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INTRODUCTION _z"

1. Introduction: 3D Non-Rigid shapes and registration
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What Is a shape:

Real world: the external shell or the entire volume
of an object or a scene in the space where we live.

Math: 2-dimensional smooth
manifold (Riemannian surface)
embedded in R3 or a dense

subset of the 3D space R3.



Different representations

2

(Triangle) Mesh Point cloud



Rigid and Non-Rigid




Matching




Matching




Challaenges




Rigid registration

Matching




Buiyoren

Rigid registration



Non-rigid matching/registration

Matching




Medical applications




Disease detection and classification

Template Trigonocephaly Normal Metopic




Shape interpolation




Statistical shape analysis
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Source

Target

Deformation-transfer

v e o
| S A o s

Sumner et al. Deformation Transfer for Triangle Meshes, 2004



Texture-transfer

Chen et al. Non-parametric texture transfer using MeshMatch, 2012
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SPECTRAL REPRESENTATION

. Spectral representation @



Laplace Operator

A swiss army knife to work with general representations

+ Graphs review
+ Linear Algebra review
+ Intrinsic geometry tools



Graph Spectral Theory

x4
A\V/ = Av
e A €R™TT (Spare Motix)

Long story short:
Given a graph, we compute a characteristic matrix
and we consider its eigendecomposition




Meshes are Graphs




Graph Spectral Theory

Is it relevant?

|L=D—-4
Network topdogic
mic'mauov: ‘Jj;v
SN
~\ 1 1
Ly=D"2LD2
PR O §
or Ly=D""L
Bl Vertex attribute
"
Signal s 2\ Convolution signal s’

Limit K=1 and approximate

; 1 1
go*s= 6(1 +D 24D 3)5 the largest eigenvalue of £,

_Lj__ by 2 [Kipf et al. ICLR 2017]
K
gog*s= Z Ok T (Ly)s [Defferrard et al. NIPS 2016]
k=0

Rethinking Graph Transformers with Spectral

Attention

Convolution

Devin Kreuzer *
McGill University, Mila
Montreal, Canada
devin.kreuzer@mail.mcgill.ca

Dominique Beaini
Valence Discovery

Montreal, Canada Montreal, Canada

dominique@valencediscovery.com wlh@cs.mcgill.ca vletour2@uottawa.ca

Prudencio Tossou

Valence Discovery

Montreal, Canada
prudencio@valencediscovery.com

William L. Hamilton Vincent Létourneau
McGill University, Mila University of Ottawa

Ottawa, Canada

Positional Encoding




Graph Representation

adjacency matrix

node edge

https://medium.com/basecs/a-gentle-introduction-to-graph-theory-77969829ead8



Order of the nodes

same structure but
different representations

the order of the nodes is
different

permutation invariant
representation!




A function/signal over a graph

12F

associates a scalar value to every vertex

represents it as a color w.r.t. a colorbar

(<) (d)

https://noamgit.github.io/2018-12-01-gsp/

https://www.semanticscholar.org/paper/Big-Data-Analysis-with-Signal-Processing-on-Graphs%3A-
Sandryhaila-Moura/65d61afd9c35b0a75d9de77c2a4a2428af0f 7f7b/figure/O



Study Functions in Euclidean domains

Change in X

1D signal
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2D signal




Standard for signal defined on Euclidean domains




Standard for signal defined on Euclidean domains

Functions as a linear combination of sinusoids
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Linear Algebra recap

Given a vector space V, a subset B is a basis iif:

» Linearly independent v = aiby + by + - 4+ ay,b
« They span all the vectors of V

Useful properties: Orthogonality Normality
< b;,b; >=0 < b;,b;, >= 1

Computing coefficients is much simpler (e.g., @2)
v-by = (qul—FOdeQ—i—' : "|-Odnbn)'52 -

aobobo — 10162 — 30309 — -+ — v, 0,02

[b2][2




Analysis
W AR W ) B -
SHeeef ey B LA A=

) a=< B,v>= Bl

Basis projection




Synthesis Synthesis

v = Bao

Basis recombination



Gradient, Divergence, Laplacian
Important tools from analysis:

The gradient The divergence
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The Laplacian
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oo derivative.
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The change of a rate of change



Fourier Analysis and Laplacian

A fourier basis with frequency & SN (3327(-6)

Apply the Laplacian A Sin(aj‘27r£)

(second order derivative)

Asin(227€) = —4n°€* sin(x27€)

The Fourier basis functions are the eigenfunctions of the Laplacian

The Laplacian in 1D coincides with the sum of the second order derivatives



Our problem

Define tools like this

on

Graphs & Meshes N

Non Euclidean Domain




Summary so far:

Graphs: general object, with nodes and a connectivity
Functions on Graphs: vectors (scalar value for each node)
Euclidean analysis tools: Fourier analysis

Fourier basis: Eigenfunctions of the Laplacian

Key idea:
We need a Laplacian on graphs!
Trick: Adapting the definition




Discrete setting (1D)




Discrete setting (1D)

10
®
.5
2 .3 ®
®
.-3
-5
®
x1 x2 x3 x4 x5 x6 xT
2 5 10 3 -5 -3 4

Vertices {x1, x2, x3, x4, x5, x6, x7}
Edges connect consecutive points

The y-value is a function on the graph F:V — R



Discrete setting (1D)

Functions as vectors




Discrete setting (1D)

We can represent functions as a linear
combination of a basis (Fourier basis)




Discrete Setting

f(x) =

2 |5 |10|3 |-5 |-3 |4




Discrete Setting

f(x) =

2 |5 |10|3 |-5 |-3 |4

F(x) =

f(xit1) — F(xi)

3|5

Xi

- h
7 |-8 |2 I? I




Discrete Setting

x1 x2 x3 x4 x5
f(x)=2|5 |10|3 |-5 |-3 |4 O—O—0—0—
2 5 10 3 -5
f’(x,') _ f(xiv1) — F(xi)
h
f(x) =] 3 |5 |-7 |-8 |2 |7 |
_ fJ(X,') — f!(X; — ].) - f(X,'Al}—I— f(X,'_l) —2f(X,)

f” (X:')

h h?




Discrete Setting

fix)=[2 |5 |10|3 |-5 |-3 |4
) = Fl) =)
f(x) =[ 3 |5 |-? |-8 |2 |7 |
() = f'(xi) — ;’(x; -1) __ flxia) + f(:;_l) — 2f(x;)

assuming h = 1:

£ (x:) = F(xi11) + F(xi-1) — 2F(x)

F(x) = |2 |-12|-1 |10 |5 |

X x2 x3 x4 x5 6
5 10 3 -5 -3
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-1 1 0 0 0 0 0
1 -2 1 0 0 0 0
0 1 -2 1 0 0 0 x1 x2 x3 x4 x5 x6 x7
o 01 21 0 o @O —O—O—O—0—@
0 0 0 1 -2 1 0 2 5 10 3 -5 -3 4
0 0 0 0 1 -2 1
(0 0 0 0 1 1

L=W — D, where D is the diagonal matrix of the degrees, and W is the

weighted adjacency matrix.




L =W — D, where D is the diagonal matrix of the degrees, and W is the

weighted adjacency matrix.
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Discrete Fourier Analysis and Laplacian

A fourier basis with frequency i-th Discrete Setting:

it Is a vector
Apply the Laplacian The Laplacian
(second order derivative) IS @ matrix

Lo; = Ao

The vectors of the Fourier basis are the eigenvectors of the Laplacian




Eigendecomposition




Laplacian Eigenvectors — 1D
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Laplacian Eigenvectors — 2D
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Laplacian Eigenvectors — Generic Graph

Minnesota Road Map, D. Gleich, 2010,https://www.cise.ufl.edu/research/sparse/matrices/Gleich/minnesota.html




Summary so far:

Graphs: general object, with nodes and a connectivity
Functions on Graphs: vectors (scalar value for each node)
Euclidean analysis tools: Fourier analysis

Fourier basis: Eigenfunctions of the Laplacian
Discretization of the Laplacian: a sparse square matrix
Discrete Fourier basis: Eigenvectors of the Laplacian

Next Goal
use it in applications on graphs and 3D data




Graph Laplacian for 3D shapes (LBO)

Figure 4. Contours of the 4th eigenfunction,
Bruno Levy computed from the Graph Laplacian (left)
and cotangent weights (right) on an irregular
mesh.

Key Features: Global operator defined by local relations, fully intrinsic, theoretical
invariant to discretizations and isometries.


https://members.loria.fr/Bruno.Levy/papers/Laplacian_SMI_2006.pdf




Example: Human Eigenfunctions
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LBO and isometries

Two shapes are isometric < their LBO agree
T is anisometry <= dy(p, q) = da(T'(p), T(q)) Vp,q € M

Any quantity derived
from the LBO
IS invariant to isometry




Spectral embedding
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Example: sphere eigenfunctions

D1 @2 @3 D4 @5

Consider 2,3 and 4 and plot them in the feature space
















LBO and isometries

Two shapes are isometric < their LBO agree
T is anisometry <= dy(p, q) = da(T'(p), T(q)) Vp,q € M

Any quantity derived
from the LBO
IS invariant to isometry




LBO and isometries

Two shapes are isometric < their LBO agree
T is anisometry <= dy(p, q) = da(T'(p), T(q)) Vp,q € M

Any quantity derived from the LBO is invariant to isometry

4




LBO and isometries

Two shapes are isometric < their LBO agree
T is anisometry <= dy(p, q) = da(T(p), T(q)) Vp,q € M
Any gquantity derived from the LBO is invariant to isometry

x
o
=] d
by =] =1

(]




Example: Human Eigenfunctions (In the feature space)
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Functional
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Fourier basis

The eigenfunctions of the Laplace Beltrami Operator (LBO)
A = Mo Grom=8 N= [ [Velidut
M

AL =0 M =623 A3=11.36 M\ =12.85 \;=16.46
g f 1

n 0

— 1

®1 ®2 O3 \ g ( P4 O

Laplace-beltrami eigenfunctions towards an algorithm that understands geometry, Levy, 2006



Fourier representation

Laplace-beltrami eigenfunctions towards an algorithm that understands geometry, Levy, 2006



Synthesis and analysis

s
£ /~\’
Given a signal: f' s |
(A
44
The analysis: = (f, pym = f(@)ou(x)dp(z)

M

o n
The synthesis: /= Z Q= Z(f? ¢1>M¢z
=1

[=1

Laplace-beltrami eigenfunctions towards an algorithm that understands geometry, Levy, 2006



Synthesis and analysis: dicrete setting

o fom =T Qg

Given a signal: / \' -~ Y D = [P1, P2, .. Pr-1, Pk

{ A
| B, st B\ By =1
P\ s.t. (I)jT\/[QM(I’M — ]
The analysis: a=3a,f
O = @1

The synthesis: =&, a = @M@j\/‘f

Laplace-beltrami eigenfunctions towards an algorithm that understands geometry, Levy, 2006



Application: Signal smoothing




Application: Signal smoothing
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Application: Signal smoothing
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Oh no, | am lost!



Oh no, | am lost!

DON’T
PANIC



Oh no, | am lost!

N
Vertices

a matrix

Given a
mesh



Oh no, | am lost!

N
Vertices Pointwise
features
: N x k
- —A
< .
a matrix
Given a

mesh



Oh no, | am lost!

N

Vertices Pointwise
features
. N x k
( .
a matrix
' - k

A : Global
éiven a latent codes
mesh




Oh no, | am lost!

N
Vertices Pointwise
features
. N x k
—A
( .
a matrix
’ = k
‘ — Global
éiven a latent codes

mesh




Main issues b) Pointclouds

a) Topological noise R

—h—

LB =

it ab c) Clutter\Partiality ¢) Heavy non-
. isometries
vV Y é‘ %

e o P =



Summary so far:

Graphs: general object, with nodes and a connectivity

Functions on Graphs: vectors (scalar value for each node)
Euclidean analysis tools: Fourier analysis

Fourier basis: Eigenfunctions of the Laplacian

Discretization of the Laplacian: a sparse square matrix

Discrete Fourier basis: Eigenvectors of the Laplacian

This is general enough: it works on graph and meshes (point clouds)
Nice theoretical properties: isometries, near isometries, low-pass filtering
Connection with Fourier Analysis: Non-Euclidean signal processing
Many applications: Classification, Segmentation, Positional encoding
Weakness: many real case scenarios ruin the theoretical premises

Next Goal
use it in 3D non-rigid registration
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AXIOMATIC APPROACHES

. Axiomatic approaches




ICP (1D case)

The solution is a rigid transformation R* —» R?

X1
X3
Y1 X2 r‘_’
o,
Vs Y3

ICP approach = iterate alternating:
(1) finding correspondences;
(2) finding optimal transformation.

Slide credits to M. Ovsjanikov



ICP (1D case)

ICP = Iterative Closest Point

Given 2 shape X and Y

lterate (a stop criteria is satisfied):

1. Vx; € X find the nearest neighbory; € Y,

2. Find R optimal rotation and t translation s.t.:

N
4 D lIRx; + = yil13
i=1

Y1 B

Slide credits to M. Ovsjanikov



Features-based

v



Features-based

v




Features-based




Features-based

¥

How do you suggest to find the most similar point to the yellow one?



Features-based
descy

Distance = D(descy, descy)



Features-based

descy

Distance = ||descx — descy“2



Features-based

descy

ar gmm|

[I(x) =y = |descx(x) descy (y)”



Desired properties

A descriptor (signature) should be:

1. Effective
2. Concise\compact
3. Repeatable
4. Robust




SHOT

For all p we define the covariance matrix:

M= ——— 3 (R—d)(pi—p)(pi — )"

E  (R—di) i:d; <R

From the eigenvectors of M
we obtain a LRF (x, v, 2)
that is then used to define:

SHOT
Signature of Histograms of OrienTations

Unigue Signatures of Histograms for Local Surface Description, Tombari et al.,



https://vision.deis.unibo.it/fede/papers/eccv10.pdf

SHOT: construction

Once we have the LRF for every point p we can define a coherent 3D grid

The 3D space around p is subdivided in 32 regions
each of wich is a different bin of the histogram that
describes the point.

P — I
1 2 .. ... 3132

The value of each bin is a weighted sum of cos0;
where 6; is the angle between the normals of the point
p and the point within each region of the 3D grid.

Unique Signatures of Histograms for Local Surface Description, Tombari et al., ECCV 2010



https://vision.deis.unibo.it/fede/papers/eccv10.pdf

SHOT: a comment

SHOT is an extrinsic descriptor: it depends on the
3D embedding of the shape

The analysis for the point p is performed
looking at how the shape behaves around the
point.

To obtain a coherent description of similar
points and to be invariant to rigid
deformations the LRF is necessary.

The SHOT descriptors is not invariant to non-
rigid deformations.




Heat Diffusion

X is a Riemannian surface, u(:c, t) IS the amount of heat

inapoint x € X attime t € R

Given a initial distribution g
of heaton X attime ¢t =0, (up(z) = u(z,0))

How is it diffused over time on the surface?

A Concise and Provably Informative Multi-scale Signature Based on Heat Diffusion, Sun et al., 2009.



http://www.lix.polytechnique.fr/~maks/papers/hks.pdf

Heat Diffusion

From physics the heat diffusion is governed by the heat equation:

@ (e, 1) = -

The LBO

derivatives in space

u(x,t) solution of the heat equation is a function of = € X andtime ¢ € R which

satisfies the heat equation for a given initial condition: uy(x) = u(x,0)



Heat Diffusion solution

For an initial delta distribution of heat 0,, * € X

the heat kernel k;(x,y) Ze_mgbg (y)

Is the amount of heat moving from Xtoy

e

t = 0.0594 t=1.52

t=0 t = 0.0032 t =0.0162



HKS: Heat Kernel Signature

For an initial delta distribution of heat ¢, z € X

k() =) e gy(x)d(x)

Is the amount of heat remaining at = after the time ¢ € R

HKS(x) = [k, (X, x), ke, (X, %), .o kg (X, x)] 11 < 1 <

is the heat kernel signature (HKS) at the point * € X

for a given set of time scales 11,-..,%¢

...tQER



LBO and isometries

Two shapes are isometric < their LBO agree
T is anisometry <= dy(p, q) = da(T'(p), T(q)) Vp,q € M

Any quantity derived
from the LBO
IS invariant to isometry




HKS: as a filter on the frequencies

0.9 0.9

ki(z, o) =) e Moi(x)di(x) =) e Ngy(x)?

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

A low-pass filter applied to the frequencies to produce the HKS



The wave equation (Schrodinger)

. aU(:C, t) mrns the

temporj]
8t evolution of a

duantum partjcye

Heat equation: A/yu(a’;jt) —

Wave equation: @Xu(aj’t) :\ 5

presence of the i

missing a minus
It encodes oscillation rather than dissipation as done by the heat equation

Idea: point x < the average probabilities of quantum particles
of different energies to be measured at x

The wave kernel sighature: A guantum mechanical approach to shape analysis, Aubry et al., 2011.



https://vision.informatik.tu-muenchen.de/_media/spezial/bib/aubry-et-al-4dmod11.pdf

WKS: Wave Kernel Signature

@ a quantum particle with unknown position on the surface

f% the probability distribution with expectation value [ estimated attimet =0

o

WKS(E,z) ZfEEz )o1(x)?

the average probability over the time to find the

particle at position x € X given the initial energy E

o

WKS(z) = [WKS(Ey,z), WKS(E»,z),..., WKS(Eg, z),



WKS: as a filter on the frequencies
~  (log(E) —log(\))’

A band-pass filter
applied to the
frequencies to
produce the WKS

0
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05



Spectral descriptors

A common structure is shared by the spectral descriptors HKS and WKS

vqe]-a---aQ

The square of each
dimension of the

A set of filters on the frequencies spectral embedding

functions of the eigenvalues



Spectral descriptors: as filter on the frequencies

k
descq(x) = thq()\g)é%(ﬂi), Vgel,...,Q
I=1

HKS: WESS (log(E) — log(\;))?

gi(\) = e

1

0.8

0.6

04

0.2

0 — —
0 0005 001 0015 002 0025 003 0035 004 0045 005 % 0.005 001 0015 002 0025 003 0035 004 0045 005

“Learning spectral descriptors for deformable shape correspondence”, Litman et al., 2014.



https://ieeexplore.ieee.org/iel7/34/4359286/06579600.pdf?casa_token=H0Bfo5ELAR0AAAAA:toIILgZ05MTaDLNdGt_lhs6wLut_EnDwHfPCs6JC_0Q_9AK8pB80ocowfM_2gdeG9S-V4kE

Spectral descriptors: learn the optimal filters

k
desc,(x) = 3" a,(M)éH(x), Vgel.....Q
[=1

What are the best filters to apply in this
equation to obtain the best descriptors?

These are just Q finite sets of k
parameters, can we learn them?

N

IS) | <)

A

N

l1 A2 A3 Ak




Optimal spectral descriptors

We can compute a learned kernel signature by learning
the matrix A € R¥*?

LKS(z 7@ 7@ -,de/swq@m

These explixitly depend on the learned matrix

How could we learn this matrix A?



Optimal spectral descriptors: loss definition

Given a pair of shapes & and )

We consider a set of points X on X
such that V2 € X we can define a set

of points Y on ) that is composed by:

« similar points (positive) y+

« dissimilar points (negative) Y-

argmin Y AILKS () =LK S(y)l*) —(1 = 7)(ILKS(x) — LES(y-)|7)

LK S(z) = [desc (), desci (), . . ., desc? (z)]

q



1

0.8

0.6
04

0.2

0
0

Optimal spectral descriptors: learned filters
1
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Features-based




Features-based

descy

Distance = ||descx — descy“2






Some considerations

SHOT can characterize the rigid geometry of a shape

Spectral descriptors do not solve the symmetries

Spectral descriptors can be generalized via data-driven approaches

Spectral descriptors are invariant to isometric deformations

The data-driven approaches outperform the standard spectral ones

Other deformations (for from isometries) can not be faced



Geometric Deep Learning

EJR mp-h
- g < | TR

LUUBU

/‘ \ View ?:;I‘i
" - . oalin — dresser|
J ) ' )J [9) E @% % pooling %%Nl \softmax .

toilet—

BN

CNN,: a second ConvNet
producing shape descriptors

View-based

fMRI

CcT

Voxelized
CAD models

Volumetric

Manufacturing
(finite-element analysis)

Cy =

v
] mug?

.y table?

car?

Classification

Intrinsic (surface-based)

PointNet

v
"
l’}

Part Segmentation

Point-based

Semantic Segmentation
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FUNCTIONAL MAPS

. Functional maps




What is a function on a shape




What is a function on a shape

value 1
vertex number 127

value 0.25 ost"
vertex number 65 \:\

vertex number 342 value -0.78




What is a function on a shape

vertex number 1

vertex number 2




What is a function on a shape
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Different meshes
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Different meshes
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Different vectors

-
‘®
»
.

.o &
25,490 &
o %V .
380 o >
1 A
pige

. . . L . . T72vertices

12 345 6 768 770 772 - =t

1 2 34567 8910 770 772 B Rt 998 1000
, 1000 vertices

These representations are not comparable!



Fourier representation

Laplace-beltrami eigenfunctions towards an algorithm that understands geometry, Levy, 2006



Synthesis and analysis: dicrete setting

o fom =T Qg

Given a signal: / \' -~ Y D = [P1, P2, .. Pr-1, Pk

{ A
| B, st B\ By =1
P\ s.t. (I)jT\/[QM(I’M — ]
The analysis: a=3a,f
O = @1

The synthesis: =&, a = @M@j\/‘f

Laplace-beltrami eigenfunctions towards an algorithm that understands geometry, Levy, 2006



Question 1

Not directly possible! They are 2 different templates



Question 2

v 4

. Fourier T
A < ’[ala g, 3, 4, 5, ... 29, 0530] = a

What is the relation between the
two set of coefficients @ and b ?

v

v Fourier

) < > [B1, Boy B3y Bas Bsy - Poo, B0]' =b




Answer: FUNCTIONAL MAPS

Move the shape correspondence problem
to the functional space!

The problem to find a point-to-point map between M and N



Corresponding functions

‘“ (/ .

(U

Wi

\

corresponding = arise from a point-to-point map



A point-to-point map

TN —- M

T is a point-to-point map

f(T(p) VpeN

=
=
|

Functional maps: a flexible representation of maps between shapes, Ovsjanikov at al., 2012



A point-to-point map




Induces a functional map

fiMoR ’ "’
A
| R ¢

The transfer is defined as: g = i af



Induces a functional map

WL [l
Exploiting Fourier C

Functional maps: a flexible representation of maps between shapes, Ovsjanikov et al., SIGGRAPH 2012



Summary so far:

Functions on meshes are vectors

Corresponding functions on different shapes depend on a point-to-point
correspondence

A point-to-point map induces a mapping between function (a functional map)
A point-to-point map can be written as a binary matrix that operates on functions
Discrete Fourier basis: Eigenvectors of the Laplacian

We can represent the functional map in the Fourier basis which is:

- A small matrix with the dimensions of the bases
- Alinear operator that maps Fourier coefficients
- Mainly diagonal or close to it

Next Goal
Estimate the functional map associated to the
correspondence between a pair of shapes




Functional maps estimation



Summary so far:

Functions on meshes are vectors

Corresponding functions on different shapes depend on a point-to-point
correspondence

A point-to-point map induces a mapping between function (a functional map)

A point-to-point map can be written as a binary matrix that operates on functions
Discrete Fourier basis: Eigenvectors of the Laplacian

We can represent the functional map in the Fourier basis which is:

A small matrix with the dimensions of the bases

A linear operator that maps Fourier coefficients

Mainly diagonal or close to it

Can be estimated from a given set of corresponding functions

Next Goal
Obtain the correspondence from the functional map




Conversion to a point-to- point map

Given a functional map C

N
M

6:5';

A P\ Ca,

T(x) = argmin||b, — Cayl|2
y



Fmaps pipeline

1. Compute the first k (~30-100) eigenfunctions of the LBO.
Store them in matrices: ® y 4, O 5

2. Compute probe functions (e.g., landmarks or descriptors) on M, N.
Express them in @, ® -, as columns of A and B

3. Solve argmin||Ca — b||5 + R(C)
C

4. Convert the functional map to a point-to-point map T.



Question 2

v 4

. Fourier T
A < ’[ala g, 3, 4, 5, ... 29, 0530] = a

What is the relation between the
two set of coefficients @ and b ?

v

v Fourier

) < > [B1, Boy B3y Bas Bsy - Poo, B0]' =b




Fourier analysis and synthesis




Compare the Fourier coefficients




Compare the Fourier coefficients
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Functions on 2 different domains




Functions on 2 different domains
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Functional map and the size of the basis

wxles

source Catl0 Catl Cat2 Catb

T cat2
— cati
= cat10 | |

reconstruction error

Slide credit M. Ovsjanikov

Number of basis (eigen)-functions

Functional maps: a flexible representation of maps between shapes, Ovsjanikov et al., SIGGRAPH 2012



The Functional Maps trade-off

Low-pass

Easy to optimize (fewer
probe functions needed)

Low-pass representation
(poor functional transfer)

High-frequencies

Better representation
of details (good
transfer)

Hard to optimize (more
probe functions
needed)



Exploiting the connection with point-to-point-map

Input: 2 X 2 map

. e
--------------
------
. L)
. e
. .
. .
. LY
i b
.

ZooMOuT

v

Output: Refined map

Output
correspondence correspondence

ZoomOut: Spectral Upsampling for Efficient Shape Correspondence, Melzi et al., 2019



http://www.lix.polytechnique.fr/~maks/papers/SGA19_zoomOut_reduced.pdf

ZoomOQut a visualization Slide credit J. Ren

ZoomOut: Spectral Upsampling for Efficient Shape Correspondence, Melzi et al., 2019



http://www.lix.polytechnique.fr/~maks/papers/SGA19_zoomOut_reduced.pdf

Functional Map Improvements

Significant improvements to functional maps over the years:

1.

a bk~ WD

Functional maps in shape and image collections.
Enabling partial shape matching.
Better understanding of pointwise map recovery.
Much better symmetry handling.

Techniques for promoting map continuity and smoothness.

N E M " Ep = Z-69 ED/‘Z 6.18 Ep =4.36
I\ @ 4 Wﬁ“ -x X 5o &
RS kN =
R& Source

A rich tool box for shape analysis and correspondence problems!




LBO and spectral stuff

https://colab.research.google.com/drive/1IMhfzZQBmPj2VMORPUERVzCgflpmLbvEVo#scrollTo=jpwcR2iGoYwn



LBO, WKS and Functional Maps DEMO
=

O

https://github.com/RobinMagnet/pyFM



© N O O k~ WD E

LEARNING ON GEOMETRIC DATA

. Learning on geometric data




Common datasets

Pros:

Clean, manifold triangle meshes with ground truth maps
Cons:

Most existing datasets are synthetic
Shapes within a dataset are in 1-1 correspondence
Scale is typically limited

FAUST/DFAUST/SURREAL SCAPE TOSCA

Bogo, Federica, et al., FAUST: Dataset and evaluation for 3D mesh registration. CVPR 2014
Anguelov, Dragomir, et al., SCAPE: shape completion and animation of people, SIGGRAPH 2005
Bronstein, Alexander et al., Numerical geometry of non-rigid shapes, Springer 2008



Non-Euclidean learning

image credit M.Bronstein

Idea: apply kernels directly on the surface!

Euclidean Non-Euclidean

Geometric Deep Learning: Going Beyond Euclidean Data Bronstein MM et al. 2017

A Comprehensive Survey on Geometric Deep Learning. Cao W, Yan Z, He Z, He Z. 2020



Image vs Geometry

2D 3D
only signal only domain
fixed domain/template constant or no signal



Non-Euclidean convolution:

Euclidean

Slide credit E. Rodola



Non-Euclidean convolution:

Euclidean

Slide credit E. Rodola



Intrinsic vs extrinsic:

FILTER

Extrinsic Intrinsic

Slide credit E. Rodola



Local ambiguity

Unlike images, there is not a canonical ordering of the points in the domain

@ff ‘% \\D
Graph rotation Mesh rotation

Slide credit E. Rodola



PoINtNET pointwise feature:

input mlp (64,64) feature mlip (64,128,1024) max mlp
2] e
= transform < transform pool 1024 (512,256,k)
g' o o ¥ - I
< | & > £ shared % v nx1024
3 . global feature vk
= 1 — , o
| [ . tput scores
:_ - local embedding _gtébal feature™
------------------------------------- - "'"""‘"-“ TP
3x3 ; 64x64 R g point features .
transform : transform : E N N 5
— — = o g |8
matrix ' matrix . w
: : nRREte shz!red % sha!red 2 |z
.......................... &
| g

mlp (512,256,128) mlp (128,m)

“PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation” Qi et al., 2016



https://arxiv.org/pdf/1612.00593.pdf

Geodesic convolutional neural networks

Key idea: parameterize the shape locally.

Using local polar coordinates on the surface can multiply the signal f with a
trainable kernel g

(D(z)f)(p,0) g(p,0)

image credit M.Bronstein

Product is a scalar per point = a real-valued function on the surface. Pose invariant!

» Geodesic convolutional neural networks on Riemannian manifolds, Masci et al., 2015
» Learning shape correspondence with anisotropic convolutional neural networks, Boscaini et al., 2016
» Geometric deep learning on graphs and manifolds using mixture model CNNs, Monti et al., 2017



Learning Correspondences with GCNN

slide credit E. Rodola

Query X Reference

@ Correspondence = labeling problem
@ GCNN output fg(z) = probability distribution on reference

@ Minimize logistic regression cost w.r.t. GCNN parameters ©

(z,y*(z))eT

Geodesic convolutional neural networks on Riemannian manifolds, Masci et al. 2015



Correspondence learning via ASCNN

FAUST

—GCNN
——ACNN
~——MoNet
~—— SpiralNet
——SplineCNN

Table 1. Performance comparisons on FAUST dataset.
Accuracy Accuracy

Correspondences

T n_:gs e e e Method Refinement  Input (r=0) (r=0.01)
’ ' GCNN [29] SHOT 66.61% 7498 %

ACNN [7] FM[36] SHOT 6240% 8331%

MoNet [34] PMF[49] SHOT 8820% 9235%

SpiralNet [27] SHOT 93.06%  96.32%

ACSCNN SHOT 98.06%  99.26 %

SplineCNN [19] 1 99.12% 9937 %

ACSCNN 1 9898 %  99.64 %

ACSCNN PMF[49] 1 99.56%  99.87 %

Correspondence is solved!

Reference GCNN-  ACNN-  MoNet-  gpiralNet  SplineCNN ACSCNN
refined refined  refined

Li, Qinsong, et al. Shape correspondence using anisotropic Chebyshev spectral CNNs, CVPR 2020.



What happens under remeshing?

original

isotropic

variable
density

quadric
simplification

cloud

remeshed/sampled variants

Method orig iso dense ges cloud
ACSCNN 0.05 35.29 19.09 41.15 -
SplineCNN 3.51 31.09 27.95 40.43 -
HSN 957 2001 2484 2540 -
et s’
7
/ % = / g N A %
/ ?w’\/ \y\ 10%
original « "
connectivity error « alleg
1 ) | remeshing
0 4 ¥ 4

ASCNN correspondence error



Spatial convolution filters Slide credit E. Rodola

» Loss is independent of the geometry

* Requires a template, difficult to generalize to new classes
 Difficult to obtain discretization independent results

* Requires dense ground truth maps

“‘Geometric deep learning on graphs and manifolds using mixture model CNNs", Monti et al., 2016



https://arxiv.org/pdf/1611.08402.pdf

Theorem of convolution

Convolution on the Euclidean domain [—m, ] of two functions f, g: [—m, ] =» R is
defined as:

(f * ) () = j £ g — x)dx

Convolution theorem: Fourier transform diagonalizes the convolution operator.

More explicitly: convolution can be computed in the spectral (Fourier) domain:

(Fxg)=1-4

coefficients of the convoluted signal = the frequency-wise product of the coefficients



Spectral representation of the convolution operator

We can define a truncated fourier basis ® =

Gf=fxg=o(fxg)=o(f

convolution theorem

o |S)

G =diag (5) -

(1, - bk]

We can encode the analysis and synthesis operators respectively in this basis

A . —CI)'I'f

=q>gqfr£ | = f

~

fx

Gf = PGOTf —— G = G0t




Spectral convolution

Spectral convolutional layer (Given A, @, A)

81
Z: CDT]_C 0.20
g\z 0.15
! r < 0.10
f=2TW)f g1
5 |
B 0 0.010.020.03
T(A) — dla'g(T(A)) A Ay A3 Ak eigenvalues
Define one window for each node is inefficient &
Spectral Translation given §; indicator of i o ]
R 0.10 :
Tlg g*ﬁ Tigzg*é'i:g‘@é‘i 0.05 [} 2 J

0 |
0 0.010.020.03

& = ( ) = [¢1(l) ¢K(l)] eigenvalues

“Spectral Networks and Locally Connected Networks on Graphs", Bruna et al., 2014
“Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks", Boscaini et al., 2016



https://arxiv.org/pdf/1312.6203.pdf

MeshCNN

Idea: edges instead of vertices are analogous to pixels

Input: 5 dimensional vector for each edge

* the dihedral angle

* two inner angles

* two edge-length ratios for each face
Input Edge Features

“MeshCNN: A Network with an Edge" Hanocka et al., 2019



https://arxiv.org/pdf/1809.05910.pdf

MeshCNN

Idea: edges instead of vertices are analogous to pixels

Input: 5 dimensional vector for each edge

Convolution: Well defined for each edge and its
Neighbour given by the 4 connected edges.

Mesh Convolution

“MeshCNN: A Network with an Edge" Hanocka et al., 2019



https://arxiv.org/pdf/1809.05910.pdf

Half Edge CNN
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“‘HalfedgeCNN for Native and Flexible Deep Learning onTriangle Meshes" Ludwig et al., 2023



https://arxiv.org/pdf/1809.05910.pdf
https://arxiv.org/pdf/1809.05910.pdf

DiffusionNet

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al.,

2021

888v2 [cs.CV] 5 May 2021

DiffusionNet: Discretization Agnostic Learning on Surfaces

NICHOLAS SHARP, Carnegie Mellon University
SOUHAIB ATTAIKI, LIX, Ecole Polytechnique
KEENAN CRANE, Carnegie Mellon University
MAKS OVSJANIKOV, LIX, Ecole Polytechnique

We introduce a new approach to deep | g on 3D surf: based on the
mslght that a sunple diffusion layer is hngbly effective for spatial commu-

The g ks lize across different
plings and resolutions of a surf: basic propeny which is crucial for
ical applications. Our ks can be di ized on various geometric

replesentanons such as triangle meshes or point clouds, and can even be
trained on one representation then applied to another. We optimize the
spatial support of diffusion as a continuous network parameter ranging from
purely local to totally global, removing the burden of manually choosing
neighborhood sizes. The only other ingredients in the method are a multi-
layer percey applied independently at each point, and spatial gradient
features to support directional filters. The resulting networks are simple,
robust, and efficient. Here, we focus primarily on triangle mesh surfaces. and
demonstrate state-of-the-art results for a variety of msks including surface

classification, seg ion, and igid P

CCS Concepts: « Computing hodologies — Shape analysis.
Additional Key Words and Phrases: g ic deep leaming, g y
P ing, discrete diffe ial gy y. diffusion

INTRODUCTION

sampling

P
agnostic agnostic agnostic

Fig. 1. Surface learning methods must generalize to shapes represented
differently from the training set to be useful in practice, yet many existing
approaches depend strongly on mesh connectivity. Here, our DiffusionNet
trained for human segmentation with limited variability seen during training
automatically generalizes to widely varying mesh samplings (left), scales
gracefully to I g from a simplified model to a large raw
scan (middie), and can even be evalualed directly on point clouds (right).



https://arxiv.org/pdf/2012.00888.pdf

Diffusion Based Networks

learned diffusion

difficult on surfaces

nnnnnnnnn

source of non-robustness

’ . : : use diffusion instead!
convolutions hierarchies

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021



https://arxiv.org/pdf/2012.00888.pdf

Recall: Laplacian and Diffusion

au(x t)

Ayu(z,t) =

TR

t=0.001 t=0.02 t=01 ¢t¢t=1

=) e Mgy(x)di(y)

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021



https://arxiv.org/pdf/2012.00888.pdf

Learned Diffusion

fion Key idea: the diffusion time is a learned parameter

,Ooo/ing L variable per-channel spatial support

L, ranges from purely local to totally global

diffusion! > automatically optimized during training
iffusion!

learned diffusion layer ht : RQXk — IR{QXI"' parameterized by t € R’;O

Lemma: diffusion + pointwise MLPs can represent all (radially
symmetric) convolutions.

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021



https://arxiv.org/pdf/2012.00888.pdf

Spatial gradient features

Challenge: we want to go beyond radially-symmetric filters

Solution: append extra features, dot products of spatial gradient

radiqlly symmetric beyond radially spatial gradient of
filters only symmetric filters scalar features
- -:\‘\:’ ’: : f\ \: ~

-
\. " \\\’:’/
<

filter(i) = g(z,A), where A is a learned rotation

Important detail: invariant to choice of tangent space

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021



https://arxiv.org/pdf/2012.00888.pdf

. - - - precomputation - - - | project back :r
| spectral spatial ~ ° to vertices
concat

DiffusionNet Architecture

DirrusioNNET block
scalars

per-vertex addltlon

basis gradient x <+ Uc

i |
S | : MLP
NN\ “\ff-/e: ST
Lv=AMv G !

________________

D1rrusioNNET

DiffusionNet — DiffusionNet — DiffusionNet — DiffusionNet —-—b

DiffusionNet: Discretization Agnostic Learning on Surfaces, N. Sharp, S. Attaiki, K. Crane, M.O., https://arxiv.org/abs/2012.00888 183




DiffusionNet Architecture

DirrusioNNET block

scalars

per-vertex addltlon
. - - - precomputation - - - | project back :r
spectral spatial ~ ° to vertices
basis gradient r Ue concat

D1rrusioNNET

.1 1.0 SRS - .| SNp—. . -

DiffusionNet — DiffusionNet — DiffusionNet — DiffusionNet

bk e el

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021



https://arxiv.org/pdf/2012.00888.pdf

DiffusionNet DEMO

(=]
.

https://github.com/nmwsharp/diffusion-net
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LEARNING-BASED FUNCTIONAL MAPS 9

. Learning—-based Functional maps

...




Functional Map Representation

C = & Ty P\

Main Advantages:

« Functional map matrix C is much smaller than i
« Natural constraints on the map are easy to express.

Functional maps: a flexible representation of maps between shapes, Ovsjanikov et al. SIGGRAPH 2012



Fmaps pipeline

Given a pair of shapes M, N :

1. Compute the first k (~30-100) eigenfunctions of the LBO.
Store them in matrices: ® y 4, O 5

2. Compute probe functions (e.g., landmarks or descriptors) on M, N.
Express them in @, ® -, as columns of A and B

3. Solve argmin||Ca — b||5 + R(C)
c

4. Convert the functional map to a point-to-point map T.

Computing and Processing Correspondences with Functional Maps., Ovsjanikov et al., SIGGRAPH courses 2017



Main Question

What happens if the input descriptors are bad?

” !h. qitc
M- 23 A
4 \ / '\ > / ma\ e\
/ B8\ 7=\
, o

il W N |

e NS

.8 & &

Input descriptors not in alignment Results in poor texture transfer



FMNet

Learning approach to computing mappings.

P
F F

y
C P
(C] FM Softcor lp >
\ /
A 1
Y SHOT

\
G G
{9y
07

Res 1
Res 2
Res K

Res 1
Res 2
Res K

FM layer: C = argmén |ICF — G|

Solution given by a linear system of equations.
Can back-propagate via derivatives of linear systems



FMNet

Learning approach to computing mappings.

P

F F
\ A
C P
[C)] FM Softcor by >
\ /
A 1
»

G G |
’| “ (9
b
FM layer: C = argmin |ICF — G|

Training loss: ¢p = Y~ P(z,y)dy(y,n*(z)) P=|TC2'A["
(z,y)€(X,Y)

P(z,y) :soft map corresponding to the fmap C

(',‘)X

Res 1
Res 2
Res K

Res 1
Res 2
Res K

Key advantage: evaluates the entire map. State-of-the art in 2017



SURFMNet

Main idea: make the loss fully unsupervised.

1=
» D,

7

FMNet | T(Dy)

Ciz = argglinHCAT(Dl) = Az,
I Ereg(cl2: C2l) I
Co = arg min ICAL(D,) — ArepyI?

FMNet T (D)

Rouffosse et al., “Unsupervised Deep Learning for Structured Shape Matching,” ICCV 2019
Halimi et al., “Unsupervised Learning of Dense Shape Correspondence,” CVPR 2019



SURFMNet

Replace supervised loss with unsupervised one

IOSSunsupe’r’vised — E Wy Ez (0127 021)

1Epenalties

E1(Ci2,C) = ||C12C9 — Id]|? Biiectivi
ijectivit
{ E1(Ci2,C1) = ||C21Ch1a — Id|? J y
Ey(C) = ||t C — Id|? Area-preservation
E3(C) = [[A20 = CA1]®  Near-isometry

E«(C) =) _|CXy, - Y,C|>  Functional map close to pointwise one

All penalties are in the reduced basis. 50x faster than FMNet



Datasets

FAUST :

» Subset: train on 80 and test on 20
» Whole set : train on 100 shapes, without ground truth

SCAPE :

» Subset: train on 50 and test on 10
» Whole set : train on 60 shapes, without ground truth

Remeshed FAUST - 5000 vertices *

*datasets released as part of: Continuous and Orientation-preserving Correspondences via Functional
Maps, J. Ren, A. Poulenard, P. Wonka, M. O, SIGGRAPH Asia 2018



SURFMNet results

Comparison to unsupervised methods

Unsupervised Methods on FAUST Remesh Supervised Methods on FAUST Remesh

e PMF Heat : 0.0381 s QUrs-sub : 0.0921

o
N
o
o

Fraction of correspondences

o
oS

o

= BCICP : 0.0501

w= = = Qurs-sub + PMF : 0.0748

0.9 00 s
0.8 @ost e et
[&]
0.7 g 0.7
o
0.6 g 06 F
(o8
05 Dos !
0.4 Soal ms FMNet : 0.1128
5 == == FMNet + PMF : 0.0836
0.3 e PMF Gauss : 0.0389 c 03 O aHS f |eeeas FMNet + ICP : 0.0475 1
o
©
©
I

= Fmap Basic : 0.3662
Ours-all: 0.0185

1 1 1 1 1 1 1 1

001 002 003 004 005 006 007 008 009 01
Geodesic error

(72 A0 P Ours-sub + ICP : 0.0305

o
-

m—= GCNN : 0.0505

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.08 0.1
Geodesic error

Remeshing makes the problem a lot harder

Rouffosse et al., “Unsupervised Deep Learning for Structured Shape Matching,” ICCV 2019



Questions for improvement

1. Use raw geometry (XYZ) instead of SHOT features as input?

2. How well do the methods generalize across different datasets?

Source 3D-CODED FMnet-+PMF FMnet
) 2000

shapes

100
shapes

ground truth



Geometric Deep Functional Maps

Extract descriptor functions from the raw geometry!

X_’ Feat |—> ('5 ')X

KPConv @‘{ _| FMreg E, Espec

G G
Y —| Feat |— QUM

spectral projection

foRs (on Laplace Basis)

Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence, Donati et al., CVPR 2020



Geometric Deep Functional Maps

Extract descriptor functions from the raw geometry!

X —| Feat |— () | =—

Y —| Feat |— {5y

Training loss in the spectral domain:

lapec(C) = [|C - Cgt”%a Cgt = (I);Hgiq)l

- Penalizes the map as a whole
- Does not require a template
- Does not require geodesic distance matrices

Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence, Donati et al., CVPR 2020



Geometric Deep Functional Maps

Extract descriptor functions from the raw geometry!
X—» Feat

Additional constraint inside the network: commutativity with Laplacian
min [ CA — B||" + A[[CAL — AxC|’

. _ - Fully differentiable
Linear system for every row in C ! . gives better maps

Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence, Donati et al., CVPR 2020



Generalization Across Datasets

Source Ours+zo Ours

G%uéjesic error on SHREC re-meshed (trained on 100 SURREAL shapes)

e
o

e
o
|

== Qurs : 0.0809 '
—— Ours + ZO : 0.0677

—— FMNet : 0.547

—— FMNet + PMF : 04755 7

o
n
. \
.\.
\.
b

fraction of correspondences bellow

e
[N}
)

Unsup FMNet : 0.5341
Unsup FMNet + PMF : 0.4488
3d Coded : 0.2984

0.00 . . 0.06 0.08 0.10
error

ground truth

Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence, Donati et al., CVPR 2020



Issues with Deep GeomFmaps

Problem:
Still use extrinsic feature extractor (KPConv)

Main Questions:
How to enable robust and efficient intrinsic
learning on surfaces (choosing the architecture)?




DiffusionNet for Geometric Deep Functional Maps

Immediate improvements with more robust feature learning methods:

DirrusioNNET block

scalars addition
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“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021



https://arxiv.org/pdf/2012.00888.pdf

DiffusionNet for Geometric Deep Functional Maps

Method / Dataset FAUST SCAPE FonS SonF Diffusionllet &
KPConv [1£] 3.1 4.4 11.0 6.0

KPConv - hks [18] 2.90 3.28 10.65 5.55

HSN [86] 329 353 2541 16.66

ACSCNN [41] 2.75 3.22 844 6.08

DiffusionNet - hks  2.53 297 5.61 3.00

Table 4. Our approach yields state-of-the-art correspondence re-
sults when used as a feature extractor for deep functional maps [18]. : 54

X on Y means train on X and test on Y. Reported error values are recent
mean geodesic error X 100 on shapes normalized to have unit area. methods "/ o;a;% f:‘gﬁg}d

Key property in practice:
runs easily on full-size meshes/clouds! (no remeshing/downsampling)

original mesh after remeshing

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021



https://arxiv.org/pdf/2012.00888.pdf

DiffusionNet-based Functional Maps DEMO

https://github.com/nmwsharp/diffusion-
net/tree/master/experiments/functional _correspondence



Fully Differentiable Functional Maps

PIPELINE

LINEARLY-TNVARIANT ProBe 6‘5"":‘ ALIGNED  MATCH BY
BAsIS FUNCTIONS WEA
TRANSEORMATION BASIS d

Correspondence Learning via Linearly-invariant Embedding, R. Marin et al., NeurIlPS 2026



Fully Differentiable Functional Maps

Teswwe or N
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Correspondence Learning via Linearly-invariant Embedding, R. Marin et al., NeurlPS 2020



Results

SPARSE AND NOISY POINTCLOVDS
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Correspondence Learning via Linearly-invariant Embedding, R. Marin et al., NeurIlPS 2020



Results

CLVTTER, MISSING PARTS, CHANGES OF TOPOLOGY

Correspondence Learning via Linearly-invariant Embedding, R. Marin et al., NeurlPS 2020



LIE DEMO

https://github.com/riccardomarin/Diff-FMaps



Current and Future Directions

a &~ 0D

Link between shape matching and contrastive learning.
Need for more datasets and tasks.
Better functional bases (beyond Laplacian).

Exploiting unsupervised feature pre-training in other tasks.

Working on other representations: implicit, point clouds,
images, graphs, etc.




Visualize learned features for unsupervised Deep FMaps

Learned features tend to be consistent and well-localized even on quite
non-isometric shapes.

| \ \ \
vj B // ‘ 1

%

Understanding and Improving Features Learned in Deep Functional Maps, Attaiki, et al. CVPR 2023
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Auto-Encoder-based approach

Template Reconstructed Shape
\ oe'
A 0% D (A, £(S))
D 9
Parameters ) f
E(S)

3D-CODED : 3D Correspondences by Deep Deformation, Groueix et al. ECCV 2018



Decoder

&
,)OOO'@,,

E

Template

A

Parameters
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\
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Reconstructed Shape
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|

3D-CODED : 3D Correspondences by Deep Deformation, Groueix et al. ECCV 2018



The decoder which deforms the template

Parameters
£ ( S) Gengrate
a point g
—> —> I

Sample
a point p

3D-CODED : 3D Correspondences by Deep Deformation, Groueix et al. ECCV 2018



Supervised Loss

Input
Shape

Template \\ Reconstructed Shape
e D(A,£(5))

H#points

LPED) = Y |rj—q;f

j=1

3D-CODED : 3D Correspondences by Deep Deformation, Groueix et al. ECCV 2018



Unsupervised Loss

Reconstructed Shape
get

o® D (A E(S))

ECDED mm r — + min |r —
> r—qf’ qD(A)\ ql”.

3D-CODED : 3D Correspondences by Deep Deformation, Groueix et al. ECCV 2018



Unsupervised Loss + regularizations

[unsup _ LCD + )\LapﬁLap + )\edgesﬁedges

LY chamfer distance (nearest neighbors based reconstruction loss) between
deformed template and target shape.

£CD(e. D) — : —_qal? _
(&D)= ) min |r — g +Z H;)l&)Ir al”.
q€D(A) re

edges
L . Edge ratio loss (regularization). Preserve local neighbourhood of the template

by encouraging each edge in the deformed template to keep the same length.

1 lgi — g
ﬁedges - . ‘ Lk VAl 1 ‘
FE 2, ol

LY. | aplacian loss (regularization). Preserve local neighbourhood of the template
by encouraging the laplacian of the deformed template to remain constant.



Refinement as parameters optimization

Reconstructed Input
Shape Shape
/1 Template D(A, X) S
/B aet |

| | A oeco

&
”°°°'e,

&

I Parameters

X Minimize
Chamfer distance

= arg! min Z Ilpelg D (p;x) —r|° Z mm D (p;x) —r|°
qES

3D-CODED : 3D Correspondences by Deep Deformation, Groueix et al. ECCV 2018



Evaluation: Finding 3D shape correspondences

=y Nearest — Correspondence Nearest
& Neighbor | viatemplate g »

1 Template

A




Datasets: 230 000 synthetic human shapes

"y ] 1\“’! '\ Sl
" i ) Bent shapes (c) FAUST [2]

synthetic training data (a, b), real testing data (c).



Robustness to perturbations

noise, holes, sampling, topology, scaling




3D-CODED DEMO
|

https://github.com/ThibaultGROUEIX/3D-CODED
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Transformers

Attention Is All You Need

Ashish Vaswani”
Google Brain
avaswani@google.com

Llion Jones®
Google Research
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nikip@google.com
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
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Transformers Everywhere
‘ RANSFORMERS

)

o 6 - NLP

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin  Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language
{jacobdevlin, mingweichang, kentonl, kristout}@google.com

Tnn“sronmtns E“.EBYWHEHE Published as a conference paper at ICLR 2021
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. BERTOLOGY MEETS BIOLOGY: INTERPRETING
G rap h I CS Laplacian Mesh Transformer:
ATTENTION IN PROTEIN LANGUAGE MODELS

Dual Attention and Topology Aware Network
for 3D Mesh Classification and Segmentation

Computer
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Trappolini et al. NEURIPS 2021 (SRTT)

Is the first method for shape registration that exploits the transformers

Positional

Encoding p “

Add Feed Add
Latent Probes > P Cross Aftention = & —Lpseumm— - &

Latent Vectors L S’T {. \
o M| k) s |

4[' Feed
¢ _ T Cross Attention _N:rm Self Attention — (Fe83
Xs

1. Adopts the Perceiver

2. Proposes the surface attention

3. Select one direction

Trappolini et al., “Shape registration in the time of transformers”, NEURIPS 2021



Encoder Decoder Transformers




Encoder

Y_







Need for a different attention




Classic VS Surface Attention

Classic

Surface

Original (7k)

Quadratic
error (1k)

Normal
deviation (1k)



Supervised loss

!

L=|T-T|;




Unsupervised Loss

Chamfer
Distance




Registration and Correspondence

3D-Coded DiffNet Linlnv



Summing up

Method FAUST FAUST (1K) | FAUST (noise) | SHREC 19
3DC 0.0776 0.0542 0.0712 0.2138
Diffnet 0.0656 0.0534 0.0985 0.1509
Linlnv 0.0942 0.0471 0.0618 0.1284
Our 0.0513 0.0419 0.0510 0.0802
3DC -R 0.0485 0.0367 0.0526 0.1935
Our - R 0.0369 0.0263 0.0410 0.0615

® First Transformers for non-rigid registration.

® [ntroduction of an attention mechanism suitable for surfaces.

® Significantly improve on the state of the art.



Trappolini et al. NEURIPS 2021 (SRTT)

Postional é\é o)
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¥ 1
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Is the first method for shape registration that exploits the transformers

architecture

1. Adopts the Perceiver ... Not the simplest

2. Proposes the surface ... Geometric prior
attention

... Matching is bi-directional
3. Select one direction



Our Implementation

RoPE

Expand dim.

(16,32,64,128,256,512)

(o
e

o p(
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e
=
N

| |
Add & Norm.

Feed Forward

Add & Norm.

Reduce dim.

D
(512.256,128,64,32,16)

3

Matching
Output



Loss and augmentation

« The shape matching is bidirectional by nature

S S >
(=Llyy+lyx=|Y—X[7+|X—-V|>

X

~

\”‘-

« We apply a random permutation to the points representing each shape

<)

=D

* We apply a random rotation which belongs to one of the following types:

1. the composition three random rotations, one for each axis in [0,217];

2. arandom rotation along one of the axes in the interval [0,21];

3. the null rotation.



Experiments

Method Fix FixkN FxO F_7x S19
3DC 0.0542 0.0712 0.2306 0.0776  0.2138
DiffNet 0.0534 0.0985 0.3509 0.0656 0.1509
Linlnv 0.0471 0.0618 0.1738 0.0942  0.1284
SRTT 0.0419 0.0510 0.1657 0.0513  0.0802
Ours 0.0135 0.0286 0.0518 0.0236  0.0930
3DCg 0.0367 0.0526 0.2101  0.0485 0.1935
SRTTg 0.0263  0.0410 0.1479 0.0369 0.0615
SRTT, 0.0364 0.0477 0.0952 0.0436 0.0971
Ours., 0.0133  0.0279  0.0224  0.0199 0.0773

We outperform all the
competitors.

We exceed the
transformers-based method

SRTT |
We are competitve or even

better than method
exploiting refinement.

Our performance are better
if we continue the training
with a different discretization

*
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Visualize learned features for unsupervised Deep FMaps

Learned features tend to be consistent and well-localized even on quite
non-isometric shapes.

| \ \ \
vj B // ‘ 1

%

Understanding and Improving Features Learned in Deep Functional Maps, Attaiki, et al. CVPR 2023



Transformer-based registration DEMO

0

https://github.com/GiovanniTRA/transmatching



N o O A~ 0 DN e

Critical choices

The representation to encode the geometry (mesh, point clouds, ...)

The features to inject intrinsic/extrinsic/both (coordinates, spectral, ...)

The approach to follow (descriptors, functional maps, template registration, ...)
The architecture to exploit (MLP, convolutions, transformers, autoencoders, ...)

The Features extractor to adopt (MLP, PointNet, Diffusionet, ...)

The loss to minimize (Supervised, Chamfer, regularizations,...)
.:fs\
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