2x-vit
https://github.com/ucla-mobility/OpenCDA
https://carla.org/

Benchmarks and datasets - DAIR-V2X

DAIR-V2X is a multi-modal multi- * It comprises a total of 71,254 frames
view real-world dataset for V2| of image data and 71,254 frames of

cooperative 3D object detection point cloud data;
* Itis integrated with the OpenDAIR-

e k 1n s srcture side V2X framework.
'51/5@ o— i‘ 1 |A\_\\}-\\\—v e
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Dataset and framework websites: https://thudair.baai.ac.cn/index; https://github.com/AIR-THU/DAIR-V2X
Yu, H., Luo, Y., Shu, M., Huo, Y., Yang, Z., Shi, Y., ... & Nie, Z. (2022). DAIR-V2X: A large-scale dataset for vehicle-infrastructure cooperative 3d object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 21361-21370).
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https://thudair.baai.ac.cn/index
https://github.com/AIR-THU/DAIR-V2X

Benchmarks and datasets - OpenCOOD

OpenCOOD is an open
cooperative detection framework
integrating state-of-the-art (SOTA)
datasets and perception models.

* Provides an easy data API for both
OPV2V and VZ2X-Set datasets.

° Includes multiple SOTA 3D
detection backbones (e.g.,
PointPillar and VoxelNet)

* Integrates a wide variety of SOTA
cooperative perception models.

Framework website: https://github.com/DerrickXuNu/OpenCOOD

Xu, R., Xiang, H., Xia, X., Han, X,, Li, J., & Ma, J. (2022, May). Opv2v: An open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle
communication. In 2022 International Conference on Robotics and Automation (ICRA) (pp. 2583-2589). IEEE.
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Beyond data sharing...

Who2com
(2020, Liu et al.)

Proposes a three-stage communication mechanism
(request, match, and connect) in order to select the
best matching agents for communication.

Liu, Y. C.,, Tian, J., Ma, C. Y., Glaser, N., Kuo, C. W., & Kira, Z. (2020, May).

Who2com: Collaborative perception via learnable handshake communication. In
2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE.

WhenZ2com
(2020, Liu et al.)

Introduces a method to learn to construct the
communication group and to decide when to share
(without explicit supervision for such decisions).

Liu, Yen-Cheng, et al. "When2com: Multi-agent perception via communication
graph grouping." Proceedings of the IEEE/CVF Conference on computer vision and

pattern recognition. 2020.

Where2com
(2022, Hu et al)

Defines a spatial-confidence-aware communication
strategy by learning a spatial confidence map to
identify the perceptually critical areas.

Hu, Yue, et al. "Where2comm: Communication-efficient collaborative perception

via spatial confidence maps." Advances in neural information processing systems
35 (2022): 4874-4886.

HowZ2com
(2023, Yang et al))

Provides a collaborative perception framework that
seeks a trade-off between perception performance
and communication bandwidth.

Yang, Dingkang, et al. "How2comm: Communication-efficient and collaboration-

pragmatic multi-agent perception." Thirty-seventh Conference on Neural
Information Processing Systems. 2023.

: POLITECNICO MILANO 1863




Open challenges and future directions

« TJest the methods performances on challenging scenes and corner
cases (common datasets include only typical traffic situations).

« Generalizability of models trained on simulated data to real scenarios.

« (Counteract possible a malicious and selfish behavior of an agent (e.q.,
an agent collaborating solely to reduce its costs while causing
detriment to the other nodes).

« Exploit multi-sensor data through multi-modal data sharing.
e [ntegrated sensing and communication for cooperative perception.
« Privacy preserving cooperative perception.

Huang, T, Liu, J., Zhou, X., Nguyen, D. C., Azghadi, M. R, Xia, Y., ... & Sun, S. (2023). V2X cooperative perception for autonomous driving: Recent advances and challenges.
arXiv preprint arXiv:2310.03525.
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- Robot Localization (without GNSS) -
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Artificial Intelligence and Robotics Laboratory
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Where Am [?

To perform their tasks autonomous robots and unmanned vehicles need
° To know where they are (e.g., Global Positioning System)
* Jo know the environment map (e.g., Geographical Institutes Maps)

These are not always possible or reliable
* GNSS are not always reliable/available
* Not all places have been mapped
° Environment changes dynamically
* Maps need to be updated

= = How do maps
| look like?
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Localization without GNSS

Problem: getting a coarse global localization estimate in LIDAR maps
when GNSSs are unavailable?
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Localization without GNSS

This ca be framed as a classical place recognition task ...
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Place recognition

Given a query image find the corresponding one in a (geo-referenced)
database of images




Place Recognition - Introduction

State of the art approaches use CNNS.

| NxD local descriptors x

Image  Convolutional Neural Network | NetVLAD layer
: = , | (KxD)x1
! | ',_______§_°It:§§_5lg'J'J’l§'J'E _______ | VLAD
: : [ convwb) | s soft-max |t L2 | vector
' | :l 1x1xDxK N ! | normalization [
| i Fo— - P |
: L X x v intra- '
: I TWxHxD map interpreted as VLAD core (c) [ normalization :
| | |

(a) Mobile phone query (b) Retrieved image of same place
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Global localization in LIDAR-maps via 2D-3D embedding space

Joint training of a 3D-CNN and a 2D-CNN in such a way that point
clouds and images from the same place have similar embedding vectors

Point Clouds Shared Images

" Embedding
o

555555555
DO C

777777

5555555555555555

D. Cattaneo, M. Vaghi, S. Fontana, A. L. Ballardini, D. G. Sorrenti: Global visual localization in LIDAR-maps through shared 2D-3D
embedding space. ICRA 2020: 4365-4371




Global localization in LIDAR-maps via 2D-3D embedding space

3D Feature Extractor:
*  Pointnet
°*  Pointnet++
* SECOND
* EdgeConv

Triplet Selection:
*  Offline Mining
*  Online Mining
Hard negative

Semi-Hard negative
Random Negative

OLITECNICO MILANO 1863

Loss Function:
* Triplet
* (Contrastive
*  Npair
* Lifted Structured Embedding
* Learning by Association

Training method:

* Teacher / Student
* Joint Training




Knowledge Distillation

Teacher T i Embeddings

2D-CNN =——»  NetViad

* Initially a CNN model learns

to perform place recognition Il
with images .
* Then: PSS
emula
descriy
JE __
L7 = Z d(f(1;), g(m;))
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Joint Training - triplets

Embeddings

2D-CNN =—»  NetViad

Positive Match

v
The triplet technique consider a L ﬁ
positive and a nenative camnle Sy SERIL A Triplet
with res 0ss
7Y

Lorp 20 =) _[d(f(I7), g(mf)) — d(f(I}), g(m])) + m]4

0
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Joint Training - triplets

The triplet technigue consider a
positive and a negative sample
with respect to a query
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Joint Training - triplets

Query Embeddings

3D-DNN =——> 3DNetVlad =—b
i A
Shafred Shaired {
The triplet technique consider a H g
positive and a negative sample . ———
with respect to a query
A A
E | 3
Negative Match Sheired Shai:red
v v
e f=§

3D-DNN =—=» 3DNetVlad

@oco0e

vwﬁ
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Joint Training - triplets

Query Embeddings

3D-DNN =——=p 3DNetVlad =—p

v
The triplet technigue consider a
positive and a negative sample 2D-CNN N
with respect to a query
N A
i | 3
Shared Shdred
v v
2D-CNN —  NetVlad

@oco0e
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Joint Training - Loss

L0 =N [d(fU). fUP)) —d(F (), f(I) +m)
L0020 =Y [d(g(m), g(m!)) —d(g(mf),g(m}!)) +m]-.
Lo P =N [d(f(I7),g(m))) —d(f(I]),g(m})) +m]

L0020 =Y [d(g(m), (1)) —d(g(mf), f(I]')) + m]

Liora] = Avl ( EZD—to—ZD J(:C’)D—t0—3D) sz ( £2D—t0—3D £3D—t0—2D) 2'3 r JE

(rp trp trp




Global localization results
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Quantitative results

Database 2D Database 3D

Query 2D 97.03 % 78.01 %

PLACE
RECOGNITION

Query 3D 73.00 % 98.39 %
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3D Place recognition - comparison

Database 2D Database 3D

S
2 % Query 2D 97.03 % 78.01 %
T g Query 3D 73.00 % 98.39 %
I S T
3D-2D 93.24% 87.56%
PNVlad [1] 80.09% 63.33%
PCAN [2] 86.40% 70.72%

[1] Mikaela Angelina Uy and Gim Hee Lee. «Pointnetvlad: Deep point cloud based retrieval for large-scale
place recognition.», CVPR, 2018

[2] Wenxiao Zhang and Chunxia Xiao, «PCAN: 3D Attention Map Learning Using Contextual Information for
Point Cloud Based Retrieval”, CVPR 2019
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2D-3D graphs
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2D-3D graphs
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