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• Geometry processing

• Spectral shape analysis

• Machine learning

• Geometric deep learning

Math and AI for
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Deep Learning in 3D Non-rigid 

Shape Registration 
Slides credits to Maks Ovsjanikov, Emanuele Rodolà, Riccardo Marin, 

Jing Ren, Giovanni Trappolini, Michael Bronstein and Thibault Groueix
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INTRODUCTION



What is a shape:

Real world: the external shell or the entire volume 

of an object or a scene in the space where we live.

Math:  2-dimensional smooth 

manifold (Riemannian surface) 

embedded in ℝ3 or a dense 

subset of the 3D space ℝ3.



Different representations

(Triangle) Mesh Point cloud



Rigid and Non-Rigid



Matching



Matching



Challaenges



Rigid registration
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Non-rigid matching/registration
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Medical applications



Disease detection and classification



Shape interpolation



Statistical shape analysis



Deformation-transfer

Sumner et al. Deformation Transfer for Triangle Meshes, 2004



Texture-transfer

Chen et al. Non-parametric texture transfer using MeshMatch, 2012
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SPECTRAL REPRESENTATION



A swiss army knife to work with general representations

+ Graphs review

+ Linear Algebra review

+ Intrinsic geometry tools

Laplace Operator



Graph Spectral Theory

Long story short:

Given a graph, we compute a characteristic matrix

and we consider its eigendecomposition



Meshes are Graphs



Graph Spectral Theory

Is it relevant?

Positional EncodingConvolution



Graph Representation

https://medium.com/basecs/a-gentle-introduction-to-graph-theory-77969829ead8



same structure but

different representations

Order of the nodes

permutation invariant 

representation!

the order of the nodes is 

different



A function/signal over a graph

https://www.semanticscholar.org/paper/Big-Data-Analysis-with-Signal-Processing-on-Graphs%3A-

Sandryhaila-Moura/65d61afd9c35b0a75d9de77c2a4a2428af0f7f7b/figure/0

https://noamgit.github.io/2018-12-01-gsp/

associates a scalar value to every vertex

represents it as a color w.r.t. a colorbar



Study Functions in Euclidean domains

Many tools for Function\Signal analysis

1D signal 2D signal



Fourier basis

Standard for signal defined on Euclidean domains



Functions as a linear combination of sinusoids

Fourier basis

Standard for signal defined on Euclidean domains



Useful properties: Orthogonality Normality

Computing coefficients is much simpler (e.g.,     )

Given a vector space   , a subset      is a basis iif: 

• Linearly independent

• They span all the vectors of 

Linear Algebra recap



Basis projection

Analysis



Synthesis

Basis recombination

Synthesis





Fourier Analysis and Laplacian

Apply the Laplacian

(second order derivative)

The Fourier basis functions are the eigenfunctions of the Laplacian

A fourier basis with frequency

The Laplacian in 1D coincides with the sum of the second order derivatives



Define tools like this

on

Graphs & Meshes

Non Euclidean Domain

Our problem



- Graphs: general object, with nodes and a connectivity

- Functions on Graphs: vectors (scalar value for each node)

- Euclidean analysis tools: Fourier analysis

- Fourier basis: Eigenfunctions of the Laplacian

Summary so far:

Key idea:

We need a Laplacian on graphs!

Trick: Adapting the definition



Discrete setting (1D)



Discrete setting (1D)



Discrete setting (1D)

Functions as vectors



We can represent functions as a linear 

combination of a basis (Fourier basis)

Discrete setting (1D)

















Discrete Fourier Analysis and Laplacian

Discrete Setting:

it is a vector

Apply the Laplacian

(second order derivative)

The Laplacian 

is a matrix

The vectors of the Fourier basis are the eigenvectors of the Laplacian

A fourier basis with frequency 𝑖-th



Eigendecomposition









Next Goal

use it in applications on graphs and 3D data

- Graphs: general object, with nodes and a connectivity

- Functions on Graphs: vectors (scalar value for each node)

- Euclidean analysis tools: Fourier analysis

- Fourier basis: Eigenfunctions of the Laplacian

- Discretization of the Laplacian: a sparse square matrix

- Discrete Fourier basis: Eigenvectors of the Laplacian

Summary so far:



Levy B., «Lapalce-Beltrami eigenfunction towards an algorithm that understands geometry», 2006.

Bruno Levy

Graph Laplacian for 3D shapes (LBO)

Key Features: Global operator defined by local relations, fully intrinsic, theoretical 

invariant to discretizations and isometries.

https://members.loria.fr/Bruno.Levy/papers/Laplacian_SMI_2006.pdf
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Example: Human Eigenfunctions



Two shapes are isometric ⟺ their LBO agree 

Any quantity derived

from the LBO 

is invariant to isometry

LBO and isometries

is an isometry



= ⋯ ⋯
𝑥

=𝜱(𝑥) ⋯ ⋯𝜙1(𝑥) 𝜙2(𝑥) 𝜙3(𝑥) 𝜙4(𝑥) 𝜙5(𝑥) 𝜙𝑘(𝑥)

Spectral embedding



Example: sphere eigenfunctions

Consider 2,3 and 4 and plot them in the feature space











Two shapes are isometric ⟺ their LBO agree 

Any quantity derived

from the LBO 

is invariant to isometry

LBO and isometries

is an isometry



Two shapes are isometric ⟺ their LBO agree 

Do you remember what 𝒇 should satisfy

to be an isometry?

LBO and isometries

Any quantity derived from the LBO is invariant to isometry

is an isometry



Two shapes are isometric ⟺ their LBO agree 

LBO and isometries

Any quantity derived from the LBO is invariant to isometry

is an isometry



Example: Human Eigenfunctions (In the feature space)

Functional

Maps



The eigenfunctions of the Laplace Beltrami Operator (LBO)

Laplace-beltrami eigenfunctions towards an algorithm that understands geometry, Levy, 2006

Fourier basis



≈ + + +

Laplace-beltrami eigenfunctions towards an algorithm that understands geometry, Levy, 2006

Fourier representation



The synthesis:

The analysis:

Given a signal:

Laplace-beltrami eigenfunctions towards an algorithm that understands geometry, Levy, 2006

Synthesis and analysis



The synthesis:

The analysis:

Given a signal:

Laplace-beltrami eigenfunctions towards an algorithm that understands geometry, Levy, 2006

Synthesis and analysis: dicrete setting



Application: Signal smoothing



Application: Signal smoothing



Application: Signal smoothing

= Coordinates



Oh no, I am lost!



Oh no, I am lost!



Oh no, I am lost!

Given a 

mesh

a matrix

N 

Vertices



Oh no, I am lost!

Given a 

mesh

a matrix

N x k

Pointwise

features

N 

Vertices



Oh no, I am lost!

Given a 

mesh

a matrix

N x k

k
Global

latent codes

Pointwise

features

N 

Vertices



Oh no, I am lost!

Given a 

mesh

a matrix

N x k

k
Global

latent codes

Pointwise

features

N 

Vertices



Main issues

a) Topological noise

b) Pointclouds

c) Heavy non-

isometries
c) Clutter\Partiality



- Graphs: general object, with nodes and a connectivity

- Functions on Graphs: vectors (scalar value for each node)

- Euclidean analysis tools: Fourier analysis

- Fourier basis: Eigenfunctions of the Laplacian

- Discretization of the Laplacian: a sparse square matrix

- Discrete Fourier basis: Eigenvectors of the Laplacian

- This is general enough: it works on graph and meshes (point clouds)

- Nice theoretical properties: isometries, near isometries, low-pass filtering

- Connection with Fourier Analysis: Non-Euclidean signal processing

- Many applications: Classification, Segmentation, Positional encoding

- Weakness: many real case scenarios ruin the theoretical premises

Summary so far:

Next Goal

use it in 3D non-rigid registration
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AXIOMATIC APPROACHES



ICP (1D case)



ICP (1D case)



ℝ𝑄

⋮

⋮

Features-based



ℝ𝑄

⋮

⋮

Features-based



ℝ𝑄

⋮

⋮

Features-based



ℝ𝑄

How do you suggest to find the most similar point to the yellow one?

Features-based



Distance = 𝒟(𝑑𝑒𝑠𝑐𝒳 , 𝑑𝑒𝑠𝑐𝒴)

Features-based



Features-based

Distance = 𝑑𝑒𝑠𝑐𝒳 − 𝑑𝑒𝑠𝑐𝒴 2



Features-based

Π(𝑥) = 𝑦 =
𝑎𝑟𝑔𝑚𝑖𝑛
𝑦 ∈ 𝒴

𝑑𝑒𝑠𝑐𝒳(𝑥) − 𝑑𝑒𝑠𝑐𝒴(𝑦) 2



A descriptor (signature) should be:

1. Effective

2. Concise\compact

3. Repeatable

4. Robust

Desired properties



𝑅
𝒑

𝒑𝒊

𝒅𝒊

For all 𝒑 we define the covariance matrix:

From the eigenvectors of 𝑀
we obtain a LRF 𝑥, 𝑦, 𝑧
that is then used to define:

SHOT

Signature of Histograms of OrienTations

Unique Signatures of Histograms for Local Surface Description, Tombari et al., ECCV 2010

SHOT

https://vision.deis.unibo.it/fede/papers/eccv10.pdf


Once we have the LRF for every point  𝒑 we can define a coherent 3D grid

𝒑

Unique Signatures of Histograms for Local Surface Description, Tombari et al., ECCV 2010

𝒑 ⋮⋮

1 2 3231⋯ ⋯

SHOT: construction

The value of each bin is a weighted sum of 𝑐𝑜𝑠𝜃𝑖
where 𝜃𝑖 is the angle between the normals of the point

𝒑 and the point within each region of the 3D grid.

The 3D space around 𝒑 is subdivided in 32 regions

each of wich is a different bin of the histogram that

describes the point.

https://vision.deis.unibo.it/fede/papers/eccv10.pdf


SHOT is an extrinsic descriptor: it depends on the 

3D embedding of the shape

The analysis for the point 𝑝 is performed

looking at how the shape behaves around the 

point.

𝒑

To obtain a coherent description of similar

points and to be invariant to rigid

deformations the LRF is necessary.

The SHOT descriptors is not invariant to non-

rigid deformations.

SHOT: a comment



is a Riemannian surface,              is the amount of heat

in a point               at time 

Given a initial distribution

of heat on      at time             , (                             )

How is it diffused over time on the surface?

A Concise and Provably Informative Multi-scale Signature Based on Heat Diffusion, Sun et al., 2009.

Heat Diffusion

http://www.lix.polytechnique.fr/~maks/papers/hks.pdf


solution of the heat equation is a function of                  and time             which

satisfies the heat equation for a given initial condition:

From physics the heat diffusion is governed by the heat equation:

The LBO 

= 

derivatives in space

derivative in time

Heat Diffusion



For an initial delta distribution of heat

the heat kernel

Heat Diffusion solution

Is the amount of heat moving from x to y



For an initial delta distribution of heat

Is the amount of heat remaining at after the time 

is the heat kernel signature (HKS) at the point         

for a given set of time scales

HKS: Heat Kernel Signature



Two shapes are isometric ⟺ their LBO agree 

Any quantity derived

from the LBO 

is invariant to isometry

LBO and isometries

is an isometry



A low-pass filter applied to the frequencies to produce the HKS

HKS: as a filter on the frequencies



missing a minus
presence of the 𝒊

It encodes oscillation rather than dissipation as done by the heat equation

The wave kernel signature: A quantum mechanical approach to shape analysis, Aubry et al., 2011.

Heat equation:

Wave equation:

Idea: point 𝓍 ⟷ the average probabilities of quantum particles 

of different energies to be measured at 𝓍

The wave equation (Schr ሷ𝑜dinger)

https://vision.informatik.tu-muenchen.de/_media/spezial/bib/aubry-et-al-4dmod11.pdf


a quantum particle with unknown position on the surface

the probability distribution with expectation value estimated at time 𝑡 = 0

WKS: Wave Kernel Signature

the average probability over the time to find the 

particle at position             given the initial energy       



A band-pass filter 

applied to the 

frequencies to 

produce the WKS

WKS: as a filter on the frequencies



A common structure is shared by the spectral descriptors HKS and WKS

A set of filters on the frequencies

=

functions of the eigenvalues

The square of each

dimension of the 

spectral embedding

Spectral descriptors



WKS:HKS:

“Learning spectral descriptors for deformable shape correspondence”, Litman et al., 2014.

Spectral descriptors: as filter on the frequencies

https://ieeexplore.ieee.org/iel7/34/4359286/06579600.pdf?casa_token=H0Bfo5ELAR0AAAAA:toIILgZ05MTaDLNdGt_lhs6wLut_EnDwHfPCs6JC_0Q_9AK8pB80ocowfM_2gdeG9S-V4kE


What are the best filters to apply in this

equation to obtain the best descriptors? 

Spectral descriptors: learn the optimal filters

These are just 𝑄 finite sets of 𝑘
parameters, can we learn them? Λ

ො𝑔1

ො𝑔2

𝜆1 𝜆2 𝜆3 𝜆𝑘



We can compute a learned kernel signature by learning 

the matrix 

These explixitly depend on the learned matrix

How could we learn this matrix 𝐴?

Optimal spectral descriptors



We consider a set of points      on      

such that                 we can define a set 

of points       on       that is composed by:

Given a pair of shapes      and 

Optimal spectral descriptors: loss definition

• similar points (positive)

• dissimilar points (negative)



Optimal spectral descriptors: learned filters

WKS:HKS:
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ℝ𝑄

Features-based



Features-based

Distance = 𝑑𝑒𝑠𝑐𝒳 − 𝑑𝑒𝑠𝑐𝒴 2
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• Spectral descriptors are invariant to isometric deformations

• Spectral descriptors do not solve the symmetries

• Spectral descriptors can be generalized via data-driven approaches

• SHOT can characterize the rigid geometry of a shape

• The data-driven approaches outperform the standard spectral ones

• Other deformations (for from isometries) can not be faced

Some considerations



Geometric Deep Learning
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FUNCTIONAL MAPS



What is a function on a shape



vertex number 127
value 1

vertex number 65
value 0.25

vertex number 342 value -0.78

What is a function on a shape



vertex number 1

vertex number 2

What is a function on a shape



1

2

3

4

136

284

137

285 771

772

What is a function on a shape



Different meshes



1

2

1

2

1000 vertices

772 vertices

different orders in the list of vertices

Different meshes



1 2 3 4 5 6 772770

1 2 3 4 5 6 7 8

768

772770109 1000998

1000 vertices

772 vertices

These representations are not comparable!

Different vectors



≈ + + +

Laplace-beltrami eigenfunctions towards an algorithm that understands geometry, Levy, 2006

Fourier representation



The synthesis:

The analysis:

Given a signal:

Laplace-beltrami eigenfunctions towards an algorithm that understands geometry, Levy, 2006

Synthesis and analysis: dicrete setting



Not directly possible! They are 2 different templates

Question 1



=

=
Fourier

Fourier

What is the relation between the 

two set of coefficients and    ?

Question 2



The problem to find a point-to-point map between and  

Move the shape correspondence problem

to the functional space!

Answer: FUNCTIONAL MAPS



corresponding = arise from a point-to-point map

Corresponding functions



is a point-to-point map

Functional maps: a flexible representation of maps between shapes, Ovsjanikov at al., 2012

A point-to-point map



write it as a binary matrix

A point-to-point map



The transfer is defined as: .

Induces a functional map



Exploiting Fourier

Functional maps: a flexible representation of maps between shapes, Ovsjanikov et al., SIGGRAPH 2012

Induces a functional map



- Functions on meshes are vectors 

- Corresponding functions on different shapes depend on a point-to-point 

correspondence

- A point-to-point map induces a mapping between function (a functional map)

- A point-to-point map can be written as a binary matrix that operates on functions

- Discrete Fourier basis: Eigenvectors of the Laplacian

- We can represent the functional map in the Fourier basis which is:

Summary so far:

Next Goal

Estimate the functional map associated to the 

correspondence between a pair of shapes

- A small matrix with the dimensions of the bases

- A linear operator that maps Fourier coefficients

- Mainly diagonal or close to it



Functional maps estimation



- Functions on meshes are vectors 

- Corresponding functions on different shapes depend on a point-to-point 

correspondence

- A point-to-point map induces a mapping between function (a functional map)

- A point-to-point map can be written as a binary matrix that operates on functions

- Discrete Fourier basis: Eigenvectors of the Laplacian

- We can represent the functional map in the Fourier basis which is:

Summary so far:

Next Goal

Obtain the correspondence from the functional map

- A small matrix with the dimensions of the bases

- A linear operator that maps Fourier coefficients

- Mainly diagonal or close to it

- Can be estimated from a given set of corresponding functions



Given a functional map

Conversion to a point-to- point map



1. Compute the first k (~30-100) eigenfunctions of the LBO.

Store them in matrices:

2. Compute probe functions (e.g., landmarks or descriptors) on          .  

Express them in                 , as columns of      and 

3. Solve

4. Convert the functional map to a point-to-point map T. 

Fmaps pipeline



=

=
Fourier

Fourier

What is the relation between the 

two set of coefficients and    ?

Question 2



-0.1
0.09 0.08 0.050

≈

≈ + +

+ + + +

+ +

0-0.1 0.090.09 -0.05

Fourier analysis and synthesis



           
    

    

    

 

   

   

   

Compare the Fourier coefficients



-0.1

0.09

0.08

0

0.1

0.06

-0.1

0.09

0.09

0

0.1

0.06

0.05-0.05

Compare the Fourier coefficients



Functions on 2 different domains

≈

≈ + +

+ + + +

+ +



Functions on 2 different domains

≈

≈ + +

+ + +

+



Functional map and the size of the basis

Functional maps: a flexible representation of maps between shapes, Ovsjanikov et al., SIGGRAPH 2012

Slide credit M. Ovsjanikov



High-frequencies

Low-pass Easy to optimize (fewer

probe functions needed)

Low-pass representation

(poor functional transfer)

Hard to optimize (more 

probe functions

needed)

Better representation

of details (good 

transfer)

The Functional Maps trade-off



Exploiting the connection with point-to-point-map

ZoomOut: Spectral Upsampling for Efficient Shape Correspondence, Melzi et al., 2019

http://www.lix.polytechnique.fr/~maks/papers/SGA19_zoomOut_reduced.pdf


𝐶: dim = 5𝐶: dim = 4 𝐶: dim = 8 𝐶: dim = 50

…… ……

ZoomOut a visualization Slide credit J. Ren

ZoomOut: Spectral Upsampling for Efficient Shape Correspondence, Melzi et al., 2019

http://www.lix.polytechnique.fr/~maks/papers/SGA19_zoomOut_reduced.pdf


Functional Map Improvements

Significant improvements to functional maps over the years:

1. Functional maps in shape and image collections.

2. Enabling partial shape matching.

3. Better understanding of pointwise map recovery.

4. Much better symmetry handling.

5. Techniques for promoting map continuity and smoothness.

…

A rich tool box for shape analysis and correspondence problems!



LBO and spectral stuff

https://colab.research.google.com/drive/1MhfzQBmPj2VMORPUERVzCgflpmLbvEVo#scrollTo=jpwcR2iGoYwn



LBO, WKS and Functional Maps DEMO

https://github.com/RobinMagnet/pyFM
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LEARNING ON GEOMETRIC DATA



FAUST/DFAUST/SURREAL SCAPE TOSCA

Common datasets

• Clean, manifold triangle meshes with ground truth maps Pros:

Cons: • Most existing datasets are synthetic

• Shapes within a dataset are in 1-1 correspondence

• Scale is typically limited

Bogo, Federica, et al., FAUST: Dataset and evaluation for 3D mesh registration. CVPR 2014

Anguelov, Dragomir, et al., SCAPE: shape completion and animation of people, SIGGRAPH 2005

Bronstein, Alexander et al., Numerical geometry of non-rigid shapes, Springer 2008



Non-Euclidean learning

Idea: apply kernels directly on the surface!

Geometric Deep Learning: Going Beyond Euclidean Data Bronstein MM et al. 2017

A Comprehensive Survey on Geometric Deep Learning. Cao W, Yan Z, He Z, He Z. 2020

image credit M.Bronstein



Image vs Geometry

3D

only domain 

constant or no signal

2D

only signal

fixed domain/template



Non-Euclidean convolution:

Slide credit E. Rodolà

Non- EuclideanEuclidean



Non-Euclidean convolution:

Non- EuclideanEuclidean

Slide credit E. Rodolà



Intrinsic vs extrinsic:

Slide credit E. Rodolà

IntrinsicExtrinsic



Local ambiguity

Unlike images, there is not a canonical ordering of the points in the domain

Slide credit E. Rodolà

Mesh rotationGraph rotation



PointNET pointwise feature:

“PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" Qi et al., 2016

https://arxiv.org/pdf/1612.00593.pdf


Geodesic convolutional neural networks

Key idea: parameterize the shape locally. 

Using local polar coordinates on the surface can multiply the signal f with a 

trainable kernel g

Product is a scalar per point ⇒ a real-valued function on the surface. Pose invariant!

• Geodesic convolutional neural networks on Riemannian manifolds, Masci et al., 2015

• Learning shape correspondence with anisotropic convolutional neural networks, Boscaini et al., 2016

• Geometric deep learning on graphs and manifolds using mixture model CNNs, Monti et al., 2017

• …

image credit M.Bronstein



Learning Correspondences with GCNN

Geodesic convolutional neural networks on Riemannian manifolds, Masci et al. 2015

slide credit E. Rodolà



Correspondence learning via ASCNN

Li, Qinsong, et al. Shape correspondence using anisotropic Chebyshev spectral CNNs, CVPR 2020.

Correspondence is solved!



What happens under remeshing?

after

remeshing

error

0

10%

original

connectivity

ASCNN correspondence error



Spatial convolution filters Slide credit E. Rodolà

“Geometric deep learning on graphs and manifolds using mixture model CNNs", Monti et al., 2016

• Loss is independent of the geometry

• Requires a template, difficult to generalize to new classes

• Difficult to obtain discretization independent results

• Requires dense ground truth maps

https://arxiv.org/pdf/1611.08402.pdf


Theorem of convolution

Convolution on the Euclidean domain [−𝜋, 𝜋] of two functions 𝑓, 𝑔: [−𝜋, 𝜋] → ℝ is

defined as:

𝑓 ⋆ 𝑔 𝑥 = න
−𝜋

𝜋

𝑓 𝑥′ 𝑔 𝑥 − 𝑥′ 𝑑𝑥′

Convolution theorem: Fourier transform diagonalizes the convolution operator.

More explicitly: convolution can be computed in the spectral (Fourier) domain:

𝑓⋆ 𝑔 = መ𝑓 ⋅ ො𝑔

coefficients of the convoluted signal = the frequency-wise product of the coefficients



Spectral representation of the convolution operator

We can define a truncated fourier basis Φ = [𝜙1, … , 𝜙𝐾]

We can encode the analysis and synthesis operators respectively in this basis

𝒢𝑓 = 𝑓 ⋆ 𝑔 = Φ 𝑓 ⋆ 𝑔 = Φ መ𝑓 ⋅ ො𝑔 = Φ መ𝒢

መ𝑓1

⋮
መ𝑓𝐾

= Φ መ𝒢Φ†𝑓

መ𝑓1

⋮
መ𝑓𝐾

= Φ† 𝑓

𝒢𝑓 = Φ መ𝒢Φ†𝑓 𝒢 = Φ መ𝒢Φ†
መ𝒢 = 𝑑𝑖𝑎𝑔 𝑔 =

ො𝑔1 0

0 ො𝑔2

… 0
0 ⋮

⋮ 0
0 …

⋱ 0
0 ො𝑔𝐾

convolution theorem



𝑗

𝑗

𝑖

𝑖

Spectral convolution

Spectral convolutional layer (Given ∆,Φ, Λ)

𝑓′ = ΦΤ(Λ) መ𝑓

𝛵 𝛬 = 𝑑𝑖𝑎𝑔(𝜏 𝛬 )

Define one window for each node is inefficient

Spectral Translation given 𝛿𝑖 indicator of 𝑖

𝑇𝑖𝑔 = 𝑔 ⋆ 𝛿𝑖 𝑇𝑖𝑔 = 𝑔 ⋆ 𝛿𝑖 = ො𝑔⊙ 𝛿𝑖

𝛿𝑖 = Φ(𝑖) = [𝜙1 𝑖 , … , 𝜙𝐾(𝑖)]

“Spectral Networks and Locally Connected Networks on Graphs", Bruna et al., 2014

መ𝑓 = Φ†𝑓

Λ

ො𝑔1

ො𝑔2

𝜆1𝜆2𝜆3 𝜆𝑘

“Learning class‐specific descriptors for deformable shapes using localized spectral convolutional networks", Boscaini et al., 2016

https://arxiv.org/pdf/1312.6203.pdf


MeshCNN

“MeshCNN: A Network with an Edge" Hanocka et al., 2019

Idea: edges instead of vertices are analogous to pixels

Input: 5 dimensional vector for each edge

• the dihedral angle

• two inner angles 

• two edge-length ratios for each face

https://arxiv.org/pdf/1809.05910.pdf


Convolution: Well defined for each edge and its 

Neighbour given by the 4 connected edges.

MeshCNN

“MeshCNN: A Network with an Edge" Hanocka et al., 2019

Idea: edges instead of vertices are analogous to pixels

Input: 5 dimensional vector for each edge

https://arxiv.org/pdf/1809.05910.pdf


Half Edge CNN

“HalfedgeCNN for Native and Flexible Deep Learning onTriangle Meshes" Ludwig et al., 2023

https://arxiv.org/pdf/1809.05910.pdf
https://arxiv.org/pdf/1809.05910.pdf


DiffusionNet

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021

https://arxiv.org/pdf/2012.00888.pdf


Diffusion Based Networks

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021

pointwise MLP gradient features

geodesic 

convolutions

+ +learned diffusion

pooling

hierarchies

difficult on surfaces

source of non-robustness

use diffusion instead!

https://arxiv.org/pdf/2012.00888.pdf


Recall: Laplacian and Diffusion

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021

https://arxiv.org/pdf/2012.00888.pdf


Learned Diffusion

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021

Lemma: diffusion + pointwise MLPs can represent all (radially 

symmetric) convolutions.

Key idea: the diffusion time is a learned parameter

variable per-channel spatial support↳

ranges from purely local to totally global↳

automatically optimized during training↳
diffusion!

parameterized by learned diffusion layer

https://arxiv.org/pdf/2012.00888.pdf


Spatial gradient features

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021

Challenge: we want to go beyond radially-symmetric filters

Solution: append extra features, dot products of spatial gradient 

radially symmetric

filters only
beyond radially

symmetric filters

Important detail: invariant to choice of tangent space

spatial gradient of 

scalar features

𝑓𝑖𝑙𝑡𝑒𝑟 𝑖 = 𝑔 𝑧, 𝐴 , where 𝐴 is a learned rotation

https://arxiv.org/pdf/2012.00888.pdf


DiffusionNet Architecture

183DiffusionNet: Discretization Agnostic Learning on Surfaces, N. Sharp, S. Attaiki, K. Crane, M.O., https://arxiv.org/abs/2012.00888



DiffusionNet Architecture

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021

https://arxiv.org/pdf/2012.00888.pdf


DiffusionNet DEMO

https://github.com/nmwsharp/diffusion-net
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Functional maps: a flexible representation of maps between shapes, Ovsjanikov et al. SIGGRAPH 2012

• Functional map matrix C is much smaller than

• Natural constraints on the map are easy to express.

Main Advantages:

Functional Map Representation



1. Compute the first k (~30-100) eigenfunctions of the LBO.

Store them in matrices:

2. Compute probe functions (e.g., landmarks or descriptors) on          .  

Express them in                 , as columns of      and 

3. Solve

4. Convert the functional map to a point-to-point map T. 

Fmaps pipeline

Given a pair of shapes :

Computing and Processing Correspondences with Functional Maps., Ovsjanikov et al., SIGGRAPH courses 2017



Main Question

What happens if the input descriptors are bad?

Results in poor texture transferInput descriptors not in alignment



FMNet

FM layer:

Learning approach to computing mappings. 

Deep functional maps: Structured prediction for dense shape correspondence. Litany et al., ICCV 2017 

Solution given by a linear system of equations. 

Can back-propagate via derivatives of linear systems



FMNet

FM layer:

Learning approach to computing mappings. 

Deep functional maps: Structured prediction for dense shape correspondence. Litany et al., ICCV 2017 

Training loss:

Key advantage: evaluates the entire map. State-of-the art in 2017

soft map corresponding to the fmap 𝐶



SURFMNet

Main idea: make the loss fully unsupervised.

FMNet

Rouffosse et al., “Unsupervised Deep Learning for Structured Shape Matching,” ICCV 2019

Halimi et al., “Unsupervised Learning of Dense Shape Correspondence,” CVPR 2019

FMNet



Bijectivity

Area-preservation

Functional map close to pointwise one

All penalties are in the reduced basis. 50x faster than FMNet

Near-isometry

Replace supervised loss with unsupervised one

SURFMNet

Rouffosse et al., “Unsupervised Deep Learning for Structured Shape Matching,” ICCV 2019



Datasets

datasets released as part of: Continuous and Orientation-preserving Correspondences via Functional 

Maps, J. Ren, A. Poulenard, P. Wonka, M. O, SIGGRAPH Asia 2018

*

*



Remeshing makes the problem a lot harder

Comparison to unsupervised methods

SURFMNet results

Rouffosse et al., “Unsupervised Deep Learning for Structured Shape Matching,” ICCV 2019



Questions for improvement

1. Use raw geometry (XYZ) instead of SHOT features as input?

2. How well do the methods generalize across different datasets?



Geometric Deep Functional Maps

spectral projection

(on Laplace Basis)

Extract descriptor functions from the raw geometry!

Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence, Donati et al., CVPR 2020

KPConv



Extract descriptor functions from the raw geometry!

Training loss in the spectral domain:

• Penalizes the map as a whole

• Does not require a template

• Does not require geodesic distance matrices

Geometric Deep Functional Maps

Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence, Donati et al., CVPR 2020



Extract descriptor functions from the raw geometry!

Additional constraint inside the network: commutativity with Laplacian

Linear system for every row in C !
• Fully differentiable

• gives better maps

Geometric Deep Functional Maps

Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence, Donati et al., CVPR 2020



Generalization Across Datasets

Deep Geometric Functional Maps: Robust Feature Learning for Shape Correspondence, Donati et al., CVPR 2020



Issues with Deep GeomFmaps

Problem:

Still use extrinsic feature extractor (KPConv)

Main Questions:

How to enable robust and efficient intrinsic

learning on surfaces (choosing the architecture)?



Immediate improvements with more robust feature learning methods:

DiffusionNet for Geometric Deep Functional Maps

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021

https://arxiv.org/pdf/2012.00888.pdf


DiffusionNet for Geometric Deep Functional Maps

“DiffusionNet: Discetization agnostic learning on surfaces" Sharp et al., 2021

Key property in practice:

runs easily on full-size meshes/clouds! (no remeshing/downsampling)

https://arxiv.org/pdf/2012.00888.pdf


DiffusionNet-based Functional Maps DEMO

https://github.com/nmwsharp/diffusion-

net/tree/master/experiments/functional_correspondence



Fully Differentiable Functional Maps

205Correspondence Learning via Linearly-invariant Embedding,  R. Marin et al., NeurIPS 2020



Fully Differentiable Functional Maps

Correspondence Learning via Linearly-invariant Embedding,  R. Marin et al., NeurIPS 2020



Results

Correspondence Learning via Linearly-invariant Embedding,  R. Marin et al., NeurIPS 2020



Results

Correspondence Learning via Linearly-invariant Embedding,  R. Marin et al., NeurIPS 2020



LIE DEMO

https://github.com/riccardomarin/Diff-FMaps



Current and Future Directions

1. Link between shape matching and contrastive learning.

2. Need for more datasets and tasks.

3. Better functional bases (beyond Laplacian).

4. Exploiting unsupervised feature pre-training in other tasks.

5. Working on other representations: implicit, point clouds, 

images, graphs, etc.

6. 18



Visualize learned features for unsupervised Deep FMaps

Learned features tend to be consistent and well-localized even on quite 

non-isometric shapes.

Understanding and Improving Features Learned in Deep Functional Maps, Attaiki, et al. CVPR 2023



1. Introduction: 3D Non-Rigid shapes and registration

2. Spectral representation

3. Axiomatic approaches

4. Functional maps

5. Learning on geometric data

6. Learning–based Functional maps

7. Other learning-based approaches

8. Transformers

LEARNING-BASED FUNCTIONAL MAPS



Parameters

Input

Shape

Reconstructed ShapeTemplate

Auto-Encoder-based approach

3D-CODED : 3D Correspondences by Deep Deformation, Groueix et al. ECCV 2018 



Decoder

3D-CODED : 3D Correspondences by Deep Deformation, Groueix et al. ECCV 2018 

Parameters

Input

Shape

Reconstructed ShapeTemplate



Parameters

x

The decoder which deforms the template

y
z

y
z

x

Generate

a point q

Sample 

a point p

3D-CODED : 3D Correspondences by Deep Deformation, Groueix et al. ECCV 2018 



Supervised Loss

3D-CODED : 3D Correspondences by Deep Deformation, Groueix et al. ECCV 2018 

Parameters

Input

Shape

Reconstructed ShapeTemplate

point r

point p

point q



Unsupervised Loss

3D-CODED : 3D Correspondences by Deep Deformation, Groueix et al. ECCV 2018 

Parameters

Input

Shape

Reconstructed ShapeTemplate

point r

point p

point q



: Chamfer distance (nearest neighbors based reconstruction loss) between 

deformed template and target shape. 

: Edge ratio loss (regularization). Preserve local neighbourhood of the template 

by encouraging each edge in the deformed template to keep the same length. 

: Laplacian loss (regularization). Preserve local neighbourhood of the template 

by encouraging the laplacian of the deformed template to remain constant.

Unsupervised Loss + regularizations



Parameters

Input

Shape

Reconstructed

Shape

Template

Refinement as parameters optimization

3D-CODED : 3D Correspondences by Deep Deformation, Groueix et al. ECCV 2018 

Input 

Shape

Minimize 

Chamfer distance



Correspondence 

via template
Nearest

Neighbor

Nearest

Neighbor

Evaluation: Finding 3D shape correspondences

Template



Datasets: 230 000 synthetic human shapes

Learning from synthetic humans, Varol et al. CVPR (2017)

[2] FAUST: Dataset and evaluation for 3D mesh registration, Bogo et al. CVPR (2014)



Robustness to perturbations

SCPA

Scape: shape completion and animation of people, Anguelov et al. TOG  (2005)

Numerical geometry of non-rigid shapes, Bronstein et al. Springer Science & Business Media (2008)

SCAPE TOSCA

noise, holes, sampling, topology, scaling



3D-CODED DEMO

https://github.com/ThibaultGROUEIX/3D-CODED
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Transformers



Transformers Everywhere

Computer 

Graphics

Computer Vision

NLP

Biology

Audio



Idea



Trappolini et al. NEURIPS 2021 (SRTT)

1. Adopts the Perceiver

2. Proposes the surface attention

3. Select one direction

Is the first method for shape registration that exploits the transformers

Trappolini et al., “Shape registration in the time of transformers”, NEURIPS 2021



Encoder Decoder Transformers

Latent

Probes

Latent 

Space
Encoder

Decoder



Encoder

Latent

Probes

Cross 

Attention

Self 

Attention

Feed

Forward

Embedder

L
a

te
n

t

C
o

d
e



Decoder

Self 

Attention
Embedder

Latent

Space

Cross

Attention

MLP

Feed

Forward



Need for a different attention



Classic VS Surface Attention

Classic

Surface

Original (7k) Quadratic 

error (1k)

Normal 

deviation (1k)



Supervised loss



Unsupervised Loss

Chamfer 

Distance



Registration and Correspondence

3D-Coded DiffNet LinInv Our



Summing up

● First Transformers for non-rigid registration. 

● Introduction of an attention mechanism suitable for surfaces.

● Significantly improve on the state of the art.

Method FAUST FAUST (1K) FAUST (noise) SHREC 19

3DC 0.0776 0.0542 0.0712 0.2138

Diffnet 0.0656 0.0534 0.0985 0.1509

LinInv 0.0942 0.0471 0.0618 0.1284

Our 0.0513 0.0419 0.0510 0.0802

3DC - R 0.0485 0.0367 0.0526 0.1935

Our - R 0.0369 0.0263 0.0410 0.0615



Trappolini et al. NEURIPS 2021 (SRTT)

1. Adopts the Perceiver

2. Proposes the surface

attention

3. Select one direction

Is the first method for shape registration that exploits the transformers 

architecture
… Not the simplest

… Geometric prior

… Matching is bi-directional

Trappolini et al., “Shape registration in the time of transformers”, NEURIPS 2021



Our Implementation

Attention and positional encoding are (almost) all you need for shape matching, Raganato, Pasi, Melzi, SGP 2023



Loss and augmentation

• The shape matching is bidirectional by nature

• We apply a random permutation to the points representing each shape

• We apply a random rotation which belongs to one of the following types:

1. the composition three random rotations, one for each axis in [0,2π];

2. a random rotation along one of the axes in the interval [0,2π];

3. the null rotation. 



Experiments

• We outperform all the 

competitors.

• We exceed the 

transformers-based method

SRTT
• We are competitve or even

better than method

exploiting refinement.

• Our performance are better

if we continue the training 

with a different discretization



Our Attention Pattern
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Geometry of the Attention



Visualize learned features for unsupervised Deep FMaps

Learned features tend to be consistent and well-localized even on quite 

non-isometric shapes.

Understanding and Improving Features Learned in Deep Functional Maps, Attaiki, et al. CVPR 2023



Transformer-based  registration DEMO

https://github.com/GiovanniTRA/transmatching



Critical choices

1. The representation to encode the geometry (mesh, point clouds, …)

2. The features to inject intrinsic/extrinsic/both (coordinates, spectral, …)

3. The approach to follow (descriptors, functional maps, template registration, …)

4. The architecture to exploit (MLP, convolutions, transformers, autoencoders, …)

5. The Features extractor to adopt (MLP, PointNet, Diffusionet, …)

6. The loss to minimize (Supervised, Chamfer, regularizations,…)

7. …
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