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https://magrilu.github.io/

Credits & acknowledgments

Some of the material presented in these slides is based on

Matteo Poggi's tutorial: Learning and understanding single image depth estimation in the wild, CVPR 2020

which is an excellent resource for approaching the problem of depth estimation.

The introductory material is inspired by Justin Johnson: Deep learning for computer vision (lecture 17)

Monodepth and material on self-supervision is based on the oral presentation done by Clément Godard at
CVPR 2017.

Some slides are "stolen" from the AN2DL course of Prof. Giacomo Boracchi, who is kindly acknowledged
here for his suggestions and support. Typically, the images are taken from the papers cited at the bottom
of each slide.

The codes accompanying this lecture were provided by Andrea Porfiri dal Cin, whom I thank for his help.

Errors are my own! You are encouraged to report any of them to luca.magri@polimi.it
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Motivations

Navigation & mapping Robot grasping Augmented reality

Applications
* Robotics

* Autonomous Driving Assistive System

* Medical applications
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Perceiving depth

Active technologies
 Structured Light
* Time of Flight (TOF)
 LaserImage Detection Ranging (LiDAR)

v/ very accurate

LiDAR:
X Sparse measurements
X Expensive

Structured Light:
X Can’t work outdoor
X Limited range

Luca Magri 2024

Passive technologies
* Binocular and multi-view stereo
e Structure from Motion

v cheap

Stereo:
X Occlusions

SfM:
X Moving objects

By estimating depth from a single image,
we can bypass all these limitations!



Depth estimation
from a single image

(0=



Depth map

Given a RGB image of size HXW X3, we want to estimate

a depth map: an image of size HXW
that, for each pixel, gives the distance from the camera
to the object in the world at that pixel.

RGB image + Depth map = RGB-D image 2.5D

3D point
De .
Pth map, M = (2,y,2) far
e ¥ z
A // m = ('U/, ’U)
The depth is the z-
coordinate of M in the
Cameral .- camera reference system
center
Camera reference system close
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Depth from a single image is an ill posed problem

The capture of an image of a 3D scene is modelled as the projection of 3D points on a 2D image plane.
All the points belonging to the optical ray projects on the same 3D points.

It is not possible to recover the depth of a point from a single image, as the same image point can be
back-projected to multiple plausible depths.

3D point ,/’
Im o
8€ plane o M = (x,y,2)
Image
point ®)
T me= (u,v)

Camera .~
center

Camera reference system
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Estimating depth form a single image is an 1ll posed problem!
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Estimating depth form a single image is an 1ll posed problem!

Scale-depth ambiguity:

a small close object looks the same as a much larger
one further away.

Absolute scale / depth is ambiguous from a single
image
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Thank for your attention!
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...but humans succeed estimating depth

however not all the 3D structures are equally likely! Humans are able to infer a (nearly) correct 3D
structure and relative depth, using prior experience and visual cues such as:

5. Aerial perspective
2. Relative size position 6. Light and shadows
3. Texture gradient 7. Blur/defocus
4. Occlusions (the occluded object is far away)

How is it possible to automatically estimate the
depth form a single image?




Today menu

1 Depth estimation from a single image Aims: @,
s e Supervised methods

: _ , . . Get an intuition of the main
* Visual cues for single image depth estimation

approach forinferring 3D data from
2D images

DI Depth estimation from a calibrated stereo pairs Fill our box with the geometric tools
o necessary to depth estimation
== * Stereo self-supervision

@ Multiview depth estimation
* Mono-depth training & deep SfM
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Supervised approach

\\‘ »! r
b h”'x’ "
[T

Input image Target depth
| Y

Our training set is a collection of images and depth maps (RGD images)
TR = {(Iir Yl)}
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Supervised approach

Loss

=1

Input image a model Output depth Target depth
I )% Y

Luca Magri 2024



From semantic segmentation to depths

A simple solution is to start with a Fully Convolutional Neural Networks as the one used for semantic
segmentation

W XHXL

e

Input image [

WxHx3 = /

Luca Magri 2024

Semantic
labels



From semantic segmentation to depths

A simple solution is to start with a Fully Convolutional Neural Networks as the one used for semantic
segmentation and adapt it to predict depth values instead of semantic labels.

W XHXL

e

Input image [

WxHx3 = /

Luca Magri 2024

Depth values
Y



Encoder & decoder (sketch of the idea)

* The encoder reduces the spatial extent of the image and produce deeper features that enode richer
information

* The decoder upsamples the predictions to cover each pixel in the image at the original resolution

/
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Encoder & decoder (sketch of the idea)

* The encoder reduces the spatial extent of the image and produce deeper features that enode richer
information

* The decoder upsamples the predictions to cover each pixel in the image at the original resolution

4 a

3 3
3 3

Nearest Bed
neighbor of nails
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Encoder & decoder (sketch of the idea)

* The encoder reduces the spatial extent of the image and produce deeper featur
information

 The decoder upsamples the predictions to cover each pixel in the ima

Encoder D
ee——— \;’ ~
- Vam = T learn the wgi;ghts to perform
/ /| 7& H— interpolation across the
https://github.com/vdumoulin/conv_arithmetic- upsampled values
Convolution & downsampling Upsampling & convolution
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https://github.com/vdumoulin/conv_arithmetic

Encoder & decoder (sketch of the idea)

* In semantic segmentation a soft-max to predict the proability of belonging to one of the L classes A =
{ly, ..., 1.},

* Toregress depth maps we have instead a linear layer. softmax(-)
/ﬁ Encoder Decoder
et | _
/| A / y u/ = i B
/ |/ —__ &7& / "
Convolution & downsampling Upsampling & convolution Semantic

labels
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Encoder & decoder (sketch of the idea)

* In semantic segmentation a soft-max to predict the proability of belonging to one of the L classes A =
{ly, ..., 1.},

* Toregress depth maps we have instead a linear layer. Linear

activations

Encoder Decoder

Convolution & downsampling Upsampling & convolution
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Other architectures

Most of the architectures for supervised depth estimation from a single image are based
on this encoder-decoder paradigm, keeping this in mind you should be able to navigate the literature...

e.g., Adabins

Encoder Decoder + Adaptive bin

a transformer- based architecture block that divides
the depth range into bins whose center value is

estimated adaptively per image

For close-up images bins
are concentrated near
smaller values

Ground truth Histograms
Predicted Histograms | ||'|“|||- bl L b L ek

==[| Bhat, Sharig Farooq, Ibraheem Alhashim, and Peter Wonka. "Adabins: Depth estimation
using adaptive bins." CVPR 2021.
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A naive loss

As a loss, we could minimize the £, norm between the predicted and the regressed values.

Input image

Luca Magri 2024

a model

-

£, pixel-wise loss

Output depth Target depth

~ ~112
D(v,7) = [y - 7],




A naive loss

As a loss, we could minimize the £, norm between the predicted and the regressed values.

Input image

a model

-

\_

£, pixel-wise loss

Output depth Target depth

~ ~112
D(v,7) = [y - 7],

But this wouldn’t work well because of the depth-scale ambiguity!

To predict depth effectively, we must consider the geometric nature of the problem
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A naive loss

As a loss, we could minimize the £, norm between the predicted and the regressed values.

-

Scale invariant loss

[

Output depth Target depth

Input image a model
D(y,y*) = D(dy,y")
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Back to the roots: a CNN for single image depth estimation
Global

[Eigen et al, NIPS 2014] is a milestone in single image depth
estimation, being the first work leveraging a CNN to estimate the
depth in a supervised way.

* While stereo methods rely on local disparity (see later), in single
image depth estimation a global view is needed to relate all the
available visual cues.

N Two-branch architecture: global and fine scale

* One of the major ambiguity is the global scale of the scene
(moderate variations in room furniture and size).

[l 1’ i“ Scale invariant loss

E] Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014
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Model architecture

Two branches estimate a coarse and a refined depth maps, the former used as to ease the prediction of
the latter.

9% L
256/ 384/ 384/ 25@, 409%

Global understanding thanks to:

* Max pooling to combine
information from different
part of the image

* Fully connected layers to
contain the entire image in
their receptive field.

* Layers 1-5 pretrained on
ImageNet

4 stride
2x2 pool

2x2 pool

Coarse 1 Coarse 2 Coarse 3 Coarse 4 Coarse 5 Coarse 6 Coarse 7

(|
11x11 conv |- 5x5 conv |:|3x3 conv |:| 3x3 conv |:| 3x3 conv full full

II|I|]I

_.:] Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014
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Model architecture

Two branches estimate a coarse and a refined depth maps, the former used as to ease the prediction of

the latter.
2 256 384 384 256 1f
e P e On 40961 . .
11x11 conv - 5x5 conv |:|3x3 conv |:| 3x3 conv |:| 3x3 conv I:I’full Tl o Local re.flnement to allg.n coarse
o de 2x2 pool +  prediction to local details such
Coarse 1 Coarse 2 Coarse3 Coarse4 Coarse5 Coarse 6 Coarse 7 . as object and walls.
63, E 64, 64,5
A — —
9x9 conv Concatenate 5x5 conv 5x5 conv :
2 stride :
2x2 pool Fine 1 Fine 2 Fined3 i Fine4

o=

_.:] Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014

Luca Magri 2024



Scale invariant loss

The scale invariant loss focus on the spatial relations within a scene rather than on a global scale:

Input image
Two-branch

architecture

Luca Magri 2024
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Scale invariant loss

[

Output depth Target depth

D(y,y*) = EZ(IOML- —logy; + a(y,y"))

=1

J

%] Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014



Scale invariant loss

The scale invariant loss focus on the spatial r%}ations within a scene rather than on a global scale:

D(y,y*) = 52(10gyi —logy; + a(y,y")

= Mean squared error

%] Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014
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Scale invariant loss

The scale invariant loss focus on the spatial r%}ations within a scene rather than on a global scale:

D(y,y*) = 52(1053%- —logy; +a(y,y)

= Mean squared error

Log space: reduces the impact of large depth values overpowering the smaller ones in error calculation.

%] Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014
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Scale invariant loss

The scale invariant loss focus on the spatial r%}ations within a scene rather than on a global scale:

D(y,y*) = 52(1053%- —logy; +a(y,y")

= Mean squared error

Log space: reduces the impact of large depth values overpowering the smaller ones in error calculation.

Scaleinvariant: a(y, y*) = %Z{Ll(log y; — logy;) is the value that minimizes the error for a given pair
(y,y™). For any prediction y, e% is the scalar that best align it to the groundtruth.

All scalar multiples of y have the same error, here the scale invariance.

%] Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014
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Scale invariant

The scale invariant loss focus on the spatial r%}ations within a scene rather than on a global scale:

D(y,y*) = —Z(logyi —logy; + a(y,y"))
n = Mean squared error

The loss has other equivalent forms, i.e:

1 * * 2

D(y,y*) = ﬁz ((logy; —logy;) — (logy; —logy;))
LJ

to have low error, each pair of pixel in the prediction must differ in depth by an amount that is comparable

to the ground truth. Setting d; = logy; — log y;, we have

2
D(y,y*) = %Z d? —%(Z d; )

i

%] Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014
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Scale invariant loss mean squared error in log space

The scale invariant loss focus on the spatial r%}ations within a scene rather than on a global scale:

D(y,y*) = —Z(logyi —logy; + a(y,y"))
n = Mean squared error

The loss has other equivalent forms, i.e:

1 * * 2

D(y,y*) = ﬁz ((logy; —logy;) — (logy; —logy;))
LJ

to have low error, each pair of pixel in the prediction must differ in depth by an amount that is comparable

to the ground truth. Setting d; = logy; — log y;, we have

2
1 A
D(y,y*) = Ez dl-2 B, (Z d; ) The loss used during training is a
[

i linear combination A = 0.5 of the
mean square error and the
invariant loss

%] Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014
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Other losses

SenSitiVity ldepth lgrad lnormal
v X X
X v v
X v v
RMS | REL |0 < 1.25| Fl

W/ ldepth 0.580 | 0.133 | 0.830 |0.525

W/ ldepth + Algraa | 0.563 1 0.128 | 0.841 | 0.543

w/ full loss 0.555 | 0.126 | 0.843 | 0.548

E] J. Hu, et al. Revisiting single image depth estimation: Toward higher resolution maps with accurate object
—U boundaries. In WACV, 2019.
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Loss on gradients

Let V,.d; and V,d; be the horizontal and vertical image gradients of the log difference d; = logy; — logy;

lgrad - %Z[(dei)z + (Vydi)z]

compares image gradients of the prediction with the ground truth.
This encourages predictions to have

* close values,

e butalso similar local structure,

resulting in depthmaps that better follow depth gradients, with no degradation in measured (2
performance.

%] Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014
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L.oss on normals

Depth can be seen as a surface z = z(x, y) defined on the image pixel gird (x, y)

The normalin (x, y) can be computed from the depth by taking the cross product between the tangent
vectors to z(x, y).

(Viceversa, from normals it is possible to retrieve the depth by integration) n=(—0yz,0yz,1)

Let nand n” be the estimated and the predicted normals (1,0,0:2)

(0,1,0y%)

lhorm = cos(n,n™)

Luca Magri 2024



Predicting depth, normal and semantic labels

According to the loss employed,
the very same network can be used to regress:

Inut ’

e Depth 0l ‘ W Scale 1
i /
(loss on depth and gradients) : I i -—--1
. N l conv/pool full conn. =upsample
ormals - |
(lossonnormals) || pmmmmmmmmmmmmmmmmmmmmmmme e '
Scale 2
* Semanitc labels
(per pixel cross entropy) convolutions T
=upsample

Normals#®

conv/pool

II|H

Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale
Deep Network, NIPS 2014

Labels
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Predicting depth, normal and semantic labels

Inferring normals from a single image typically requires several images of the same scene acquired under
varying and controlled illumination conditions (this problem is known as Photometric Stereo).

Calibrat'ibﬁésphere

Spots allow

to estimate /

the light
direction

Hand-held light =5

Fixed camera

You can avoid all this stuff!




The benefits of combining losses

olii
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Input photo Output w/0 Lgrag Output w/ Lgrag

] Zhengqi Li and Noah Snavely. "MegaDepth: Learning Single-View Depth Prediction from Internet Photos» CVPR18.



The benefits of combining losses

Annotation

Input photo Output w/o L Output w/ L4

i

_} Zhengqi Li and Noah Snavely. "MegaDepth: Learning Single-View Depth Prediction from Internet Photos» CVPR18.

e i |



Evaluation metrics

* Accuracy scores: the percentage of pixels having a relative error § lower than a threshold € (typical
values of € are 1,25, 1.252,1.253)

o = max(l*,y—) <€
yoy
» Absolute Relative error: to normalize per-pixel errors according to real depth, reducing the impact of
large errors with the distance
1 X k
EE'% —yil/yi

» Squared Relative Error: to penalize larger depth errors (e.g. near discontinuities)

1 112 *
EEH%‘ —yi ll°/y;

2
* Root Mean Squared Error: \/%Z ||yl- -y |

* Roor Mean Squared Logarithmic Error: \[%Z |llogy; — logy_i" *||?

Luca Magri 2024



3D data for supervision

A training set
TR = {(;,, Y1)}

of RGB-D image can be acquired using dedicated sensors.

Infrared project
MITAree projector Right IR Camera

Left IR Camera




Why depth from a single image?
What is the advantage of having a deep network (4K€ for a GPU) that works on a single image rather than
using a sensor that costs a few hundred €?

There are good reasons... would you rather have a Kinect or a small endoscopic probe in your belly?
We can rely on deep network when acquiring 3D data is not possible!

Luca Magri 2024



The need of 3D data for supervision (and where to find them)

Deep learning method have recently driven significant progress in supervised depth estimation from a
single image, but being entirely data driven, their potential grows with the amount of data using during
training.

Popular datasets:

Dataset Indoor Outdoor Dynamic Video Dense Accuracy Diversity Annotation Depth # Images
DIML Indoor [31] v v v Medium Medium RGB-D Metric 220K
MegaDepth [11] e ) (v) Medium Medium SftM No scale 130K
ReDWeb [32] v e e v Medium  High Stereo No scale & shift 3600
WSVD [33] v v v v v Medium  High Stereo No scale & shift 1.5M
3D Movies v v v v v Medium  High Stereo No scale & shift 75K
DIW [34] 4 v v Low High  User clicks Ordinal pair 496K
ETH3D [35] v e v High Low Laser Metric 454
Sintel [36] v v v v v High Medium Synthetic (Metric) 1064
KITTI [28], [29] v ) v (v')) Medium Low  Laser/Stereo Metric 93K
NYUDv2 [30] v ) v v Medium Low RGB-D Metric 407K
TUM-RGBD [37] V ) v v Medium Low RGB-D Metric 80K

==|| Ranftl et al. Towards Robust Monocular Depth Estimation: Mixing Datasets for
Zero-shot Cross-dataset Transfer. TPAMI 2020
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NYU v2

Video sequences form a variety of indoor scenes acquired with a
Microsoft Kinect to record both the RGB and Depth Map.

1449 densely labeled pairs of alighed RGB and depth images

464 new scenes taken from 3 cities

407,024 new unlabeled frames

Each object is labeled with a class and an instance number
(cupl, cup2, cup3, etc)

Dataset Indoor Outdoor Dynamic Video Dense Accuracy Diversity Annotation Depth # Images

DIML Indoor [31] v v v Medium Medium RGB-D Metric 220K

MegaDepth [11] v ) ) Medium Medium SftM No scale 130K

ReDWeb [32] v v e v Medium  High Stereo No scale & shift 3600

WSVD [33] v v v e v Medium  High Stereo No scale & shift 1.5M

3D Movies v v v v v Medium  High Stereo No scale & shift 75K

DIW [34] v v v Low High  User clicks Ordinal pair 496K

ETH3D [35] Ve Ve v High Low Laser Metric 454

Sintel [36] v v v v v High Medium Synthetic (Metric) 1064 — . 2

KITTI [28], [29] v W) v (V) Medium Low  Laser/Stereo Metric 93K 2—5 } httpS//CS nyu 'ed U/ S| lberma n/d
NYUDVv2 [30] 7 V) v v/  Medium Low RGB-D Metric 407K atasets/ nyu_d epth_v2. html
TUM-RGBD [37] V W) v v Medium  Low RGB-D Metric 80K

Luca Magri 2024



KITTI dataset

A large collection of images acquired in driving
environment.

3D point cloud acquired by a LiDAR registered
with RGB.

A subset of 200 images (KITTI 2015 stereo training
set) with accurate ground truth (moving object
replaced with accurate cad model)

Dataset Indoor Outdoor Dynamic Video Dense Accuracy Diversity Annotation Depth # Images

DIML Indoor [31] v v v Medium Medium RGB-D Metric 220K

MegaDepth [11] v ) ) Medium Medium SftM No scale 130K

ReDWeb [32] v v e v Medium  High Stereo No scale & shift 3600

WSVD [33] v v v e v Medium  High Stereo No scale & shift 1.5M

3D Movies v v v v v Medium  High Stereo No scale & shift 75K

DIW [34] v v v Low High  User clicks Ordinal pair 496K

ETH3D [35] Ve Ve v High Low Laser Metric 454

Sintel [36] v v v v v High  Medium Synthetic (Metric) 1064 = .
KITTI [28], [29] v ) Vv (/) Medium Low Laser/Stereo  Metric 93K == } https://www.cvlibs.net/data
NYUDv2 [30] v W) v v Medium  Low RGB-D Metric 407K ..

TUM-RGBD [37] v ) V v Medium Low  RGB-D Metric 80K sets/kitti/




MegaDepth

A large scale dataset generated from Internet photo collections for a set N
of well-photographed landmarks. 3 !

The idea is to feed multiple images with overlapping viewpoint to
Structure from Motion and Multi-view Stereo to automatically produce

depth maps.

o

Eiffel Tower, Paris

Rialto Bridge, Venice

Multiple filtering steps are necessary.

3D datais only up to unknown scale factor, which could be problematic
for applications requiring scaled values.

Dataset Indoor Outdoor Dynamic Video Dense Accuracy Diversity Annotation Depth # Images — .
DIML Indoor [31] v v v Medium Medium RGB-D Metric 220K
MegaDepth [11] ) V) Medium Medium StM No scale 130K V
v Medium  High Stereo No scale & shift 3600
v Medium  High Stereo No scale & shift 1.5M

v 4
ReDWeb [32] v v e
WSVD [33] v v v v
3D Movies v v v v v Medium  High Stereo No scale & shift 75K Pititianos Athans Plorence Catledel Massane
DIW [34] v v v Low High  User clicks Ordinal pair 496K
ETH3D [35] Ve Ve v High Low Laser Metric 454
Sintel [36] v v v v v High Medium Synthetic (Metric) 1064 o= 5
KITTI [28], [29] v W) v (v) Medium  Low  Laser/Stereo Metric 93K =0 https.//www.cs.cornell.ed u/pro
NYUDv2 [30] «) v / Medium Low  RGB-D Metric 407K jects/megadepth/
TUM-RGBD [37] V W) v v Medium  Low RGB-D Metric 80K
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Depth anything

2401.10891v1 [cs.CV] 19 Jan 2024

arxXiv

Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data

Lihe Yang' Bingyi Kang?' Zilong Huang? Xiaogang Xu

'The University of Hong Kong  2TikTok

34 Jiashi Feng? Hengshuang Zhao'f

3Zhejiang Lab ~ “Zhejiang University

t corresponding authors
https://depth-anything.github.io

Figure 1. Our model exhibits impressive generalization ability across extensive unseen sce!
SA-1B [27] (a hold-out unseen set). Right two: photos captured by ourselves. Our model
3rd column), complex scenes (2nd and Sth column), foggy weather (Sth column), and ult

Abstract

This work presents Depth Anything', a highly practical
solution for robust monocular depth estimation. Without pur-
suing novel technical modules, we aim to build a simple yet
powerful foundation model dealing with any images under
any circumstances. To this end, we scale up the dataset by
designing a data engine to collect and automatically anno-
tate large-scale unlabeled data (~62M), which significantly
enlarges the data coverage and thus is able to reduce the
generalization error. We investigate two simple yet effective
strategies that make data scaling-up promising. First, a more
challenging optimization target is created by leveraging data
augmentation tools. It compels the model to actively seek

extra visual knowledge and acquire robust representations.
Connnd ~n auvilicm: cimawmiician o dovalanad ta anfaven

Luca Magri 2024
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Raw video

1. Introduct

The field of con
is currently exg

/s

T g

These successe — y
that can effectively cover the data distribution. Monocular
Depth Estimation (MDE), which is a fundamental problem
with broad applications in robotics [65], autonomous driv-
ing [63, 79], virtual reality [47], etc., also requires a foun-
dation model to estimate depth information from a single
image. However, this has been underexplored due to the
difficulty of building datasets with tens of millions of depth
labels. MiDaS [45] made a pioneering study along this di-

rection hv trainino an MDE madel an a callection af mived

“foundation mc ’
shot performan ‘ \

MiDaS (Previous best)

Depth Anything (Ours)

https://depth-
anything.github.io




Single image depth estimation

v"Obtaining training data for deep learning models in the wild is nowadays possible

v Single-image depth estimation models can be effectively trained on such data

MiDaS Depth Estimation is a machine learning model from Intel Labs for monocular depth estimation. It was trained on up to 12 datasets and
covers both in-and outdoor scenes. Multiple different MiDaS models are available, ranging from high quality depth estimation to lightweight
models for mobile downstream tasks

aliil

Ranftl et al. Towards Robust Monocular Depth Estimation: Mixing Datasets for
Zero-shot Cross-dataset Transfer. TPAMI 2020
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Single image depth estimation

v"Obtaining training data for deep learning models in the wild is nowadays possible
v Single-image depth estimation models can be effectively trained on such data
X It’s challenging to collect data that capture the diversity of the visual world to ensure generalization

X RGB+ depth data are difficult to collect (Kinect is limited to indoor use, LiDAR are expensive and produce
only a sparse depth map)

X These methods can be easily fooled-out by out-of-distribution samples

Picture from Depth map from MegaDepth [1]
artedelporfido.wordpress.com megadepthdemo.pythonanywhere.com

Luca Magri 2024



Do NN learns from the same
visual cues used by humans?

Explaining depth estimation

Luca Magri 2024



It is crucial to understand how NNs estimate depths to safely
apply them in critical application as autonomous driving...

_— S
TAKING i DRIVERLESS UBER CAR INVOLVED IN CRASH IN TEMPE '6E C 15
VR FOLICE SAY OTHER DRIVER FAILED TO YIELD | AT

o I o~
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Understanding single image depth estimation

It is crucial to understand how NNs estimate depths in order to safely apply them in critical application as
autonomous driving...

1. Which are the most relevant visual cuesin image?

2. How biased are depth values in presence of specific objects, shadows, camera orientations?

3. How reliableare depth values?
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Which pixels of an image I are relevant for depth estimation?

Masked I O M

Cast the question as an optimization problem:

select a mask M with the smallest set of pixels from
which N, a target CNN, produces the maximally similar
depthY = N(I O M) to the original outputY = N(I).

in formulas

min £(Y,Y) + 2||M|],

Theideais that CNNs can infer depth map equally well
from a selected set of sparse pixels, as long as they are
relevant to depth estimation.

Original output Y

o=

:D} Hu et al., Visualization of Convolutional Neural Networks for Monocular Depth Estimation, ICCV, 2019
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Visualization of CNN for depth estimation

In practice, this problem requires to optimize the output of the CNN with respect to its input that can lead
to noisy visualization or even to adversarial examples.
Thus:

» Rather than directly optimizing the elements of M, obtain the mask by processing I via a network G,
* Relax the entries of the matrix to be in [0,1]

thus we have the following problem:
min £(D, D) + /1G] 4

Mask prediction Predicted Mask  Element-wise Trained depth Approximated
RGB image (/) network (G) (M) multiplication estimation net (V) depth map (V)

)l jinl] —

:D} Hu et al., Visualization of Convolutional Neural Networks for Monocular Depth Estimation, ICCV, 2019
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Visualization of CNN for depth estimation: results

The network concentrate on edges, but with some differences

Edge map Mask

i Fdge map -

1649 —9= /
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SSWrseness

Comparison of accuracy of depth estimation
when se- lecting input image pixels using M and
using the edge map of input images.
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Visualization of CNN for depth estimation: indoor results

The network concentrate on edges, but consider some edge that are important for the understanding the
3D geometry and neglects others

Edge map Mask

Weak edge Strong visual cue



Visualization of CNN for depth estimation: indoor results

The network concentrate on edges, but consider some edge that are important for the understanding the
3D geometry and neglects others

Edge map Mask

v

Strong edge Less evident

Luca Magri 2024



Visualization of CNN for depth estimation: indoor results

Not boundary alone but filled region is highlighted for small objects.

The CNNs recognize the objects and somehow utilize it for depth estimation.
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Visualization of CNN for depth estimation: indoor results

By using different losses we get different results

Depth Depth + gradient Depth + gradient + normals

Emphasis on surfaces Emphasis on objects
& straight edges




Visualization of CNN for depth estimation: outdoor results

The guard rail is relevant
strong edge

The white lines are
strong edges but are not
relevant

A lot of attention near
vanishing ponts




Visualization of CNN for depth estimation: outdoor results

A lot of attention near
vanishing ponts




Biases in training set?
Being completely data driven, depth estimation from a single image might inherits the biases encoded in

the training set.

Let’s investigate how some cues (e.g., relative position, apparent size... ) affect depth estimation.
Understanding this aspectis crucial for the generalization of the model.

N =

__p—" T —

——————————

E] Dijk, Tom van, and Guido de Croon. "How do neural networks see depth in single images?." CVPR 2019
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Geometric interlude
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Pin-hole camera geometry

Is described by its optical center C and the image plane ¢.

The distance of the image plane from Cis the f, the focal length.

The relation between M the 3D coordinates of a scene point and m the coordinates of its projection onto
the image planeis described by the perspective projection

M
I 1r
N m /
A |
Yy :
| Y
fY/Z
oI | Ci) \ > ’yz
C Z p
optical center image plane e f >}
focal length
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Perspective equations from triangle similarity

Fix a Cartesian coordinate system {y,, ¥y, 7.} in the optical center, with y, perpendicular to the image plane.
fXm Ym

By similar triangles, M = (X,;, Yy, Zy) is mapped to point m = (ZM T
Xm = f Xm/Zm
M= (X, Yy, Zy) » m= (X, V), where {" "
M
i ¥
/yy ’yy A i Y
Y|z
Yo VD
C c__z 1rp
image plane ; f =~

optical center
focal length
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Camera projection equations are non linear

Perspective: division by Z,, is responsible of perspective effects. The size of images in the image plane
actually depends on their depth in the scene (7. e., distance from the camera center)

Xm fXM/ZM
Ym = f Yu/Zy

This is not a linear mapping. But we can
represent it linearly using homogeneous
coordinates
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Vanishing points

Parallel lines in 3D space appear to converge towards the horizon.
The line of horizon is formed by infinitely distant points or “vanishing direction”.

Luca Magri 2022




Apparent size

The apparent size of objects are strong visual cues that can be used by a network.

If the object size H is known, given the apparent size h and the focal distance, it is possible to compute the
depth as
f

Z==H
h

Most of the objects in KITTI are from a limited number of classes (e.g. cars, lorries, pedestrians) having

approximately the same size. The networks can learn to recognize objects and use their apparent size to
estimate their distance.

H
X ' |
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Vertical position (in terms of horizon)

Also, the vertical position is an important cue.

If the camera position is known and assuming a flat plane (as in KITTI), the distance can be computed in
terms of the height of horizon y;, as: ;

Zz(y—yh)y
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Position vs apparent size

Cropped cars are overimposed with ground contact point at (x, y) and relative depth Z.

When moving to Z’, scale factor s and new ground contact point (x’, y") can be obtained by knowing the
horizon height y,,.

We can modify the position and the apparent size of the white carin a principled manner.

What happen when we use an apparent size that does not conform with the position and viceversa?
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Position vs apparent size

Apparent size is fixed, but position changes. Can you guess the result?
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Position vs apparent size

e S e e S

The wrong apparent size doesn’t have a great impact on the depth estimates.

According to the apparent
size alone this should be a
close object, but it should
be far according to the

position. Is predicted as far
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Position vs apparent size

Position is fixed, but apparent size changes... can you guess the result?
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Position vs apparent size

Position is fixed, but apparent size changes... can you guess the result?

According to the apparent size
alone this should be a far
object, but it should be close
according to the position. Is
predicted as close
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Position 1s a stronger visual cue!

Position Pary

& size =7 \
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Note that the use of vertical position as a depth cue implies that the networks have some knowledge of

the camera’s pose...
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Geometric interlude

Camera and poses
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General camera zm = PM

We have chosen:

* a 3D reference frame in the camera center;

* a 2D reference frame in the center of the image;

The projection matrix can be generalized to account for other choices of the reference systems.

Ty

Y

Luca Magri 2022



General camera

9 From world reference frame to camera reference frame using a roto-translation

M- RM+t

3D world reference system

By bl
A

Camera reference system
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General camera

0 From world reference frame to camera reference frame using a roto-translation

9 Project from camera reference frame to image plane using the projection matrix

M—-RM+t—- P(RM +t)

By pP_M

I B
<ﬁy Yy eyI\> m- 5

R t Vo p
0 1 O

Image reference system
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General camera

0 From world reference frame to camera reference frame using a roto-translation

9 Project from camera reference frame to image plane using the projection matrix

wordr.f.  camerar.f. image r.f.

M- GM - PGM

External orientations:
Changing coordinates in space is equivalent to multiplying the
matrix P to the right by a 4x4 matrix

o6

composed by a rotation matrix R and a translation vector t.
It describes the position and the attitude of the camera with
respect to the external reference system.

It depends on six parameters called external orientations.
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General camera

0 From world reference frame to camera reference frame using a roto-translation

@ Project from camera reference frame to image plane using the projection matrix
e Express the image point in a different image reference system

M- GMw— PGM - K PGM

x
Image reference
52 system €r

<5y

R 1 o
0 1

Image reference system
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General camera

0 From world reference frame to camera reference frame using a roto-translation

@ Project from camera reference frame to image plane using the projection matrix
e Express the image point in a different image reference system

M- GMw— PGM - K PGM

2D pointsin the image plane and 2D point in image coordinates differ

by an offset and are expressed in pixels and may have an aspect ratio # 1. r—>: EZU
|
|

These can be accommodated in the camera projection equations LS

I T Y

| |

( Xu ey |
xm:axZ—+cx ————5#— — =

M X | |

< Yy : (Cfl’? Cy):
Ym:0y2_+cy ————— L e B

. M | |

|

I
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General camera

0 From world reference frame to camera reference frame using a roto-translation

9 Project from camera reference frame to image plane using the projection matrix
e Express the image point in a different image reference system

M- GMw— PGM - KPGM

Camera calibration matrix:
In matrix form, this is equivalent of multiplying the matrix P to the left by a
3x3 matrix K representing an affine transform. It is customary to include

also the focal length (providing a uniform scaling) r——>| €£U | |
| | |
A, Sy Cy { { ﬁy {

— S |
K=|0 rau cy] € | |
0 0 1 Y (SF :

It depends on the interior parameter: :CB (Glix : Cy)

* Focal length a,, expressed in pixel units | |
* Principal point (cy, ¢,) (image center) |
* Aspect ratio r (typical value 1) : |
» Skew s (typical value 0)
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General camera

0 From world reference frame to camera reference frame using a roto-translation

9 Project from camera reference frame to image plane using the projection matrix
e Express the image point in a different image reference system

Mw—-GMw—- PGM - KPGM

Camera calibration matrix: Image cords X

In matrix form, this is equivalent of multiplying the matrix P to the left by a = Accessible
3Xx3 matrix K representing an affine transform. It is customary to include = Are measured in the digital image in
also the focal length (providing a uniform scaling) pixels
ay Sy C Normalized image cords (NIC)
K=10 rau Cy = _ jr—1
p=K X
0 0 1
It depends on the interior parameter: = Not accessible without the knowledge of

K

= Normalized image coordinates would be
measured on an ideal image plane at
unit distance from the camera center.
Their unit is the same of 3D points.

* Focal length a,, expressed in pixel units
* Principal point (cy, ¢,) (image center)

* Aspect ratio r (typical value 1)

» Skew s (typical value 0)
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General camera

0 From world reference frame to camera reference frame using a roto-translation

@ Project from camera reference frame to image plane using the projection matrix
e Express the image point in a different image reference system

Mw-GMw—- PGM - KPGM

P = K|[I|0]G = K[R|t]
(X=PX

Remarks:
o P hasrank 3sinceis a 3X4 matrix.

o KR isnonsingular, since K is upper triangular with nonzero diagonal and R is a rotation
matrix

o The Right Null Space of the projection matrix is the camera center (the point for which the
projection is not defined)
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Camera pose: pitch and roll

Does the NN assume a fixed camera pose or estimate this on the fly?

This is strictly related to the location of the horizon and of the vanishing points

Frame moved up

Camera center

Height of
the camera
/

/

mage plane :

Luca Magri 2024

The horizon h (of the ground plane) is
related to the eight of the camera (the
higher the camera the higher h) and
camera orientation.

E.g., if the camerais tilted upwards, the
horizon line appears lower in the frame.

Ground plane



Camera pose: pitch and roll

Does the NN assume a fixed camera pose or estimate this on the fly?

This is strictly related to the location of the horizon and of the vanishing points

Vanishing points are direclty related
with the orientation R of the camera

Av = K[R|t]

o NeR

Luca Magri 2024 \



Camera pose: pitch and roll

Does the NN assume a fixed camera pose or estimate this on the fly?

Roll Pitch

This is strictly related to the position of the horizon and of the vanishing points that depends on the orientation
of the cameras

Luca Magri 2024



Camera pose: pitch and roll

Does the NN assume a fixed camera pose or estimate this on-the-fly?

Roll g’ Pitch Qﬁ‘

« Adifferentrollis simulated * Adifferent pitch is simulated

cropping image with +/- cropping images with +/-30
10 degrees rotation pixels vertical offset.
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Camera pose: pitch and roll

Does the NN assume a fixed camera pose or estimate this on-the-fly?

@’ Pitch

« Adifferent pitch is simulated.
» Estimate horizon by fitting a line at
infinite depth (0 disparity).

Roll

« Adifferentrollis simulated
» Estimate roll angle from depth map

Estimated roll shift [deg]

Luca Magri 2024

The network underestimate both the roll and the pitch

—~eo— Godard et al.
" | ——— Zhou et al.
v Kuznietsov et al.
| | —»—— Wang et al.
— — —Ideal

p

True roll shift [deg]

N
o
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S

Horizon shift in depth map [px]
)
S

| | —e—— Godard et al.

—«&— Zhou et al.
v Kuznietsov et al.

" | —»— Wang et al.

— — —1Ideal
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True horizon shift [px]



Camera pose: pitch and roll

Does the NN assume a fixed camera pose or estimate this on-the-fly?

Roll ﬂ Pitch *ﬁ‘

« Adifferentrollis simulated g « Adifferent pitch is simulated.

« Estimate roll angle from depth map » Estimate horizon by fitting a line at
infinite depth (0 disparity).

The network underestimate both the roll and the pitch
The underestimation of the horizon impact the 4t

estimation of the depth (measured in terms of
disparity).

Disparity shift [px]
o
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The networks look at the vertical image position —
rather than their distance to the horizon, since the 4l | v Kuznietsov et al.

latter does not change when the images are cropped ) — — —[Ideal
30 20 -10 0 10 20 30
Luca Magri 2024 Horizon shift [px]




Obstacles

1. onlythe ground contact point matter Do you think the

NN would be able
to estimate the
depth of the fridge
and of the dog?

2. noinformation about the object scale is required
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Obstacles

No! Out of distribution objects are not recognized! The network struggle in
finding the ground contact and to segment the object to fill in the depth.
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Texture

What matters is the ground contact point!

Objects with unfamiliar shapes, either with or without color, as long as their gorund contact point can be located
effectively are detected and their depth is predicted based on their lower extent.
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Texture

What matters is the ground contact point!

By removing the inner texture of the object, it remains detected in case of a strong bottom
edge.



Shadows

Varying the thickness and intensity of the bottom edge impacts on estimated depth. Objects with thick
and dark bottom edges are detected.

This suggests that the networks learn to exploit shadows...

Adding shadows to pasted objects make them appear in the depth map as well.
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Uncertainty estimation

A naive uncertainty estimate can be obtained as a post-processing;:
 Estimate two depth maps one from the input image and one from a flipped version
* Measure the difference

This provide an estimate of the depth uncertainty
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Aleatoric and epistemic uncertainty

Interestingly Kendall and Gal distinguish between two typo of uncertainty:

 Aleatoric uncertainty captures noise inherent in the observations.

It’s important for:

* Large scale data, where epistemic uncertainty is explained away,
* Real-time applications, to bypass expensive Monte Carlo computations.

* Epistemic uncertainty accounts for uncertainty in the model - uncertainty which can be explained away
given enough data.

It’s important:
* Small datasets where the training data is sparse.

» Safety-critical applications, because epistemic uncertainty is required to understand examples which
are different from training data,

o=

:—D} Kendall and Gal. "What uncertainties do we need in bayesian deep learning for computer vision?." NIPS 2017

Luca Magri 2024



Aleatoric and epistemic uncertainty

» Aleatoric uncertainty captures noise inherent in the observations. Higher for

is modeled by placing a distribution over the output of the model. > I d.epths’
* reflective surfaces,

We are interested in how this distribution change w.r.t. the input. o eadligier Benhdaies

* Epistemic uncertainty accounts for uncertainty in the model

Input image Ground truth Estimated depth Aleatoric uncertainty  Epistemic uncertainty

e E——

-
i
1
|
!
|
!
1

5} Kendall and Gal. "What uncertainties do we need in bayesian deep learning for computer vision?." NIPS 2017



Aleatoric and epistemic uncertainty

 Aleatoric uncertainty captures noise inherent in the observations.

* Epistemic uncertainty accounts for uncertainty in the model:

is modeled by placing a prior distribution over a model’s weights,
and then trying to capture how much these weights vary given some data.

Higher for object that are
rare in the training set

Input image Ground truth Estimated depth Aleatoric uncertainty vistemic uncertainty

:—D} Kendall and Gal. "What uncertainties do we need in bayesian deep learning for computer vision?." NIPS 2017
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Understanding single image depth estimation

It is crucial to understand how NNs estimate depths in order to safely apply them in critical application as
autonomous driving...

1. Which are the most relevant visual cuesin image?
* It depends on the type of images indoor/outdoor, mainly a subsets of edges and vanishing points

2. How biased are depth values in presence of specific objects, shadows, camera orientations?
* The vertical position is more important than the apparent size
* Depth depends on the pose of the camera, but changes to the pose are not fully accounted for

* Objects that do not appear in the training set can be detected, but this detection is not always
reliable and depends on factors such as the presence of a shadow under the object.

3. How reliableare depth values?
« Depth estimation can be fooled by out of distribution objects (epistemic uncertainty)
* And are typically less reliable on distant objects and at boundaries of objects
» Several methods exists to assess the reliability of depth estimates
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Demo

https://github.com/andreadalcin/DNN3D

Let’s try to estimate depth from a single image using
AdaBin
A Unet-like architecture with adaptive bin of depths

* You can download the pretrained models
"AdaBins_nyu.pt" and "AdaBins_kitti.pt"

* You can download the predicted depths in 16-bit
format for NYU-Depth-v2 official test set and KITTI
Eigen split test set


https://github.com/andreadalcin/DNN3D

Estimating depth ﬂ @
from stereo

Geometric supervision




Acquiring target 3D data is difficult

Missing moving objects

Costly
equipement

Velodyne HDL-64E Laserscanner

Point Gray Flea 2

Sparse measurements Credits Clément Godard



Stereoscopy

Around 1830, the stereoscope. A couple of two-dimensional images
captured from a slightly different perspective, could be recombined
by the brain to provide a three-dimensional image.

Special stereoscopic cameras were developed to take the left and
right images simultaneously, with two lenses separated by around
the same distance as human eyes.
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Motion is a strong cue to make depth estimation not (so) ambiguous!
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Calibrated stereo pair
The baseline is parallel to both image planes is known. M

Cf baseline C’I“
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Calibrated stereo pair

When the camera are calibrated (e.g., we know the focal length f
and the baseline b), it is possible to deduce the coordinates Z, from
binocular disparity (v’ — u):

( f -
] Z X
f_ v f
Z X-—-b
: : bf
from which we obtain Z = -
similar
triangles
Note that when b is unknown, 3D reconstruction is possible onlyup 2
to a scaling factor. f
b (u' —u)
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Binocluar disparity: the
difference in image location
of an object seen by the left
and right cameras.

The key observation is that
close objects have a larger
disparity than further ones

From disparity it's possible to
recover the depth.

©
+—
O
©
o
()
-
()
+—
(%2]
-
©
Q

://vision.middlebu
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http://vision.middlebury.edu/stereo/data/

Binocluar disparity: the
difference in image location
of an object seen by the left
and right cameras.

The key observation is that
close objects have a larger
disparity than further ones.

From disparity it's possible to
recover the depth.

©
+—
O
©
o
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-
©
Q

://vision.middlebu
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http://vision.middlebury.edu/stereo/data/

Disparity Map

Estimate at each image
point x, the depth of the
scene point X as inversely
proportional to the
displacement between u
and u’

When the cameras are
parallel, then the search is
much more convenient,
as it has to be performed
row-wise only

When the stereo camera are calibrated (know focal length and baseline), knowing the
disparity is equivalent to knowing the depth. They are inversely proportional




What if camera are not parallel? No problem!




Stereo rectification

Let’s write the new cameras in term of their centers of projection:

P, =K[R | — RC],P',, = K[R | — RC']

T
&1
The rotation is the same for the new cameras: R = |1
.
|73 |
C-C
7"1 —
ic—c'l
k X1y
New cameras rp =
) ||er1||
r3 = 1 X1y

Old cameras where k is 13,
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Rectification

After rectification images are parallel to the baseline.
The idea is to define two new projection matrices B,, B," obtained by rotating the cameras and keeping
fixed the centers of projection.

Every point M is mappedtom, = P,M,m,, = P,M.

M = C + A[P;1.3m,|0]"
M = C + A[Py13m,|0]7

my, =.no This is a 3x3 invertible matix: an
homography that depends on the

camera parameters

Luca Magri



Image reconstruction as supervision

The trick is to pose the problem as an image reconstruction one.

Pretext task: View synthesis
* Given animage

* Given the 3D scene (but in our case we want to estimate this!)

* Given the displacement of the cameras (in general the relative pose)

Synthetize a novel image form the point of view defined by the relative pose

In practice, the network learn just to move each pixel by the right horizontal displacement by looking at
several left-right pairs.
Hence the network has an internal understanding of disparity and hence of depth.



Image reconstruction as supervision

The training set is given by pair of RGBimages TR = {(I;, Ir)}, the depth is no required!

The loss is simply image reconstruction. It’s a self-supervised problem.




Image reconstruction as supervision

Let’s start again with a naive encoder-decoder model

Left
Image

It works! Hovewer depth perception is latend and we need a way to extract it.

We need an interpretable internal representation. Since we are working with a calibrated stereo rig, the
obvous choice is disparity.
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Image reconstruction as supervision: Deep 3D

Introduce a differentiable way to take I; and render a novel view close to Ij.

%] Xie, Junyuan, Ross Girshick, and Ali Farhadi. "Deep3d: Fully automatic 2d-to-3d video conversion with deep
convolutional neural networks.” ECCV, 2016.
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Image reconstruction as supervision: Deep 3D

Introduce a differentiable way to take I; and render a novel view close to Ij.

1. Each pixel predicts a discrete probability distribution over disparity (via softmax)

2. Probabilities are used as weights to blend shifted I; into the reconstructed I

v Work better than predicting disparity directly

X Memory consuming: for large
image you must represent all the disparities

X No single value disparity predicted: noisy result

%] Xie, Junyuan, Ross Girshick, and Ali Farhadi. "Deep3d: Fully automatic 2d-to-3d video conversion with deep
convolutional neural networks.” ECCV, 2016.
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Image reconstruction as supervision

1 Left Image Predicted Inverse Depth
D(x) = fB/d(x)

1,(%) Deep CNN

3 S o -

IIIW(X) - LIl
Inverse Warping |
Reconstruction Error <« [,(x) = (x+D(x)) S

Warp Image Right Image [,(x)
[(x)

1. Predictthe depthmapof; You can make this step
2. Usetheinverse depth as a disparity to wrap I differentiable to make it
3. Minimize the reconstruction error between the warped image and I, easier to optimize:

X Warping is not differentiable; the authors propose several ad-hoc strategy tofREEENIEICRUET Il
X Poor quality e Bilinear interpolaiton

E] Garg, Ravi, et al. "Unsupervised cnn for single view depth estimation: Geometry to the rescue."
ECCV 2016.

]
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Making the warping differentiable - idea

Forward mapping

Where so source pixel go?

Source

Target

Backward mapping

Where do target pixel comes from?

Disparity
01010
0111
0111
01010
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Target Disparity
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11110
11110
O|O0fO
Source




Making the warping differentiable - idea

Forward mapping

Where so source pixel go?

Source

Target

Backward mapping

Where do target pixel comes from?

Disparity
0J]0]0O0
0111
0111
01010
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Target Disparity
O[O0 O
11110
11110
O|O0fO
Source




Making the warping differentiable - idea

Forward mapping

Where so source pixel go?

Source

Target

Backward mapping

Where do target pixel comes from?

Disparity
0OJ]0]O
0111
0111
01010

1
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Making the warping differentiable - idea

Forward mapping

Where so source pixel go?

Source

Target

H_ B
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Backward mapping

Where do target pixel comes from?

Disparity
0Ol0]O
0111
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Making the warping differentiable - idea

Forward mapping

Where so source pixel go?

Source

Target

;—
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Backward mapping

Where do target pixel comes from?

Disparity
01010
01111
0111
01010

Target Disparity
O[O0 O
11110
11110
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Making the warping differentiable - idea

Forward mapping

Where so source pixel go?

Source

Target

;—
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Backward mapping

Where do target pixel comes from?

Disparity
01010
O111]1
0111
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Target Disparity
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Making the warping differentiable - idea

Forward mapping

Where so source pixel go?

Source

Target
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Backward mapping

Where do target pixel comes from?
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Forward mapping

Where so source pixel go?

Source

Target
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Backward mapping

Where do target pixel comes from?
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Making the warping differentiable - idea

Forward mapping

Where so source pixel go?

Source

Target
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Backward mapping

Where do target pixel comes from?

Disparity
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Making the warping differentiable - idea

Forward mapping

Where so source pixel go?

Source

Target
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Backward mapping

Where do target pixel comes from?

Disparity
01010
0111
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Target Disparity
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Making the warping differentiable - idea

Forward mapping

Where so source pixel go?

Source

Target
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Disparity
01010
0111
0111
01010

Backward mapping

Where do target pixel comes from?

Target Disparity
B 1110
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00| O
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Making the warping differentiable - idea

Forward mapping

Where so source pixel go?

Source

Target
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Disparity
01010
0111
0111
01010

Backward mapping

Where do target pixel comes from?

Target Disparity
| F O[O0 O
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Making the warping differentiable - idea

Forward mapping

Where so source pixel go?

Source

Target

Luca Magri 2024

Disparity T-S
O|0]0]O
O] 1(1]1
O] 1(1]1
O|0]0]O

Backward mapping

Where do target pixel comes from?

Target

Source

Disparity S-T
0]0]O0
1 (110
1 (110
0]0]O0




Making the warping differentiable - idea

In general, disparity values can be in floating precision

What is the intensity of this pixel?

Image intensity
N

11 ] 2.1 0 0

29 (14| O 0
0 0 0 0 I

Image spatial extent (1D representation)

v

Luca Magri 2024



Making the warping differentiable - idea

In general, disparity values can be in floating precision

1.1

2.1

2.9

1.4

Luca Magri 2024

Image intensity

/

\

Nearest neighbor

target

ere is no gradient!

Image spatial extent (1D representation)

v



Making the warping differentiable - idea

Linear interpolation
Image intensity target
N

11 ] 2.1 0 0

29 (14| O 0

o]o] o] o Here we have gradient

Image spatial extent (1D representation)

Since we are working on 2D we can use bilinear interpolation

Luca Magri 2024
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Making the warping differentiable - idea

0 0
11 ] 2.1
29 | 14

0 0

Image intensity

/

\

Linear interpolation

Here we have gradient

Since we are working on 2D spatial extent, let’s use bilinear interpolation.

) o |

Luca Magri 2024

E] Jarderberg, Max et al. “Spatial transformer networks”. Neruisp 2015

target

Image spatial extent (1D representation)

v

(X1,y2) (X2,y2)

(X1,_V1) (X2 ,yl)
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Image reconstruction as a supervision: Vanilla Monodepth

« Estimate disparity

Structured
similarity index

measure

( Image reconstruction Loss \
» Use differentiable bilinear interpolation to render I from I}, ¢
1 — SSIM(I, I
a Z(R, L)+(1_a)|IR_IL|
Input stereo X Assumes that scene is lambertian

pair

Disparity

bilinear interpolation

with left-right consistency." CVPR. 2017

Luca Magri 2024

Synthetized
image

Differentiable sampler using

E] Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation
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g] Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation
—=U with left-right consistency." CVPR. 2017



Vanilla monodepth

—] Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation
with left-right consistency." CVPR. 2017




Monodepth
By enforcing that the left-view disparity map be equal to the projected right -

view disparity map | IQZD
mages
Disparity []

E] Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation
with left-right consistency." CVPR. 2017




Image reconstruction as a supervision: Monodepth

Operate on both images:

e wrap I; to generate I & wrap I to generate [}, Loss

—] Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation
with left-right consistency." CVPR. 2017
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Image reconstruction as a supervision: Monodepth

Enforce consistency between left and right disparities

Left-Right disparity Loss

E] Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation
with left-right consistency." CVPR. 2017
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Image reconstruction as a supervision: Monodepth

Smoothness Loss

L1 penalty on the
disparity gradients

LR Loss

E] Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation
with left-right consistency." CVPR. 2017

Luca Magri 2024



Image reconstruction as a supervision: Monodepth

Smoothness Loss Loss

L1 penalty on the
disparity gradients

you can us a featuremetric loss to
LR Loss improve the results

E] Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation
with left-right consistency." CVPR. 2017
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Image reconstruction as a supervision: Monodepth

U-net architecture

* Fully convolutional

* Skip connections

Encoder

* Fast ~30fps ona Titan X

Skips
* Multiscale generation and loss:
* Reconstruct loss at each stage

>
I >l
* Upsample the depth and then reconstruction

losses at high res, reducing copying texture artefacts % | - || v | I Proed

% Outputs

L L )

suscine. | Ours (B |-luc

E] Godard, Clément, et al. "Digging into self-supervised monocular depth estimation." Proceedings of the
IEEE/CVF international conference on computer vision. 2019

Luca Magri 2024
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Image reconstruction as a supervision: Monodepth
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Challenges: occlusions
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Challenges: occlusions

How to deal with occlusions?
* Postprocessing

e Predict occlusion mask

* Use more than two views



Recap

* UNet-like architectures.

* We framed the depth prediction problem as an image reconstruction one.

* Differentiable parametric image generation is easily achieved via bilinear sampling.
* Good results are achieved using multiscale, robust photometric losses, and

Luca Magri 2024
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What happen when the camera is moving?

In stereo configuration, cameras that does not rotate and moves by pure translation parallel to the image
plane. This results in displacement along horizontal lines

ol
v

Cy

Disparity

Translation Baseline

What happen if we have a more general motion?

i

Luca Magri 2024
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What happen when the camera is moving?

In stereo configuration, cameras that does not rotate and moves by pure translation parallel to the image
plane. This results in displacement along horizontal lines

€y O Q €r

/ AN
v AN

C .
¢ Baseline

Disparity

Translation

What happen if we have a more general motio

1
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If the camera are calibrated and if their relative pose is
Rotation

known, we can rectify the camera to obtain a stereo depth
& translation
known



What happen when the camera is moving?

In stereo configuration, cameras that does not rotate and moves by pure translation parallel to the image
plane. This results in displacement along horizontal lines

ol
v

Cy

Disparity

Translation Baseline

What happen if we have a more general motion?

Rotation

& translation
unknown I
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What happen when the camera is moving?

In stereo configuration, cameras that does not rotate and moves by pure translation parallel to the image
plane. This results in displacement along horizontal lines

ol
v

C,

Disparity

Translation Baseline

What happen if we have a more general motion?

Rotation
& translation
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Optical flow
I1(:,:,t) I1(:,:,t+dt)

(x+uy+v)

L e
. Estimated Ogtical Flow
. Thidisplace_ment vector Optical flow is computed enforcing the
‘ d=(wv) = (p.0) is brightness consistency assumption:

g color coded |n‘HSV: H- _

angle, S-magnitude I(x,y,t) =1(x +u,y +v,t+dt)
1

, This is not always satisfied due to:
& * Occlusions
i ‘ S * Non Lambertian objects
22 » Perspective effects
¢ ¥ 2% xo ©o 0

Luca Magri 2024

Images from Isaac Berrios



Optical flow
I1(:,:,t) I1(:,:,t+dt)

(x+uy+v)

L -
. Estimated Ogtical Flow ¢ 0 20 =0 o 00
= The displacement vector Optical flow is computed enforcing the
d=(wv)=(p,06) is brightness consistency assumption:
e color coded in HSV: H- -
angle, S-magnitude I(x,y,t) =I(x +u,y +v,t + dt)

Ha
“ First order expansion:

B O Vi(x,y,t)7 lz] + d.1(x,y,t) =0
o : <D

This is the projection of d along the spatial gradient.
The motion can be measured only along the
brightness gradient (aperture problem)

Luca Magri 2024

Images from Isaac Berrios



Aperture problem

I1(:,:,1t) ae)
o E

Luca Magri 2024




Computing the optical flow - sketch of the ideas

The brightness consistency provide a single equation in two unknown (u, v).

Traditional approach:

Tomasi and Kanade algorithm assume that the optical flow is constant in a small nxn window in order to
accumulate enough constraints, hence they solve a overconstrained linear system

Deep learning approach:

e Supervised vanilla

 GT data comes from 3D scenes
or synthetic 3D dataset

* Direct prediction using
an Encoder-Decoder

* Usually, multiple encoder
and decoder are stacked

— =

>

to have a corse to fine refinement

Encoder
Decoder

Motion vector

Image pairs

Luca Magri 2024



Computing the optical flow - sketch of the ideas

The brightness consistency provide a single equation in two unknown (u, v).

Traditional approach:
Tomasi and Kanade algorithm assume that the optical flow is constant in a small nxn window in order to
accumulate enough constraints, hence they solve a overconstrained linear system

Deep learning approach:
e Supervised vanilla

* |terative approaches

Use a subnetwork to iteratively refine
and update the residuals

of the optical flow 5> =

>

Encoder Motion vector
Decoder I

Image pairs

Luca Magri 2024



Computing the optical flow - sketch of the ideas

* Feature encoder that extract features from both input images (context encoder extract feature only
from the firstimage)

* Context encoder to maintain high details

A correlation layer which build a 4D correlation volume + spatial pyramid pooling (to perform
correlation at different scales)

* An update operator which recurrently update the optical flow

& v | _IJ_'I__LI__I__L
S e I s s
I s e
4D Correlation Volumes
10+ ite
----------------- > > > 00O
NV L g
: T : :
0 — D0 ; '
; L
""""""""""""""""""""""""""""""""""""""""""""""""""" Optical Flow

Context Encoder

E} Teed, Zachary, and Jia Deng. "Raft: Recurrent all-pairs field transforms for optical flow.” ECCV 2020
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Let’s go back to our problem

Rotation
& translation

Optical flow

S

Luca Magri 2024



Geometric interlude

Epipolar geometry

Luca Magri 2024



Epipolar geometry

A unoclluded 3D point X = (X,Y, Z, 1)T is projected to the left and right image as %, =
(U,g, Vyp, 1)Tand %T‘ — (ur, Uy, 1)T, by

CoXp = P,X
Xy = BX

where Pyand B. denotes the left and the right camera matrix respectively.

~

Points X, © X,. are called corresponding points. X

Luca Magri 2022



Epipolar geometry

= Baseline: the line passing through the camera centers

= Epipolar plane: the plane containg X and the baseline

= Epipoles: the intersection points e, and e,. of the image planes and the baseline

= Epipolar lines: lines Iy, [,- intersection of the epipolar plane and the image plane

~

X

optical ray

baseline

Cﬁ left epipole

Luca Magri 2022

Epipolar line

C,



Epipolar geometry

Given a point X, one can determine the epipolar line in the right image on which the corresponding point
X,, must lie.

The equation of the epipolar line can be derived geometrically, as the projection of the optical ray of X,
onto the right image plane:

_ C Pyl % L
(rXr = B ( f) + (oB; ( ¢ 1(_)3.763) ,O <P£133X€>

ideal point

G Xy = ey + (oP; 1:3P1€_11:3%1? X
viewing ray through X,
This is the equation of a line I, through the right epipole
and the image point P, ;.3P; 1.3X, which represents the
projection onto the right image plane of the point at

infinity of the optical ray. 4

The left epipolar line can be derived similarly. <C€) ¢_Q

Luca Magri 2022



Epipolar geometry

The line L. joining e,- and P, 1.3P; 13X, can be represented in terms of the cross product

— -1 ~
lr = e,X Pr 1:3P1? 1:3X¢
— -1 ~
lr — [er]x PT 1:3P{’ 1:3X¢

O P£‘1:135(€
0

The matrix F = [e,]x Py 1.3P; 1.3 is called fundamental matrix.

The epipolar line fora pointxis l,. = Fx.
The incidence relation %, € L. implies L. = 0
and corresponding points have to satisfy

C,
a point-line relation between two views < 1 )¢_O

based only on camera matrices \

Luca Magri 2022




Fundamental matrix

Fundametal matrix;

the fundamental matrix F is the unique 3x3 matrix rank 2 homogeneous matrix which satisfy x] Fx; = 0 for

all corresponding points x,. © x; in the two images

Why rank 2?

Epipolar lines can be seen as the
intersection with the image plane of
the pencil of planes (epipolar planes)
having the baseline as axis.

Consider an epipolar lines I’ = Fx;,
The right epipole e, lies on this line,
so el Fx; = 0 forall x;. This implies
that el F = 0. Similarly, one can prove
that Fe, = 0, this gives an intuition of
the reason why F is rank deficient.

Luca Magri 2022

pencil of
epipolar planes

pencil of
epipolar lines




Fundamental matrix

Fundametal matrix;

the fundamental matrix F is the unique 3x3 matrix rank 2 homogeneous matrix which satisfy x] Fx; = 0 for
all corresponding points x,- & x; in the two images

Why rank 2?

pencil of <

. epipolar planes X
Algebrically, we have O} pencil of

det(F) = det([e,]x Py 1:3P;iss) cpipotariines
that from the Binet theorem can be \ O
factorized as
det(F) = det([e,],) det( Py 13P;13) = 0 ©.

since det([e,]x) =0.

Luca Magri 2022



Fundamental matrix

Fundametal matrix;

the fundamental matrix F is the unique 3x3 matrix rank 2 homogeneous matrix which satisfy x] Fx; = 0 for
all corresponding points x,- & x; in the two images

Why rank 2?

F is a projective map that associate a
pointin the firstimage to a line
Fix, - L.

If [, and [,- are corresponding epipolar /

lines, then any pointx, € [, is
mapped to the same line L,..

This means there is no inverse
mapping and F is not of full rank.

Luca Magri 2022



Fundamental matrix
The fundamental matrix represents the condition that corresponding points x,- & x; have to satisfy in the
camera system.

This property enables computing F from pairs of corresponding points, without having to known P, and P.

If F is the fundamental matrix of the pair of cameras P, and P, then FT is the fundamental matrix of the
pair of cameras in the opposite order: B- and P, .

For any point x, in the right image the corresponding epipolar lineis I,. = Fx,, similarly l, = FT x,.
identifies the epipolar line corresponding to x;,. in the left image.

Luca Magri 2022



Essential matrix

When the interior parameters are known, we can assume that points are in normalized image coordinates
(NIC). Using the NIC, the left and the right camera matrices can be chosen as P, = [I|0] and B- = [R|t]

By substituting these cameras into the equation of the epipolar line, we get
CrDr =t + (oRPy

So, the point p,- lies on the line through the points t and Rp,:

pr(tXRPp) = 0
or

ﬁ?[t]xRﬁf =0
In summary, the relationship between the corresponding image points p, < p,- in NIC is the bilinear form:

PrEpe, =0

where E = [t]«R is called essential matrix and encodes the information on the rigid displacement
between cameras. It has five degrees of freedom: a 3D rotation and a 3D translation direction.

Luca Magri 2024



Input images

Input images from the Adelaide RMF dataset
Luca Magri 2022



Correspondences and epipolar lines
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The eight-points algorithm

Given a set of correspondences {x;, < x;-}, we want to determine the matrix F that encodes the bilinear
condition: x,.Fx;; = 0

This matrix can be recovered using the property of the Kronecker product:
xi-Fxip = 0 vec(x.Fxyp) = 0 & (x{;, ® xj, )vec(F) =0

Every correspondence yields a homogeneous equation in the 9 unknown of F. From n corresponding
points we get the system:

_ T T -
X1p @ X4

%20 ® Xor | yec(F) = 0.

T T
_xn,g ® xn'r_
f

An

The solution of this system is the ker(A4,). When the points are in general positionand n = 8, the
solution is determined up to a multiplicative factor. In practice, when more than 8 points are available the
solution can be obtained using the SVD.
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The projective reconstruction theorem

Image credits: Hartely Zisserman

One may compute a projective reconstruction of a scene from two views based on image
correspondences alone, without knowing anything about the calibration or pose of the two cameras
involved. In particular the true reconstruction is within a projective transformation of the projective

Luca Magri 2024reconstruction.



The projective reconstruction theorem

If the calibration matrices are known, the scene can be reconstructed up to a similarity.
We still have scale ambiguity

Luca Magri 2024

Image credits: Hartely Zisserman



Two view Structure from Motion

« We are given two image of a scene,

» we don’t know the poses of the cameras (in some cases we can assume that we do know the intrinsics)

« we want to compute the 3D Structure of the scene and the motion of the cameras

There are several approaches to address this problem that produce different outputs:

Deep learning + geometry

Traditional methods g A .

Depth from a single

Relative depth and Absolute depth and Relative depth and

absolute pose relative pose

image and relative

relative pose nose

5—5] Wang, Jianyuan, et al. "Deep two-view structure-from-motion revisited." CVPR 2021.
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Traditional Deep learning +geometry
A

Traditional methods methods ,

Relative depth Depth from a Absolute depth Relative depth
and relative single image and and absolute and relative
pose relative pose pose pose

« Compute sparse correspondences (handcrafted feature)
* Estimate relative pose between the cameras (robust fitting)

* Triangulate points to get the 3D structure

* Optimize for the position of the triangulated points and for the pose of the cameras (Bundle
Adjustment)

* Rectify the cameras
* Compute disparity to get dense correspondences

* Triangulate a dense point cloud

Luca Magri 2024



Traditional Deep learning + geometry
SfM learner othods 2

methods
Relative depth Depth from a Absolute depth Relative depth
and relative single image and and absolute and relative
pose relative pose pose pose

As in stereo self-supervision, rely on view-synthesis.

depends on:
G e depth
Source view I  pose(R,t)

The source view I is warped via the estimated pose to a novel view Iy.

The loss is the the photometric error between Iy and I, and the network learns both the relative depth
and the relative pose.

E} Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe, Unsupervised Learning of Depth

Luca Magri 2024 and Ego -motion from Video, CVPR 2017




Traditional Deep learning + geometry
SfM learner thods A
Relative depth Depth from a Absolute depth Relative depth
and relative single image and and absolute and relative
pose relative pose pose pose
Depth CNN
b il
Depth is estimated from
a single image (ill posed).
Rely on priors on the training
data
depth
Pose CNN
— The relative pose is
@ estimated.
At test time, the Pose CNN
Poses can be discarded

—  Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe, Unsupervised Learning of Depth and Ego-
5] motion from Video, CVPR 2017
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fM 1 Traditional Deep learning + geometry
S carncr methods =
Relative depth Depth from a Absolute depth Relative depth
and relative single image and and absolute and relative

Depth CNN

pose relative pose pose pose
'ﬁ * The network implement a
multiscale mechanism,
since bilinear
interpolation is too local
Pose CNN depth e Italso predict a mask to
model occlusions and
moving object
——  Theloss accounts also
@ for regularizing the mask

and smooth depth values

Poses

—  Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe, Unsupervised Learning of Depth and Ego-
=='] motion from Video, CVPR 2017
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fM Traditional Deep learning + geometry
SfM learner athods A
Relative depth Depth from a Absolute depth Relative depth
and relative single image and and absolute and relative
pose relative pose pose pose
Depth CNN
il ,
It doesn’t work for
X Uniform regions
X Ego-velocity objects
depth
Pose CNN
Poses

—  Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe, Unsupervised Learning of Depth and Ego-
=='] motion from Video, CVPR 2017
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Traditional Deep learning +geometry
N

SfM learner methods ¢
Relative depth Depth from a Absolute depth Relative depth
and relative single image and and absolute and relative

pose relative pose pose pose

v" By using mono-training we can predict the depth-
map for a video acquired by a moving camera

v" Other and more robust losses can be used: such as
ICP loss, motion segmentation loss, or epipolar loss.

X With respect to stereo self-supervision result are less
accurate (edges are not sharp). Why?

More things to learn! (depth and pose)
Unknown scale, by estimating the depth from a single
image we are addressing an ill-posed problem.

Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe, Unsupervised Learning of Depth and Ego-
51 motion from Video, CVPR 2017
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. Traditional Deep learning + geometry
Supervised SftM methods ¢ A
Relative depth Depth from a Absolute depth Relative depth
and relative single image and and absolute and relative
pose relative pose pose pose

o=
i |

o=
) i |

o=

i |

e Ground-truth depth as
supervision,

* poseNet need to estimate

Bundle camera poses with

adjustment absolute scale (ill-posed)

« to mitigate this use dataset
priors and semantic
knowledge of the scene

X

Ummenhofer, Benjamin, et al. "Demon: Depth and motion network for learning monocular stereo" CVPR. 2017

Wang,et al. "Displacement-invariant matching cost learning for accurate optical flow estimation” NIPS 2020

Wei, Xingkui, et al. "Deepsfm: Structure from motion via deep bundle adjustment” ECCV 2020
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Traditional Deep learning +geometry
A

Removing posenet methods ,
Relative depth Depth from a Absolute depth Relative depth
and relative single image and and absolute and relative
pose relative pose pose pose

Supervised SfM assume that a consistent scale of depth and pose can be learned across all input samples,
which makes the learning problem harder, resulting in degraded performance and limited generalization.

The idea is to disentangles scale from the network estimation and follow more closely traditional
pipelines

Traditional Deep + geometry
| Correspondences Sparse handcrafted features Optical flow
Relative pose Robust fitting Robust fitting
(8/5 points algorithm) (8/5 points algorithm)
3D scene Triangulation Depth estimation

E'—=] Zhao, Wang, et al. "Towards better generalization: Joint depth-pose learning without posenet.” CVPR 2020.

) i |

E] Wang, Jianyuan, et al. "Deep two-view structure-from-motion revisited." CVPR 2021.
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RanSacC in short

Sampling
Sample check

Model generation

Model check

Luca Magri 2024

Sample minimal subset

Generate minimal sample model

Is the model interesting? Keep it!
e.g., countinliers

Generate non minimal sample model



. Traditional Deep learning + geometry
Removing posenet methods . A
Relative depth Depth from a Absolute depth Relative depth
and relative single image and and absolute and relative
pose relative pose pose pose
Fundamental/essential
FlowNet Optical Flow Correspondences matrix estimation

DepthNet Depth Relative pose

Image pair

Aligned depth

Luca Magri 2024



Removing posenet: two view triangulation as depth supervision

Aligning the depth with the pose

1. Select accurate correspondences (taking into consideration epipolar distance, and occlusion mask)

2. Reconstruct an up to scale structure using mid-point triangulation (differentiable)

The loss of the network is composed by: Loss between triangulated and predicted depth

* The unsupervised loss for the optical flow, : |

* The loss between triangulated, Depth- up to scale Triangulated point cloud
and predicted depth, L BB t O

 The reprojection error (depth map reconstruction ) ‘.’ ‘ 8
+ flow error between optical flow and rigid flow A 080 O
generated by depth reprojection), i /6\%

* Depth smoothness term. \_ o “o y,

o=

—=O

] Zhao, Wang, et al. "Towards better generalization: Joint depth-pose learning without posenet.” CVPR 2020.
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Static scene assumption

All SfM methods rely on the assumption that the scene is static, thus, as regard moving objects we have
two approaches:

1. Detectandignore:e.g.:

Automasking stationary pixels by Monodepthv2:ignore
pixels in the loss which don’t appear to change between
Target view Explanability mask Source view images. Allow to ignore whole fra mes in monocular

| videos when the camera stops moving.

Masks estimated by SfMLearner

o=
e i |

} Zhao, Wang, et al. "Towards better generalization: Joint depth-pose learning without posenet.” CVPR 2020.



Static scene assumption

All SfM methods rely on the assumption that the scene is static, thus, as regard moving objects we have

two approaches:
1. Detectandignore:

2. Clever tricks: Mannequin Challenge Dataset

K = S | T £ S
S E E § E R E NN NN NN NN S NN RN EEEEEEGEGETS®

-4
X
22
v,y
] ? k
It - pe

MVS Depth
(supervison)

2. \b

= |

MannequinChallenge (MC) Dataset
Static scene, moving camera

You([TH)

Human
Mask

Initial depth \BES =
from flow

Predicted depth

] i |

people." TPAMI 2020.

Inference
—'l-\!lllllll'llvlllllll!_!ll,l-

g B B BB 8B

iy

LTI o™l T
S §E I E E B EEEE B ESH

& Dt

Our depth predictions

E'—:] Li, Zhengaqi, et al. "MannequinChallenge: Learning the depths of moving people by watching frozen



Static scene assumption

All STM methods rely on the assumption that the scene is static, thus, as regard moving objects we have
two approaches:

1. Detect and ignore Images of a scene with moving object
2. Clever tricks

3. Modeling moving objects

SOTA Multi-Body Depth &
(DeepSfM) Camera Pose Estimation

%] Dal Cin, Andrea Porfiri, Giacomo Boracchi, and Luca Magri. "Multi-body Depth and Camera Pose Estimation
from Multiple Views." ICCV, 2023.
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Multi-body Depth and Camera Pose Estimation

Setup:
* The scene is composed by multiple rigid bodies moving independently

* We have a sparse set of images (this differs from the previous monodepth approach where the inputis
typically a video)

Problem:

If one is able to segment the scene, using SfM pipelines you get indepent reconstruction each in its own
scale.

Goal:
We want to reconcile all the reconstruction to the same scale

E] Dal Cin, Andrea Porfiri, Giacomo Boracchi, and Luca Magri. "Multi-body Depth and Camera Pose Estimation
from Multiple Views." ICCV, 2023.

Luca Magri 2024



Multi-body Depth and Camera Pose Estimation

Combine several ingredients that we have seen so far...

Essential
matrices
Motion Eo M
> Segmentation { k } =]

|
m
N ‘ Up-to-scale poses
/
o ' ] 1 N Robust Scale
— }’ Estimation
. _ 2 Roa tao 3

Input calibrated Sparse keypoints )k

images
n I

et NN n M
. Monocular depth z

Dense optical flow Monocular ’
depth
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X
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Multi-body Depth and Camera Pose Estimation

Motion segmentation leverages multi-model robust fitting on the optical flow between the two input
images to estimate several essential matrices.

 SIFT keypoints are clustered according to object motion
(multi-model fitting + synchronization)

* Dense optical flow matches augment the set
of keypoints

Essential
matrices

Motion Eal#
Segmentation { k } j=1

* For each motion in the scene,
we compute essential matrices,

and up-to-scale camera poses Up-to-scale poses

A

Input calibrated
images

.}

Dense optical flow
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Multi-body Depth and Camera Pose Estimation

Scale estimation: The monocular depth is used as a prior that can be used to reconcile all the poses in the
same scale.

For each image and each moving object, the ratio between the mono and triangulated depth is computed
using a Kernel Density Voting.

® True scene @ Triangulated

o

Scale factor 4
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Plane sweep

At the core of several traditional plane estimation algorithm, based on photoconsitency

Input: an image pair of a source and a target image

* Tentative depth planes parallel to the target are sampled

* For each pixel u, and each plane at depth d; the intersection
of the optical ray and the plane is projected onto the source view
(the projection u; depends both on depth and relative pose)

* A photometric error is computed by comparing the image values
of pixels u and u;

The errors can be packaged in a cost volume and
the depth of the scene is the surface with the minimum cost

virtual planes

HXW
Luca Magri 2024 Size of the ta rget image



Multi-body plane sweep

This time, each pixel can be projected in different ways according to all the relative motions involved in

the dynamic scenes.
All scene motions are considered when constructing the depth cost volume

Luca Magri 2024



Multi-body plane sweep network

Essential
matrices
Motion Eal#
Segmentation { k } =]
Up-to-scale poses

}) Robust Scale
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Multi-body plane sweep network

* Receives RGB images and correctly scaled camera poses as input
* Outputs dense depth maps and refined camera poses for each input image

* Includes our multi-body plane sweep algorithm to regress geometrically consistent depths

--------

! .&; & ' Multi-body Depth Cost Volume 3D convolution Refinement Depth map
Moo S Plane-sweep
camera poses - ‘ \

feature warplng

e l’ \‘|
| ' .
—' — — U }.}'
‘ A V4 ) M 7 8 gy =
target - M e cmmeeeees .
Input images Feature extraction Plane-sweep Pose Cost Volume 3D convolution Camera poses
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Multi-body plane sweep network

Qualitative comparisons on ETH3D and Multi-body Unstructured.

The yellow boxes highlight moving objects reconstructed by our method but not by the state-of-the-art
DeepSfM

Image Wang et al. Ours

ETH3D

Multi-Body Unstructured

Reference images Ground-truth DeepSfM Ours
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Monodepth training

* More abundant data since we can use video sequences
* Multiple viewpoint for reprojection improving the robustness

* Uniform region and moving object must be handled with care

Luca Magri 2024



To sum up

* Depth estimation from a single image is possible

« Compared to other tasks (e.g. object detection, semantic segmentation...) accurate manual annotation
is unfeasible

* Geometry come to rescue: self-supervision is possible by exploiting stonger or weaker constraints...

What’s next?

Monocular networks can still be easily fooled!

Although self-supervised techniques allow to increase the amount of training data with low effort, we are
far from considering single image depth estimation to be solved.

Conversely to other task, such as Optical Flow and stereo, synthetic images have been rarely used, pre-
trainig on synthetic samples and fine-tuning on the domain at hand could improve the results.

Even when 3D data are not needed for training, still they are needed for testing.
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