POLITECNICO

MILANO 1863

Advanced Deep Learning Models and Methods for Spatial Data

Giacomo Boracchi, Luca Magri, Simone Melzi, Matteo Matteucci

Depth estimation

Luca Magri
https://magrilu.github.io
name.surname@polimi.it

POLITECNICO

MILANO 1863

Credits \& acknowledgments

Some of the material presented in these slides is based on
Matteo Poggi's tutorial: Learning and understanding single image depth estimation in the wild, CVPR 2020 which is an excellent resource for approaching the problem of depth estimation.
The introductory material is inspired by Justin Johnson: Deep learning for computer vision (lecture 17)

Monodepth and material on self-supervision is based on the oral presentation done by Clément Godard at CVPR 2017.

Some slides are "stolen" from the AN2DL course of Prof. Giacomo Boracchi, who is kindly acknowledged here for his suggestions and support. Typically, the images are taken from the papers cited at the bottom of each slide.
The codes accompanying this lecture were provided by Andrea Porfiri dal Cin, whom I thank for his help.

Errors are my own! You are encouraged to report any of them to luca.magri@polimi.it

Motivations

Navigation \& mapping

Robot grasping

Augmented reality

Applications

- Robotics
- Autonomous Driving Assistive System
- Medical applications

Perceiving depth

Active technologies

- Structured Light
- Time of Flight (TOF)
- Laser Image Detection Ranging (LiDAR)
\checkmark very accurate

LiDAR:
X Sparse measurements
X Expensive
Structured Light:
X Can't work outdoor
X Limited range

Passive technologies

- Binocular and multi-view stereo
- Structure from Motion
\checkmark cheap
Stereo:
X Occlusions
SfM:
X Moving objects

By estimating depth from a single image, we can bypass all these limitations!

Depth estimation from a single image

Depth map

Given a RGB image of size $H \times W \times 3$, we want to estimate
a depth map: an image of size $H \times W$
that, for each pixel, gives the distance from the camera to the object in the world at that pixel.

RGB image + Depth map = RGB-D image 2.5D

3D point

Depth from a single image is an ill posed problem

The capture of an image of a 3D scene is modelled as the projection of 3D points on a 2D image plane. All the points belonging to the optical ray projects on the same 3D points.
It is not possible to recover the depth of a point from a single image, as the same image point can be back-projected to multiple plausible depths.

Estimating depth form a single image is an ill posed problem!

Estimating depth form a single image is an ill posed problem!

Scale-depth ambiguity:

a small close object looks the same as a much larger one further away.
Absolute scale / depth is ambiguous from a single image

Thank for your attention!

...but humans succeed estimating depth

however not all the 3D structures are equally likely! Humans are able to infer a (nearly) correct 3D structure and relative depth, using prior experience and visual cues such as:

1. Linear perspective
2. Relative size position
3. Texture gradient
4. Occlusions (the occluded object is far away)
 depth form a single image?

Today menu

(o) Depth estimation from a single image

- Supervised methods
- Visual cues for single image depth estimation
(1) Depth estimation from a calibrated stereo pairs
\square ०-0
- Stereo self-supervision
- Multiview depth estimation
- Mono-depth training \& deep SfM

Aims:

Get an intuition of the main approach for inferring 3D data from 2D images

Fill our box with the geometric tools necessary to depth estimation

Supervised approach

Input image
I

Target depth Y

Our training set is a collection of images and depth maps (RGD images)

$$
T R=\left\{\left(I_{i}, Y_{i}\right)\right\}
$$

Supervised approach

From semantic segmentation to depths

A simple solution is to start with a Fully Convolutional Neural Networks as the one used for semantic segmentation

Input image I $W \times H \times 3$

 labels

From semantic segmentation to depths

A simple solution is to start with a Fully Convolutional Neural Networks as the one used for semantic segmentation and adapt it to predict depth values instead of semantic labels.

Encoder \& decoder (sketch of the idea)

- The encoder reduces the spatial extent of the image and produce deeper features that enode richer information
- The decoder upsamples the predictions to cover each pixel in the image at the original resolution

Encoder \& decoder (sketch of the idea)

- The encoder reduces the spatial extent of the image and produce deeper features that enode richer information
- The decoder upsamples the predictions to cover each pixel in the image at the original resolution

Encoder \& decoder (sketch of the idea)

- The encoder reduces the spatial extent of the image and produce deeper featurecurdericher information

Encoder \& decoder (sketch of the idea)

- In semantic segmentation a soft-max to predict the proability of belonging to one of the L classes $\Lambda=$ $\left\{l_{1}, \ldots, l_{L}\right\}$,
- To regress depth maps we have instead a linear layer.

Encoder \& decoder (sketch of the idea)

- In semantic segmentation a soft-max to predict the proability of belonging to one of the L classes $\Lambda=$ $\left\{l_{1}, \ldots, l_{L}\right\}$,
- To regress depth maps we have instead a linear layer.

Linear activations

Other architectures

Most of the architectures for supervised depth estimation from a single image are based on this encoder-decoder paradigm, keeping this in mind you should be able to navigate the literature...

e.g., Adabins

Bhat, Shariq Farooq, Ibraheem Alhashim, and Peter Wonka. "Adabins: Depth estimation using adaptive bins." CVPR 2021.

[^0]
A naïve loss

As a loss, we could minimize the ℓ_{2} norm between the predicted and the regressed values.

A naïve loss

As a loss, we could minimize the ℓ_{2} norm between the predicted and the regressed values.

But this wouldn't work well because of the depth-scale ambiguity!
To predict depth effectively, we must consider the geometric nature of the problem

A naïve loss

As a loss, we could minimize the ℓ_{2} norm between the predicted and the regressed values.

Back to the roots: a CNN for single image depth estimation

[Eigen et al, NIPS 2014] is a milestone in single image depth estimation, being the first work leveraging a CNN to estimate the depth in a supervised way.

- While stereo methods rely on local disparity (see later), in single image depth estimation a global view is needed to relate all the available visual cues.

Two-branch architecture: global and fine scale

- One of the major ambiguity is the global scale of the scene (moderate variations in room furniture and size).

Scale invariant loss

[^1]
Model architecture

Two branches estimate a coarse and a refined depth maps, the former used as to ease the prediction of the latter.

言硅 Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014

[^2]
Model architecture

Two branches estimate a coarse and a refined depth maps, the former used as to ease the prediction of the latter.

言五 Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014

[^3]
Scale invariant loss

The scale invariant loss focus on the spatial relations within a scene rather than on a global scale:

気 Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014

[^4]
Scale invariant loss

The scale invariant loss focus on the spatial relations within a scene rather than on a global scale:

$$
D\left(y, y^{*}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\log y_{i}-\log y_{i}^{*}+\alpha\left(y, y^{*}\right)\right)^{2} \quad \text { Mean squared error }
$$

言五 Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014

Scale invariant loss

The scale invariant loss focus on the spatial relations within a scene rather than on a global scale:

$$
D\left(y, y^{*}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\log y_{i}-\log y_{i}^{*}+\alpha\left(y, y^{*}\right)\right)^{2} \quad \text { Mean squared error }
$$

Log space: reduces the impact of large depth values overpowering the smaller ones in error calculation.

[^5]
Scale invariant loss

The scale invariant loss focus on the spatial relations within a scene rather than on a global scale:

$$
D\left(y, y^{*}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\log y_{i}-\log y_{i}^{*}+\alpha\left(y, y^{*}\right)\right)^{2} \quad \text { Mean squared error }
$$

Log space: reduces the impact of large depth values overpowering the smaller ones in error calculation. Scale invariant: $\alpha\left(y, y^{*}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\log y_{i}-\log y_{i}^{*}\right)$ is the value that minimizes the error for a given pair $\left(y, y^{*}\right)$. For any prediction y, e^{α} is the scalar that best align it to the groundtruth. All scalar multiples of y have the same error, here the scale invariance.

[^6]
Scale invariant

The scale invariant loss focus on the spatial relations within a scene rather than on a global scale:

$$
D\left(y, y^{*}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\log y_{i}-\log y_{i}^{*}+\alpha\left(y, y^{*}\right)\right)^{2}
$$

The loss has other equivalent forms, i.e:

$$
D\left(y, y^{*}\right)=\frac{1}{n^{2}} \sum_{i, j}\left(\left(\log y_{i}-\log y_{j}\right)-\left(\log y_{i}^{*}-\log y_{j}^{*}\right)\right)^{2}
$$

to have low error, each pair of pixel in the prediction must differ in depth by an amount that is comparable to the ground truth. Setting $d_{i}=\log y_{i}-\log y_{j}$, we have

$$
D\left(y, y^{*}\right)=\frac{1}{n} \sum_{i} d_{i}^{2}-\frac{1}{n}\left(\sum_{i} d_{i}\right)^{2}
$$

므르․ Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014

Scale invariant loss mean squared error in log space

The scale invariant loss focus on the spatial relations within a scene rather than on a global scale:

$$
D\left(y, y^{*}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(\log y_{i}-\log y_{i}^{*}+\alpha\left(y, y^{*}\right)\right)^{2}
$$

The loss has other equivalent forms, i.e:

$$
D\left(y, y^{*}\right)=\frac{1}{n^{2}} \sum_{i, j}\left(\left(\log y_{i}-\log y_{j}\right)-\left(\log y_{i}^{*}-\log y_{j}^{*}\right)\right)^{2}
$$

to have low error, each pair of pixel in the prediction must differ in depth by an amount that is comparable to the ground truth. Setting $d_{i}=\log y_{i}-\log y_{j}$, we have

$$
D\left(y, y^{*}\right)=\frac{1}{n} \sum_{i} d_{i}^{2}-\frac{\lambda}{n}\left(\sum_{i} d_{i}\right)^{2}
$$

The loss used during training is a linear combination $\lambda=0.5$ of the mean square error and the invariant loss

[^7]
Other losses

sensitivity	$l_{\text {depth }}$	$l_{\text {grad }}$	$l_{\text {normal }}$
	\checkmark	x	x
	x	\checkmark	\checkmark
	x	\checkmark	\checkmark

國
J. Hu, et al. Revisiting single image depth estimation: Toward higher resolution maps with accurate object boundaries. In WACV, 2019.

[^8]
Loss on gradients

Let $\nabla_{x} d_{i}$ and $\nabla_{y} d_{i}$ be the horizontal and vertical image gradients of the \log difference $d_{i}=\log y_{i}-\log y_{i}^{*}$

$$
l_{\mathrm{grad}}=\frac{1}{n} \sum\left[\left(\nabla_{x} d_{i}\right)^{2}+\left(\nabla_{y} d_{i}\right)^{2}\right]
$$

compares image gradients of the prediction with the ground truth.
This encourages predictions to have

- close values,
- but also similar local structure,
resulting in depthmaps that better follow depth gradients, with no degradation in measured 12 performance.

므믐 Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014

Loss on normals

Depth can be seen as a surface $z=z(x, y)$ defined on the image pixel gird (x, y)
The normal in (x, y) can be computed from the depth by taking the cross product between the tangent vectors to $z(x, y)$.
(Viceversa, from normals it is possible to retrieve the depth by integration)

$$
n=\left(-\partial_{x} z, \partial_{y} z, 1\right)
$$

Let n and n^{*} be the estimated and the predicted normals

$$
l_{\text {norm }}=\cos \left(n, n^{*}\right)
$$

Predicting depth, normal and semantic labels

According to the loss employed, the very same network can be used to regress:

- Depth (loss on depth and gradients)
- Normals (loss on normals)
- Semanitc labels (per pixel cross entropy)

Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014

[^9]
Predicting depth, normal and semantic labels

Inferring normals from a single image typically requires several images of the same scene acquired under varying and controlled illumination conditions (this problem is known as Photometric Stereo).

The benefits of combining losses

The benefits of combining losses

Evaluation metrics

- Accuracy scores: the percentage of pixels having a relative error δ lower than a threshold ϵ (typical values of ϵ are $1,25,1.25^{2}, 1.25^{3}$)

$$
\delta=\max \left(\frac{y}{y^{*}}, \frac{y^{*}}{y}\right)<\epsilon
$$

- Absolute Relative error: to normalize per-pixel errors according to real depth, reducing the impact of large errors with the distance

$$
\frac{1}{n} \sum\left|y_{i}-y_{i}^{*}\right| / y_{i}^{*}
$$

- Squared Relative Error: to penalize larger depth errors (e.g. near discontinuities)

$$
\frac{1}{n} \sum\left\|y_{i}-y_{i}^{*}\right\|^{2} / y_{i}^{*}
$$

- Root Mean Squared Error: $\sqrt{\frac{1}{n} \sum\left\|y_{i}-y_{i}^{*}\right\|^{2}}$
- Roor Mean Squared Logarithmic Error: $\sqrt{\frac{1}{n} \sum\left\|\log y_{i}-\log y_{-} i^{\wedge} *\right\|^{2}}$

3D data for supervision

A training set

$$
T R=\left\{\left(I_{i}, Y_{i}\right)\right\}
$$

of RGB-D image can be acquired using dedicated sensors.

Why depth from a single image?

What is the advantage of having a deep network ($4 \mathrm{~K} €$ for a GPU) that works on a single image rather than using a sensor that costs a few hundred $€$?
There are good reasons... would you rather have a Kinect or a small endoscopic probe in your belly? We can rely on deep network when acquiring 3D data is not possible!

The need of 3D data for supervision (and where to find them)

Deep learning method have recently driven significant progress in supervised depth estimation from a single image, but being entirely data driven, their potential grows with the amount of data using during training.

Popular datasets:

Dataset	Indoor	Outdoor	Dynamic	Video	Dense	Accuracy	Diversity	Annotation	Depth	\# Images
DIML Indoor [31]] \checkmark			\checkmark	\checkmark	Medium	Medium	RGB-D	Metric	220K
MegaDepth [11]		\checkmark	(\checkmark)		(\checkmark	Medium	Medium	SfM	No scale	130K
ReDWeb [32]	\checkmark	\checkmark	\checkmark		\checkmark	Medium	High	Stereo	No scale \& shift	3600
WSVD [33]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Medium	High	Stereo	No scale \& shift	1.5M
3D Movies	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Medium	High	Stereo	No scale \& shift	75K
DIW [34]	\checkmark	\checkmark	\checkmark			Low	High	User clicks	Ordinal pair	496K
ETH3D [35]	\checkmark	\checkmark			\checkmark	High	Low	Laser	Metric	454
Sintel [36]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	High	Medium	Synthetic	(Metric)	1064
KITTI [28], [29]		\checkmark	($\sqrt{ }$	\checkmark	($\sqrt{ }$	Medium	Low	Laser/Stereo	Metric	93K
NYUDv2 [30]	\checkmark		(\checkmark	\checkmark	\checkmark	Medium	Low	RGB-D	Metric	407K
TUM-RGBD [37]	\checkmark		($)$	\checkmark	\checkmark	Medium	Low	RGB-D	Metric	80K

Ranftl et al. Towards Robust Monocular Depth Estimation: Mixing Datasets for
Zero-shot Cross-dataset Transfer. TPAMI 2020

Video sequences form a variety of indoor scenes acquired with a Microsoft Kinect to record both the RGB and Depth Map.

- 1449 densely labeled pairs of aligned RGB and depth images
- 464 new scenes taken from 3 cities
- 407,024 new unlabeled frames
- Each object is labeled with a class and an instance number (cup1, cup2, cup3, etc)

Dataset	Indoor	Outdoor	Dynamic	Video	Dense	Accuracy	Diversity	Annotation	Depth	\# Images
DIML Indoor [31]	\checkmark			\checkmark	\checkmark	Medium	Medium	RGB-D	Metric	220K
MegaDepth [11]		\checkmark	(\checkmark)		(\checkmark)	Medium	Medium	SfM	No scale	130K
ReDWeb [32]	\checkmark	\checkmark	\checkmark		\checkmark	Medium	High	Stereo	No scale \& shift	3600
WSVD [33]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Medium	High	Stereo	No scale \& shift	1.5 M
3D Movies	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Medium	High	Stereo	No scale \& shift	75K
DIW [34]	\checkmark	\checkmark	\checkmark			Low	High	User clicks	Ordinal pair	496K
ETH3D [35]	\checkmark	\checkmark			\checkmark	High	Low	Laser	Metric	454
Sintel [36]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	High	Medium	Synthetic	(Metric)	1064
KITTI [28], [29]		\checkmark	(\checkmark)	\checkmark	(\checkmark)	Medium	Low	Laser/Stereo	Metric	93 K
NYUDv2 [30]	\checkmark		(\checkmark)	\checkmark	\checkmark	Medium	Low	RGB-D	Metric	407K
TUM-RGBD [37]	\checkmark		(\checkmark)	\checkmark	\checkmark	Medium	Low	RGB-D	Metric	80 K

https://cs.nyu.edu/~silberman/d atasets/nyu_depth_v2.html

[^10]
KITTI dataset

A large collection of images acquired in driving environment.

3D point cloud acquired by a LiDAR registered with RGB.

A subset of 200 images (KITTI 2015 stereo training set) with accurate ground truth (moving object replaced with accurate cad model)

Dataset	Indoor	Outdoor	Dynamic	Video	Dense	Accuracy	Diversity	Annotation	Depth	\# Images
DIML Indoor [31]	\checkmark			\checkmark	\checkmark	Medium	Medium	RGB-D	Metric	220K
MegaDepth [11]		\checkmark	(\checkmark)		(\checkmark)	Medium	Medium	SfM	No scale	130 K
ReDWeb [32]	\checkmark	\checkmark	\checkmark		\checkmark	Medium	High	Stereo	No scale \& shift	3600
WSVD [33]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Medium	High	Stereo	No scale \& shift	1.5 M
3D Movies	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Medium	High	Stereo	No scale \& shift	75 K
DIW [34]	\checkmark	\checkmark	\checkmark			Low	High	User clicks	Ordinal pair	496K
ETH3D [35]	\checkmark	\checkmark			\checkmark	High	Low	Laser	Metric	454
Sintel [36]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	High	Medium	Synthetic	(Metric)	1064
KITTI [28], [29]		\checkmark	(\checkmark)	\checkmark	(\checkmark)	Medium	Low	Laser/Stereo	Metric	93 K
NYUDv2 [30]	\checkmark		(\checkmark)	\checkmark	\checkmark	Medium	Low	RGB-D	Metric	407K
TUM-RGBD [37]	\checkmark		(\checkmark)	\checkmark	\checkmark	Medium	Low	RGB-D	Metric	80K

https://www.cvlibs.net/data sets/kitti/

[^11]
MegaDepth

A large scale dataset generated from Internet photo collections for a set of well-photographed landmarks.
The idea is to feed multiple images with overlapping viewpoint to Structure from Motion and Multi-view Stereo to automatically produce depth maps.
Multiple filtering steps are necessary.

3D data is only up to unknown scale factor, which could be problematic for applications requiring scaled values.

Dataset	Indoor	Outdoor	Dynamic	Video	Dense	Accuracy	Diversity	Annotation	Depth	\# Images
DIML Indoor [31]	\checkmark			\checkmark	\checkmark	Medium	Medium	RGB-D	Metric	220 K
MegaDepth [11]		\checkmark	(\checkmark)		(\checkmark)	Medium	Medium	SfM	No scale	130 K
ReDWeb [32]	\checkmark	\checkmark	\checkmark		\checkmark	Medium	High	Stereo	No scale \& shift	3600
WSVD [33]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Medium	High	Stereo	No scale \& shift	1.5 M
3D Movies	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Medium	High	Stereo	No scale \& shift	75 K
DIW [34]	\checkmark	\checkmark	\checkmark			Low	High	User clicks	Ordinal pair	496K
ETH3D [35]	\checkmark	\checkmark			\checkmark	High	Low	Laser	Metric	454
Sintel [36]	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	High	Medium	Synthetic	(Metric)	1064
KITTI [28], [29]		\checkmark	(\checkmark)	\checkmark	(\checkmark)	Medium	Low	Laser/Stereo	Metric	93K
NYUDv2 [30]	\checkmark		(\checkmark)	\checkmark	\checkmark	Medium	Low	RGB-D	Metric	407K
TUM-RGBD [37]	\checkmark		(\checkmark)	\checkmark	\checkmark	Medium	Low	RGB-D	Metric	80K

https://www.cs.cornell.edu/pro
jects/megadepth/

[^12]
Depth anything

Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data

Lihe Yang ${ }^{1}$ Bingyi Kang ${ }^{2 \dagger}$ Zilong Huang ${ }^{2}$ Xiaogang Xu ${ }^{3,4}$ Jiashi Feng ${ }^{2}$ Hengshuang Zhao ${ }^{1 \dagger}$ ${ }^{1}$ The University of Hong Kong $\quad{ }^{2}$ TikTok $\quad{ }^{3}$ Zhejiang Lab $\quad{ }^{4}$ Zhejiang University
\dagger corresponding authors
https://depth-anything.github.io

Figure 1. Our model exhibits impressive generalization ability across extensive unseen sce
SA-1B [27] (a hold-out unseen set). Right two: photos captured by ourselves. Our model 3rd column), complex scenes (2nd and 5th column), foggy weather (5th column), and ult

Abstract
This work presents Depth Anything ${ }^{1}$, a highly practical This work presents Depth Anything1, a highly practical
solution for robust monocular depth estimation. Without pursolution for robust monocular depth estimation. Without pur-
suing novel technical modules, we aim to build a simple yet suing novel technical modules, we aim to build a simple yet
powerful foundation model dealing with any images under any circumstances. To this end, we scale up the dataset by designing a data engine to collect and automatically annotate large-scale unlabeled data ($\sim 62 M$), which significantly enlarges the data coverage and thus is able to reduce the generalization error. We investigate two simple yet effective strategies that make data scaling-up promising. First, a more challenging optimization target is created by leveraging data augme visual knowledge and acquire robust representations.

1. Introduct

The field of cor is currently exp is currently exp
"foundation m (shot performan These success
that can effectively cover the data distribution. Monocular Depth Estimation (MDE), which is a fundamental problem with broad applications in robotics [65], autonomous driving [63, 79], virtual reality [47], etc., also requires a foun-
dation model to estimate depth information from a single dation model to estimate depth information from a single difficulty of building datasets with tens of millions of depth labels. MiDaS [45] made a pioneering study along this direartion hy training an MDF model an a collertinn of mived

https://depth-
anything.github.io

Single image depth estimation

\checkmark Obtaining training data for deep learning models in the wild is nowadays possible
\checkmark Single-image depth estimation models can be effectively trained on such data

MiDaS Depth Estimation is a machine learning model from Intel Labs for monocular depth estimation. It was trained on up to 12 datasets and covers both in-and outdoor scenes. Multiple different MiDaS models are available, ranging from high quality depth estimation to lightweight models for mobile downstream tasks

[^13][^14]
Single image depth estimation

\checkmark Obtaining training data for deep learning models in the wild is nowadays possible
\checkmark Single-image depth estimation models can be effectively trained on such data
X It's challenging to collect data that capture the diversity of the visual world to ensure generalization
X RGB+ depth data are difficult to collect (Kinect is limited to indoor use, LiDAR are expensive and produce only a sparse depth map)
X These methods can be easily fooled-out by out-of-distribution samples

Picture from
artedelporfido.wordpress.com

Depth map from MegaDepth [1] megadepthdemo.pythonanywhere.com

Do NN learns from the same visual cues used by humans?

Explaining depth estimation

Understanding single image depth estimation

It is crucial to understand how NNs estimate depths in order to safely apply them in critical application as autonomous driving...

1. Which are the most relevant visual cues in image?
2. How biased are depth values in presence of specific objects, shadows, camera orientations?
3. How reliable are depth values?

Which pixels of an image I are relevant for depth estimation?

Cast the question as an optimization problem:
select a mask M with the smallest set of pixels from which N, a target CNN, produces the maximally similar depth $\hat{Y}=N(I \odot M)$ to the original output $Y=N(I)$.
in formulas

$$
\min \ell(Y, \widehat{Y})+\lambda\|M\|_{0}
$$

The idea is that CNNs can infer depth map equally well from a selected set of sparse pixels, as long as they are relevant to depth estimation.

Image I
Masked $I \odot M$

Original output Y

Visualization of CNN for depth estimation

In practice, this problem requires to optimize the output of the CNN with respect to its input that can lead to noisy visualization or even to adversarial examples.
Thus:

- Rather than directly optimizing the elements of M, obtain the mask by processing I via a network G,
- Relax the entries of the matrix to be in $[0,1]$
thus we have the following problem:

$$
\min _{\mathrm{G}} \ell(D, \widehat{D})+\lambda\|G(I)\|_{1}
$$

[^15]Luca Magri 2024

Visualization of CNN for depth estimation: results

The network concentrate on edges, but with some differences

Comparison of accuracy of depth estimation when se- lecting input image pixels using M and using the edge map of input images.

Visualization of CNN for depth estimation: indoor results

The network concentrate on edges, but consider some edge that are important for the understanding the 3D geometry and neglects others

Visualization of CNN for depth estimation: indoor results

The network concentrate on edges, but consider some edge that are important for the understanding the 3D geometry and neglects others

Visualization of CNN for depth estimation: indoor results

Not boundary alone but filled region is highlighted for small objects.
The CNNs recognize the objects and somehow utilize it for depth estimation.

Visualization of CNN for depth estimation: indoor results

By using different losses we get different results

Depth

Emphasis on surfaces

Depth + gradient + normals

Emphasis on objects \& straight edges

Visualization of CNN for depth estimation: outdoor results

The guard rail is relevant strong edge

A lot of attention near vanishing ponts

The white lines are
strong edges but are not relevant

Visualization of CNN for depth estimation: outdoor results

A lot of attention near vanishing ponts

Biases in training set?

Being completely data driven, depth estimation from a single image might inherits the biases encoded in the training set.
Let's investigate how some cues (e.g., relative position, apparent size...) affect depth estimation.
Understanding this aspect is crucial for the generalization of the model.

Dijk, Tom van, and Guido de Croon. "How do neural networks see depth in single images?." CVPR 2019

Luca Magri 2024

Geometric interlude

Pin-hole camera: geometric abstraction

We build a simplified geometric model and do not consider aperture, exposure, lens distortion...

Pin-hole camera geometry

Is described by its optical center C and the image plane ϕ.
The distance of the image plane from C is the f, the focal length.
The relation between M the 3D coordinates of a scene point and m the coordinates of its projection onto the image plane is described by the perspective projection

Perspective equations from triangle similarity

Fix a Cartesian coordinate system $\left\{\gamma_{x}, \gamma_{y}, \gamma_{z}\right\}$ in the optical center, with γ_{z} perpendicular to the image plane.
By similar triangles, $M=\left(X_{M}, Y_{M}, Z_{M}\right)$ is mapped to point $m=\left(\frac{f X_{M}}{Z_{M}}, \frac{f Y_{M}}{Z_{M}}\right)$

$$
\boldsymbol{M}=\left(X_{M}, Y_{M}, Z_{M}\right) \mapsto \boldsymbol{m}=\left(x_{m}, y_{m}\right), \text { where }\left\{\begin{array}{l}
x_{m}=f X_{M} / Z_{M} \\
y_{m}=f Y_{M} / Z_{M}
\end{array}\right.
$$

Camera projection equations are non linear

Perspective: division by Z_{M} is responsible of perspective effects. The size of images in the image plane actually depends on their depth in the scene (i.e., distance from the camera center)

Vanishing points

Parallel lines in 3D space appear to converge towards the horizon.
The line of horizon is formed by infinitely distant points or "vanishing direction"

Apparent size

The apparent size of objects are strong visual cues that can be used by a network.
If the object size H is known, given the apparent size h and the focal distance, it is possible to compute the depth as

$$
Z=\frac{f}{h} H
$$

Most of the objects in KITTI are from a limited number of classes (e.g. cars, lorries, pedestrians) having approximately the same size. The networks can learn to recognize objects and use their apparent size to estimate their distance.

Vertical position (in terms of horizon)

Also, the vertical position is an important cue.
If the camera position is known and assuming a flat plane (as in KITTI), the distance can be computed in terms of the height of horizon y_{h} as:

$$
Z=\frac{f}{\left(y-y_{h}\right)} Y
$$

Position vs apparent size

Cropped cars are overimposed with ground contact point at (x, y) and relative depth Z.
When moving to Z^{\prime}, scale factor s and new ground contact point (x^{\prime}, y^{\prime}) can be obtained by knowing the horizon height y_{h}.
We can modify the position and the apparent size of the white car in a principled manner.

What happen when we use an apparent size that does not conform with the position and viceversa?

Position vs apparent size

Apparent size is fixed, but position changes. Can you guess the result?

Position vs apparent size

The wrong apparent size doesn't have a great impact on the depth estimates.

According to the apparent size alone this should be a close object, but it should be far according to the position. Is predicted as far

Position vs apparent size

Position is fixed, but apparent size changes... can you guess the result?

Position vs apparent size

Position is fixed, but apparent size changes... can you guess the result?

According to the apparent size alone this should be a far object, but it should be close according to the position. Is predicted as close

Position is a stronger visual cue!

- Overestimate relative depth
- std increased

Note that the use of vertical position as a depth cue implies that the networks have some knowledge of the camera's pose...

Geometric interlude

Camera and poses

General camera

We have chosen:

- a 3D reference frame in the camera center;
- a 2D reference frame in the center of the image;

The projection matrix can be generalized to account for other choices of the reference systems.

General camera

(1) From world reference frame to camera reference frame using a roto-translation

$$
M \mapsto R M+t
$$

General camera

(1) From world reference frame to camera reference frame using a roto-translation
(2) Project from camera reference frame to image plane using the projection matrix

$$
\boldsymbol{M} \mapsto R \boldsymbol{M}+\boldsymbol{t} \mapsto \hat{P}(R M+\boldsymbol{t})
$$

General camera

(1) From world reference frame to camera reference frame using a roto-translation
(2) Project from camera reference frame to image plane using the projection matrix
word r.f. camera r.f. image r.f.

$$
\boldsymbol{M} \mapsto G M \mapsto \hat{P} G M
$$

External orientations:

Changing coordinates in space is equivalent to multiplying the matrix P to the right by a 4×4 matrix

$$
G=\left[\begin{array}{ll}
R & t \\
0 & 1
\end{array}\right]
$$

composed by a rotation matrix R and a translation vector \boldsymbol{t}. It describes the position and the attitude of the camera with respect to the external reference system.

It depends on six parameters called external orientations.

General camera

(1) From world reference frame to camera reference frame using a roto-translation
(2) Project from camera reference frame to image plane using the projection matrix
(3) Express the image point in a different image reference system

$$
\boldsymbol{M} \mapsto \boldsymbol{G} \boldsymbol{M} \mapsto \hat{P} G \boldsymbol{M} \mapsto K \hat{P} G \boldsymbol{M}
$$

General camera

(1) From world reference frame to camera reference frame using a roto-translation
(2) Project from camera reference frame to image plane using the projection matrix
(3) Express the image point in a different image reference system

$$
\boldsymbol{M} \mapsto \boldsymbol{G} \boldsymbol{M} \mapsto \hat{P} G \boldsymbol{M} \mapsto K \hat{P} G \boldsymbol{M}
$$

2D points in the image plane and 2D point in image coordinates differ
by an offset and are expressed in pixels and may have an aspect ratio $\neq 1$.
These can be accommodated in the camera projection equations

$$
\left\{\begin{array}{l}
x_{m}=\sigma_{x} \frac{X_{M}}{Z_{M}}+c_{x} \\
y_{m}=\sigma_{y} \frac{Y_{M}}{Z_{M}}+c_{y}
\end{array}\right.
$$

General camera

(1) From world reference frame to camera reference frame using a roto-translation
(2) Project from camera reference frame to image plane using the projection matrix
(3) Express the image point in a different image reference system

$$
\boldsymbol{M} \mapsto \boldsymbol{G} \boldsymbol{M} \mapsto \hat{P} G \boldsymbol{M} \mapsto K \hat{P} G M
$$

Camera calibration matrix:

In matrix form, this is equivalent of multiplying the matrix P to the left by a 3×3 matrix K representing an affine transform. It is customary to include also the focal length (providing a uniform scaling)

$$
K=\left[\begin{array}{ccc}
\alpha_{u} & s \alpha_{u} & c_{x} \\
0 & r \alpha_{2} u & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

It depends on the interior parameter:

- Focal length α_{u} expressed in pixel units
- Principal point (c_{x}, c_{y}) (image center)
- Aspect ratio r (typical value 1)
- Skew s (typical value 0)

General camera

(1) From world reference frame to camera reference frame using a roto-translation
(2) Project from camera reference frame to image plane using the projection matrix
(3) Express the image point in a different image reference system

$$
\boldsymbol{M} \mapsto G M \mapsto \widehat{P} G M \mapsto K \widehat{P} G M
$$

Camera calibration matrix:

In matrix form, this is equivalent of multiplying the matrix P to the left by a 3×3 matrix K representing an affine transform. It is customary to include also the focal length (providing a uniform scaling)

$$
K=\left[\begin{array}{ccc}
\alpha_{u} & s \alpha_{u} & c_{x} \\
0 & r \alpha_{-} u & c_{y} \\
0 & 0 & 1
\end{array}\right]
$$

It depends on the interior parameter:

- Focal length α_{u} expressed in pixel units
- Principal point (c_{x}, c_{y}) (image center)
- Aspect ratio r (typical value 1)
- Skew s (typical value 0)

Image cords $\widetilde{\boldsymbol{x}}$

- Accessible
- Are measured in the digital image in pixels

Normalized image cords (NIC) $\widetilde{\boldsymbol{p}}=K^{-1} \widetilde{\boldsymbol{x}}$

- Not accessible without the knowledge of K
- Normalized image coordinates would be measured on an ideal image plane at unit distance from the camera center. Their unit is the same of 3D points.

General camera

(1) From world reference frame to camera reference frame using a roto-translation
(2) Project from camera reference frame to image plane using the projection matrix
(3) Express the image point in a different image reference system

$$
\begin{gathered}
M \mapsto G M \mapsto \widehat{P} G M \mapsto K \widehat{P} G M \\
P=K[I \mid \mathbf{0}] G=K[R \mid \boldsymbol{t}] \\
\zeta \tilde{x}=P \tilde{X}
\end{gathered}
$$

Remarks:

- P has rank 3 since is a 3×4 matrix.
- $K R$ is non singular, since K is upper triangular with nonzero diagonal and R is a rotation matrix
- The Right Null Space of the projection matrix is the camera center (the point for which the projection is not defined)

Camera pose: pitch and roll

Does the NN assume a fixed camera pose or estimate this on the fly?
This is strictly related to the location of the horizon and of the vanishing points

Camera pose: pitch and roll

Does the NN assume a fixed camera pose or estimate this on the fly?
This is strictly related to the location of the horizon and of the vanishing points

Vanishing points are direclty related with the orientation R of the camera

Camera pose: pitch and roll

Does the NN assume a fixed camera pose or estimate this on the fly?

Roll

Pitch

This is strictly related to the position of the horizon and of the vanishing points that depends on the orientation of the cameras

Camera pose: pitch and roll

Does the NN assume a fixed camera pose or estimate this on-the-fly?

Roll

- A different roll is simulated

Pitch

- A different pitch is simulated

cropping image with $+/-$ 10 degrees rotation

cropping images with $+/-30$ pixels vertical offset.

Camera pose: pitch and roll

Does the NN assume a fixed camera pose or estimate this on-the-fly?

Roll

- A different roll is simulated
- Estimate roll angle from depth map

Pitch

- A different pitch is simulated.
- Estimate horizon by fitting a line at infinite depth (0 disparity).

The network underestimate both the roll and the pitch

Camera pose: pitch and roll

Does the NN assume a fixed camera pose or estimate this on-the-fly?

Roll

- A different roll is simulated
- Estimate roll angle from depth map

Pitch

- A different pitch is simulated.
- Estimate horizon by fitting a line at infinite depth (0 disparity).

The network underestimate both the roll and the pitch

The underestimation of the horizon impact the estimation of the depth (measured in terms of disparity).

The networks look at the vertical image position rather than their distance to the horizon, since the latter does not change when the images are cropped

Obstacles

1. only the ground contact point matter
2. no information about the object scale is required

Do you think the NN would be able to estimate the depth of the fridge and of the dog?

Obstacles

No! Out of distribution objects are not recognized! The network struggle in finding the ground contact and to segment the object to fill in the depth.

Texture

What matters is the ground contact point!

Objects with unfamiliar shapes, either with or without color, as long as their gorund contact point can be located effectively are detected and their depth is predicted based on their lower extent.

Texture

What matters is the ground contact point!

By removing the inner texture of the object, it remains detected in case of a strong bottom edge.

Shadows

Varying the thickness and intensity of the bottom edge impacts on estimated depth. Objects with thick and dark bottom edges are detected.

This suggests that the networks learn to exploit shadows...

Adding shadows to pasted objects make them appear in the depth map as well.

Uncertainty estimation

A naïve uncertainty estimate can be obtained as a post-processing:

- Estimate two depth maps one from the input image and one from a flipped version
- Measure the difference

This provide an estimate of the depth uncertainty

Aleatoric and epistemic uncertainty

Interestingly Kendall and Gal distinguish between two typo of uncertainty:

- Aleatoric uncertainty captures noise inherent in the observations.

It's important for:

- Large scale data, where epistemic uncertainty is explained away,
- Real-time applications, to bypass expensive Monte Carlo computations.
- Epistemic uncertainty accounts for uncertainty in the model - uncertainty which can be explained away given enough data.

It's important:

- Small datasets where the training data is sparse.
- Safety-critical applications, because epistemic uncertainty is required to understand examples which are different from training data,

[^16]Luca Magri 2024

Aleatoric and epistemic uncertainty

- Aleatoric uncertainty captures noise inherent in the observations. is modeled by placing a distribution over the output of the model. We are interested in how this distribution change w.r.t. the input.
- Epistemic uncertainty accounts for uncertainty in the model

Higher for

- large depths,
- reflective surfaces,
- occlusion boundaries
uncertainty Epistemic uncertainty

Kendall and Gal. "What uncertainties do we need in bayesian deep learning for computer vision?." NIPS 2017

Luca Magri 2024

Aleatoric and epistemic uncertainty

- Aleatoric uncertainty captures noise inherent in the observations.
- Epistemic uncertainty accounts for uncertainty in the model:
is modeled by placing a prior distribution over a model's weights, and then trying to capture how much these weights vary given some data.

Higher for object that are rare in the training set

Input image
Ground truth
Estimated depth
Aleatoric uncertainty

Kendall and Gal. "What uncertainties do we need in bayesian deep learning for computer vision?." NIPS 2017

Luca Magri 2024

Understanding single image depth estimation

It is crucial to understand how NNs estimate depths in order to safely apply them in critical application as autonomous driving...

1. Which are the most relevant visual cues in image?

- It depends on the type of images indoor/outdoor, mainly a subsets of edges and vanishing points

2. How biased are depth values in presence of specific objects, shadows, camera orientations?

- The vertical position is more important than the apparent size
- Depth depends on the pose of the camera, but changes to the pose are not fully accounted for
- Objects that do not appear in the training set can be detected, but this detection is not always reliable and depends on factors such as the presence of a shadow under the object.

3. How reliable are depth values?

- Depth estimation can be fooled by out of distribution objects (epistemic uncertainty)
- And are typically less reliable on distant objects and at boundaries of objects
- Several methods exists to assess the reliability of depth estimates

Demo

Let's try to estimate depth from a single image using AdaBin
A Unet-like architecture with adaptive bin of depths

- You can download the pretrained models "AdaBins_nyu.pt" and "AdaBins_kitti.pt"
- You can download the predicted depths in 16-bit format for NYU-Depth-v2 official test set and KITTI Eigen split test set
https://github.com/andreadalcin/DNN3D

Estimating depth from stereo

Geometric supervision

Acquiring target 3D data is difficult

Missing moving objects

Velodyne HDL-64E Laserscanner

Stereoscopy

Around 1830, the stereoscope. A couple of two-dimensional images captured from a slightly different perspective, could be recombined by the brain to provide a three-dimensional image.

Special stereoscopic cameras were developed to take the left and right images simultaneously, with two lenses separated by around the same distance as human eyes.

Motion is a strong cue to make depth estimation not (so) ambiguous!

Calibrated stereo pair

The baseline is parallel to both image planes is known.

Calibrated stereo pair

When the camera are calibrated (e.g., we know the focal length f and the baseline b), it is possible to deduce the coordinates Z, from binocular disparity $\left(u^{\prime}-u\right)$:

$$
\left\{\begin{array}{c}
\frac{f}{Z}=\frac{-u}{X} \\
\frac{f}{Z}=\frac{-u^{\prime}}{X-b}
\end{array}\right.
$$

from which we obtain $Z=\frac{b f}{u^{\prime}-u}$.

Note that when b is unknown, 3D reconstruction is possible only up to a scaling factor.

Binocluar disparity: the difference in image location of an object seen by the left and right cameras.

The key observation is that close objects have a larger disparity than further ones

From disparity it's possible to recover the depth.

Binocluar disparity: the difference in image location of an object seen by the left and right cameras.

The key observation is that close objects have a larger disparity than further ones.

From disparity it's possible to recover the depth.

Disparity Map

Estimate at each image point x, the depth of the scene point X as inversely proportional to the displacement between \boldsymbol{u} and \boldsymbol{u}^{\prime}

When the cameras are parallel, then the search is much more convenient, as it has to be performed row-wise only

When the stereo camera are calibrated (know focal length and baseline), knowing the disparity is equivalent to knowing the depth. They are inversely proportional

What if camera are not parallel? No problem!

Stereo rectification

Let's write the new cameras in term of their centers of projection:

$$
P_{n}=K[R \mid-R C], P_{n}^{\prime}=K\left[R \mid-R C^{\prime}\right]
$$

The rotation is the same for the new cameras: $R=\left[\begin{array}{c}r_{1}^{\top} \\ r_{2}^{\top} \\ r_{3}^{\top}\end{array}\right]$

$$
\begin{array}{r}
r_{1}=\frac{C-C^{\prime}}{\left\|C-C^{\prime}\right\|} \\
r_{2}=\frac{k \times r_{1}}{\left\|k \times r_{1}\right\| \mid} \\
r_{3}=r_{1} \times r_{2} \\
\text { where } k \text { is } r_{3 o}
\end{array}
$$

Rectification

After rectification images are parallel to the baseline.
The idea is to define two new projection matrices $P_{n}, P_{n}{ }^{\prime}$ obtained by rotating the cameras and keeping fixed the centers of projection.

Every point M is mapped to $m_{o} \cong P_{o} M, m_{n} \cong P_{n} M$.

$$
\left\{\begin{array}{l}
M=C+\lambda\left[P_{o}^{-1} 1: 3 m_{o} \mid 0\right]^{\top} \\
M=C+\lambda\left[P_{n 1: 3}^{-1} m_{n} \mid 0\right]^{\top}
\end{array}\right.
$$

This is a 3×3 invertible matix: an homography that depends on the camera parameters

Image reconstruction as supervision

The trick is to pose the problem as an image reconstruction one.

Pretext task: View synthesis

- Given an image
- Given the 3D scene (but in our case we want to estimate this!)
- Given the displacement of the cameras (in general the relative pose)

Synthetize a novel image form the point of view defined by the relative pose

In practice, the network learn just to move each pixel by the right horizontal displacement by looking at several left-right pairs.
Hence the network has an internal understanding of disparity and hence of depth.

Image reconstruction as supervision

The training set is given by pair of RGB images $T R=\left\{\left(I_{L}, I_{R}\right)\right\}$, the depth is no required! The loss is simply image reconstruction. It's a self-supervised problem.

Left
Image

Right image

Image reconstruction as supervision

Let's start again with a naïve encoder-decoder model

It works! Hovewer depth perception is latend and we need a way to extract it.
We need an interpretable internal representation. Since we are working with a calibrated stereo rig, the obvous choice is disparity.

Image reconstruction as supervision: Deep 3D

Introduce a differentiable way to take I_{L} and render a novel view close to I_{R}.

I_{L}

Xie, Junyuan, Ross Girshick, and Ali Farhadi. "Deep3d: Fully automatic 2d-to-3d video conversion with deep convolutional neural networks." ECCV, 2016.

Image reconstruction as supervision: Deep 3D

Introduce a differentiable way to take I_{L} and render a novel view close to I_{R}.

1. Each pixel predicts a discrete probability distribution over disparity (via softmax)
2. Probabilities are used as weights to blend shifted I_{L} into the reconstructed I_{R}
\checkmark Work better than predicting disparity directly
X Memory consuming: for large image you must represent all the disparities X No single value disparity predicted: noisy result

㲋
Xie, Junyuan, Ross Girshick, and Ali Farhadi. "Deep3d: Fully automatic 2d-to-3d video conversion with deep convolutional neural networks." ECCV, 2016.

Image reconstruction as supervision

Garg, Ravi, et al. "Unsupervised cnn for single view depth estimation: Geometry to the rescue."

Making the warping differentiable - idea

Forward mapping
Where so source pixel go?

Source

0	0	0	0
0	1	1	1
0	1	1	1
0	0	0	0

Target

Backward mapping

Where do target pixel comes from?

Source

Making the warping differentiable - idea

Forward mapping
Where so source pixel go?

Source

0	0	0	0
0	1	1	1
0	1	1	1
0	0	0	0

Target

Backward mapping

Where do target pixel comes from?

Source

Making the warping differentiable - idea

Forward mapping
Where so source pixel go?

Disparity

0	0	0	0
0	1	1	1
0	1	1	1
0	0	0	0

Target

Backward mapping

Where do target pixel comes from?

Source

Making the warping differentiable - idea

Forward mapping
Where so source pixel go?

Source

Target

Backward mapping

Where do target pixel comes from?

Source

Making the warping differentiable - idea

Forward mapping
Where so source pixel go?

Source

0	0	0	0
0	1	1	1
0	1	1	1
0	0	0	0

Target

Backward mapping

Where do target pixel comes from?

Source

Making the warping differentiable - idea

Forward mapping
Where so source pixel go?

Source

0	0	0	0
0	1	1	1
0	1	1	1
0	0	0	0

Target

Backward mapping

Where do target pixel comes from?

Source

Making the warping differentiable - idea

Forward mapping
Where so source pixel go?

Source

Target

Backward mapping

Where do target pixel comes from?

Source

Making the warping differentiable - idea

Forward mapping
Where so source pixel go?

Source

Target

Backward mapping

Where do target pixel comes from?

Source

Making the warping differentiable - idea

Forward mapping
Where so source pixel go?

Source

0	0	0	0
0	1	1	1
0	1	1	1
0	0	0	0

Target

Backward mapping

Where do target pixel comes from?

Source

Making the warping differentiable - idea

Forward mapping
Where so source pixel go?

Source

0	0	0	0
0	1	1	1
0	1	1	1
0	0	0	0

Target

Backward mapping

Where do target pixel comes from?

Source

Making the warping differentiable - idea

Forward mapping
Where so source pixel go?
Source

Disparity

0	0	0	0
0	1	1	1
0	1	1	1
0	0	0	0

Target

Backward mapping

Where do target pixel comes from?

Target

Disparity

0	0	0	0
1	1	1	0
1	1	1	0
0	0	0	0

Source

Making the warping differentiable - idea

Forward mapping
Where so source pixel go?
Source

0	0	0	0
0	1	1	1
0	1	1	1
0	0	0	0

Target

Backward mapping

Where do target pixel comes from?

Target

Disparity

0	0	0	0
1	1	1	0
1	1	1	0
0	0	0	0

Source

Making the warping differentiable - idea

Forward mapping
Where so source pixel go?
Source

Disparity T-S

0	0	0	0
0	1	1	1
0	1	1	1
0	0	0	0

Target

Backward mapping

Where do target pixel comes from?

Target

Disparity S-T

0	0	0	0
1	1	1	0
1	1	1	0
0	0	0	0

Source

Making the warping differentiable - idea

In general, disparity values can be in floating precision

Making the warping differentiable - idea

In general, disparity values can be in floating precision

Nearest neighbor
Image intensity

0	0	0	0
1.1	2.1	0	0
2.9	1.4	0	0
0	0	0	0

Making the warping differentiable - idea

Linear interpolation

Since we are working on 2D we can use bilinear interpolation

Making the warping differentiable - idea

Linear interpolation

国

Image reconstruction as a supervision: Vanilla Monodepth

- Estimate disparity
- Use differentiable bilinear interpolation to render I_{R} from I_{L}

Input stereo pair

Disparity

X Assumes that scene is lambertian

Synthetized image

Target image

Differentiable sampler using
bilinear interpolation

[^17]
Input

国 Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation with left-right consistency." CVPR. 2017

Vanilla monodepth

国㩆 Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation with left-right consistency." CVPR. 2017

Monodepth

By enforcing that the left-view disparity map be equal to the projected right view disparity map

国 Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation with left-right consistency." CVPR. 2017

Image reconstruction as a supervision: Monodepth

Operate on both images:

- wrap I_{L} to generate I_{R} \& wrap I_{R} to generate I_{L}

[㢇䛃 Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation with left-right consistency." CVPR. 2017

Image reconstruction as a supervision: Monodepth

Enforce consistency between left and right disparities

Left-Right disparity Loss

[^18]Image reconstruction as a supervision: Monodepth
Smoothness Loss

[^19] with left-right consistency." CVPR. 2017

Image reconstruction as a supervision: Monodepth
Smoothness Loss
Loss
L1 penalty on the disparity gradients

LR Loss
you can us a featuremetric loss to improve the results

Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation with left-right consistency." CVPR. 2017

Luca Magri 2024

Image reconstruction as a supervision: Monodepth

U-net architecture

- Fully convolutional
- Skip connections
- Fast ~30fps on a Titan X
- Multiscale generation and loss:
- Reconstruct loss at each stage
- Upsample the depth and then reconstruction losses at high res, reducing copying texture artefacts
Godard, Clément, et al. "Digging into self-supervised monocular depth estimation." Proceedings of the IEEE/CVF international conference on computer vision. 2019

Luca Magri 2024

Image reconstruction as a supervision: Monodepth

Challenges: occlusions

Challenges: occlusions

Challenges: occlusions

How to deal with occlusions?

- Postprocessing
- Predict occlusion mask
- Use more than two views

Recap

- UNet-like architectures.
- We framed the depth prediction problem as an image reconstruction one.
- Differentiable parametric image generation is easily achieved via bilinear sampling.
- Good results are achieved using multiscale, robust photometric losses, and

Monocular supervision

What happen when the camera is moving?

In stereo configuration, cameras that does not rotate and moves by pure translation parallel to the image plane. This results in displacement along horizontal lines

Translation

Disparity

What happen if we have a more general motion?

[^20]
What happen when the camera is moving?

In stereo configuration, cameras that does not rotate and moves by pure translation parallel to the image plane. This results in displacement along horizontal lines

Translation

Disparity

What happen if we have a more general motior

If the camera are calibrated and if their relative pose is known, we can rectify the camera to obtain a stereo depth

[^21]
What happen when the camera is moving?

In stereo configuration, cameras that does not rotate and moves by pure translation parallel to the image plane. This results in displacement along horizontal lines

Translation

Disparity

What happen if we have a more general motion?

[^22]
What happen when the camera is moving?

In stereo configuration, cameras that does not rotate and moves by pure translation parallel to the image plane. This results in displacement along horizontal lines

Translation

What happen if we have a more general motion?
Disparity

Optical flow

Optical flow is computed enforcing the brightness consistency assumption: $I(x, y, t)=I(x+u, y+v, t+d t)$

This is not always satisfied due to:

- Occlusions
- Non Lambertian objects
- Perspective effects

Optical flow

Optical flow is computed enforcing the brightness consistency assumption:
$I(x, y, t)=I(x+u, y+v, t+d t)$
First order expansion:

$$
\nabla I(x, y, t)^{\top}\left[\begin{array}{l}
u \\
v
\end{array}\right]+\partial_{t} I(x, y, t)=0
$$

This is the projection of d along the spatial gradient.
The motion can be measured only along the brightness gradient (aperture problem)

Aperture problem

Computing the optical flow - sketch of the ideas

The brightness consistency provide a single equation in two unknown (u, v).
Traditional approach:
Tomasi and Kanade algorithm assume that the optical flow is constant in a small $n \times n$ window in order to accumulate enough constraints, hence they solve a overconstrained linear system

Deep learning approach:

- Supervised vanilla
- GT data comes from 3D scenes or synthetic 3D dataset
- Direct prediction using an Encoder-Decoder
- Usually, multiple encoder and decoder are stacked to have a corse to fine refinement

Computing the optical flow - sketch of the ideas

The brightness consistency provide a single equation in two unknown (u, v).
Traditional approach:
Tomasi and Kanade algorithm assume that the optical flow is constant in a small $n \times n$ window in order to accumulate enough constraints, hence they solve a overconstrained linear system

Deep learning approach:

- Supervised vanilla
- Iterative approaches

Use a subnetwork to iteratively refine and update the residuals of the optical flow

Image pairs

Computing the optical flow - sketch of the ideas

- Feature encoder that extract features from both input images (context encoder extract feature only from the first image)
- Context encoder to maintain high details
- A correlation layer which build a 4D correlation volume + spatial pyramid pooling (to perform correlation at different scales)
- An update operator which recurrently update the optical flow

國 Teed, Zachary, and Jia Deng. "Raft: Recurrent all-pairs field transforms for optical flow." ECCV 2020

Let's go back to our problem

Geometric interlude

Epipolar geometry

Epipolar geometry

A unoclluded 3D point $\widetilde{X}=(X, Y, Z, 1)^{T}$ is projected to the left and right image as $\widetilde{\boldsymbol{x}}_{\ell}=$ $\left(u_{\ell}, v_{\ell}, 1\right)^{T}$ and $\widetilde{\boldsymbol{x}}_{r}=\left(u_{r}, v_{r}, 1\right)^{T}$, by

$$
\begin{aligned}
& \zeta_{\ell} \widetilde{\boldsymbol{x}}_{\ell}=P_{\ell} \widetilde{\boldsymbol{x}} \\
& \zeta_{r} \widetilde{\boldsymbol{x}}_{r}=P_{r} \widetilde{\boldsymbol{X}}
\end{aligned}
$$

where P_{ℓ} and P_{r} denotes the left and the right camera matrix respectively. Points $\widetilde{\boldsymbol{x}}_{\ell} \leftrightarrow \widetilde{\boldsymbol{x}}_{r}$ are called corresponding points.

Epipolar geometry

- Baseline: the line passing through the camera centers
- Epipolar plane: the plane containg \boldsymbol{X} and the baseline
- Epipoles: the intersection points \boldsymbol{e}_{ℓ} and \boldsymbol{e}_{r} of the image planes and the baseline
- Epipolar lines: lines l_{ℓ}, l_{r} intersection of the epipolar plane and the image plane

Epipolar geometry

Given a point \widetilde{x}_{ℓ}, one can determine the epipolar line in the right image on which the corresponding point $\widetilde{\boldsymbol{x}}_{r}$, must lie.
The equation of the epipolar line can be derived geometrically, as the projection of the optical ray of $\widetilde{\boldsymbol{x}}_{\ell}$ onto the right image plane:

$$
\begin{gathered}
\zeta_{r} \widetilde{\boldsymbol{x}}_{r}=P_{r}\binom{C_{\ell}}{1}+\zeta_{\ell} P_{r}\binom{P_{\ell 1: 3}^{-1} \widetilde{\boldsymbol{x}}_{\ell}}{0} \\
\zeta_{r} \widetilde{\boldsymbol{x}}_{r}=\boldsymbol{e}_{r}+\zeta_{\ell} P_{r 1: 3} P_{\ell 1: 3}^{-1} \widetilde{\boldsymbol{x}}_{\ell}
\end{gathered}
$$

This is the equation of a line \boldsymbol{l}_{r} through the right epipole and the image point $P_{r 1: 3} P_{\ell 1: 3}^{-1} \widetilde{\boldsymbol{x}}_{\ell}$ which represents the projection onto the right image plane of the point at infinity of the optical ray.

The left epipolar line can be derived similarly.

Epipolar geometry

The line \boldsymbol{l}_{r} joining \boldsymbol{e}_{r} and $P_{r 1: 3} P_{\ell 1: 3}^{-1} \tilde{\boldsymbol{x}}_{\ell}$ can be represented in terms of the cross product

$$
\begin{aligned}
& \boldsymbol{l}_{r} \equiv \boldsymbol{e}_{r} \times P_{r 1: 3} P_{\ell 1: 3}^{-1} \widetilde{\boldsymbol{x}}_{\ell} \\
& \boldsymbol{l}_{r} \equiv\left[\boldsymbol{e}_{r}\right]_{\times} P_{r 1: 3} P_{\ell 1: 3}^{-1} \widetilde{\boldsymbol{x}}_{\ell}
\end{aligned}
$$

The matrix $F=\left[\boldsymbol{e}_{r}\right]_{\times} P_{r 1: 3} P_{\ell 1: 3}^{-1}$ is called fundamental matrix.

The epipolar line for a point \boldsymbol{x} is $\boldsymbol{l}_{r}=F \boldsymbol{x}$.
The incidence relation $\widetilde{\boldsymbol{x}}_{r} \in \boldsymbol{l}_{r}$ implies $\widetilde{\boldsymbol{x}}_{r}^{T} \boldsymbol{l}_{r}=0$ and corresponding points have to satisfy

$$
\widetilde{x}_{r}^{T} F \widetilde{x}_{l}=0
$$

a point-line relation between two views
based only on camera matrices

Fundamental matrix

Fundametal matrix:

the fundamental matrix F is the unique 3×3 matrix rank 2 homogeneous matrix which satisfy $\boldsymbol{x}_{r}^{T} F \boldsymbol{x}_{l}=0$ for all corresponding points $\boldsymbol{x}_{r} \leftrightarrow \boldsymbol{x}_{l}$ in the two images

Why rank 2?

Epipolar lines can be seen as the intersection with the image plane of the pencil of planes (epipolar planes) having the baseline as axis.

Consider an epipolar lines $\boldsymbol{l}^{\prime}=\boldsymbol{F} \boldsymbol{x}_{l}$, The right epipole \boldsymbol{e}_{r} lies on this line, so $\boldsymbol{e}_{r}^{T} F \boldsymbol{x}_{l}=0$ for all \boldsymbol{x}_{l}. This implies that $\boldsymbol{e}_{r}^{T} F=0$. Similarly, one can prove that $F \boldsymbol{e}_{\ell}=0$, this gives an intuition of the reason why F is rank deficient.

Fundamental matrix

Fundametal matrix:

the fundamental matrix F is the unique 3×3 matrix rank 2 homogeneous matrix which satisfy $\boldsymbol{x}_{r}^{T} F \boldsymbol{x}_{l}=0$ for all corresponding points $\boldsymbol{x}_{r} \leftrightarrow \boldsymbol{x}_{l}$ in the two images

Why rank 2?
Algebrically, we have

$$
\operatorname{det}(F)=\operatorname{det}\left(\left[\boldsymbol{e}_{r}\right]_{\times} P_{r 1: 3} P_{\ell 1: 3}^{-1}\right)
$$

that from the Binet theorem can be factorized as

$$
\operatorname{det}(F)=\operatorname{det}\left(\left[\boldsymbol{e}_{r}\right]_{\times}\right) \operatorname{det}\left(P_{r 1: 3} P_{\ell 1: 3}^{-1}\right)=0
$$

since $\operatorname{det}\left(\left[\boldsymbol{e}_{r}\right]_{\times}\right)=0$.

Fundamental matrix

Fundametal matrix:

the fundamental matrix F is the unique 3×3 matrix rank 2 homogeneous matrix which satisfy $\boldsymbol{x}_{r}^{T} F \boldsymbol{x}_{l}=0$ for all corresponding points $\boldsymbol{x}_{r} \leftrightarrow \boldsymbol{x}_{l}$ in the two images

Why rank 2?
F is a projective map that associate a point in the first image to a line

$$
F: \boldsymbol{x}_{\ell} \mapsto \boldsymbol{l}_{r}
$$

If l_{ℓ} and l_{r} are corresponding epipolar lines, then any point $\boldsymbol{x}_{\ell} \in \boldsymbol{l}_{\ell}$ is mapped to the same line \boldsymbol{l}_{r}.

This means there is no inverse mapping and F is not of full rank.

Fundamental matrix

The fundamental matrix represents the condition that corresponding points $\boldsymbol{x}_{r} \leftrightarrow \boldsymbol{x}_{l}$ have to satisfy in the camera system.

This property enables computing F from pairs of corresponding points, without having to known P_{ℓ} and P_{r}

If F is the fundamental matrix of the pair of cameras P_{ℓ} and P_{r}, then F^{T} is the fundamental matrix of the pair of cameras in the opposite order: P_{r} and P_{ℓ}.
For any point x_{ℓ} in the right image the corresponding epipolar line is $\boldsymbol{l}_{r}=F \boldsymbol{x}_{\ell}$, similarly $\boldsymbol{l}_{\ell}=F^{T} \boldsymbol{x}_{r}$ identifies the epipolar line corresponding to \boldsymbol{x}_{r} in the left image.

Essential matrix

When the interior parameters are known, we can assume that points are in normalized image coordinates (NIC). Using the NIC, the left and the right camera matrices can be chosen as $P_{\ell}=[I \mid \mathbf{0}]$ and $P_{r}=[R \mid \boldsymbol{t}]$

By substituting these cameras into the equation of the epipolar line, we get

$$
\zeta_{r} \widetilde{\boldsymbol{p}}_{r}=\boldsymbol{t}+\zeta_{\ell} R \widetilde{\boldsymbol{p}}_{\ell}
$$

So, the point $\widetilde{\boldsymbol{p}}_{r}$ lies on the line through the points \boldsymbol{t} and $R \widetilde{\boldsymbol{p}}_{\ell}$:

$$
\widetilde{\boldsymbol{p}}_{r}^{T}\left(\boldsymbol{t} \times R \widetilde{\boldsymbol{p}}_{\ell}\right)=0
$$

or

$$
\widetilde{\boldsymbol{p}}_{r}^{T}[\boldsymbol{t}]_{\times} R \widetilde{\boldsymbol{p}}_{\ell}=0
$$

In summary, the relationship between the corresponding image points $\widetilde{\boldsymbol{p}}_{\ell} \leftrightarrow \widetilde{\boldsymbol{p}}_{r}$ in NIC is the bilinear form:

$$
\widetilde{\boldsymbol{p}}_{r}^{T} E \widetilde{\boldsymbol{p}}_{\ell}=0
$$

where $E=[t]_{\times} R$ is called essential matrix and encodes the information on the rigid displacement between cameras. It has five degrees of freedom: a 3D rotation and a 3D translation direction.

Input images

Input images from the Adelaide RMF dataset

Correspondences and epipolar lines

The eight-points algorithm

Given a set of correspondences $\left\{\boldsymbol{x}_{i \ell} \leftrightarrow \boldsymbol{x}_{i r}\right\}$, we want to determine the matrix F that encodes the bilinear condition: $\boldsymbol{x}_{i r}^{T} F \boldsymbol{x}_{i \ell}=0$
This matrix can be recovered using the property of the Kronecker product:

$$
\boldsymbol{x}_{i r}^{T} F \boldsymbol{x}_{i \ell}=0 \Leftrightarrow \operatorname{vec}\left(\boldsymbol{x}_{i r}^{T} F \boldsymbol{x}_{i \ell}\right)=0 \Leftrightarrow\left(\boldsymbol{x}_{i \ell}^{T} \otimes \boldsymbol{x}_{i r}^{T}\right) \operatorname{vec}(F)=0
$$

Every correspondence yields a homogeneous equation in the 9 unknown of F. From n corresponding points we get the system:

The solution of this system is the $\operatorname{ker}\left(A_{n}\right)$. When the points are in general position and $n=8$, the solution is determined up to a multiplicative factor. In practice, when more than 8 points are available the solution can be obtained using the SVD.

The projective reconstruction theorem

Image credits: Hartely Zisserman

One may compute a projective reconstruction of a scene from two views based on image correspondences alone, without knowing anything about the calibration or pose of the two cameras involved. In particular the true reconstruction is within a projective transformation of the projective Luca Magri 2024reconstruction.

The projective reconstruction theorem

If the calibration matrices are known, the scene can be reconstructed up to a similarity. We still have scale ambiguity

Two view Structure from Motion

- We are given two image of a scene,
- we don't know the poses of the cameras (in some cases we can assume that we do know the intrinsics)
- we want to compute the 3D Structure of the scene and the motion of the cameras

There are several approaches to address this problem that produce different outputs:
Deep learning + geometry
Traditional methods

Wang, Jianyuan, et al. "Deep two-view structure-from-motion revisited." CVPR 2021.

Traditional methods

Traditional methods
pose

Depth from a single image and relative pose

Absolute depth and absolute pose

Relative depth and relative pose

- Compute sparse correspondences (handcrafted feature)
- Estimate relative pose between the cameras (robust fitting)
- Triangulate points to get the 3D structure
- Optimize for the position of the triangulated points and for the pose of the cameras (Bundle Adjustment)
- Rectify the cameras
- Compute disparity to get dense correspondences
- Triangulate a dense point cloud

SfM learner

Traditional
methods
Relative depth
and relative
pose

Depth from a single image and relative pose	Absolute depth and absolute pose	Relative depth and relative pose

As in stereo self-supervision, rely on view-synthesis.

The source view I_{S} is warped via the estimated pose to a novel view I_{N}.
The loss is the the photometric error between I_{N} and I_{T}, and the network learns both the relative depth and the relative pose.

Traditional Deep learning + geometry methods
Relative depth
and relative
pose
Depth from a single image and relative pose
Absolute depth and absolute pose

Relative depth and relative pose

depth

Depth is estimated from a single image (ill posed). Rely on priors on the training data

The relative pose is estimated.
At test time, the Pose CNN can be discarded

Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe, Unsupervised Learning of Depth and Egomotion from Video, CVPR 2017

Traditional methods

Relative depth and relative pose

Absolute depth
and absolute
pose

Relative depth and relative pose

- The networkimplement a multiscale mechanism, since bilinear interpolation is too local
- It also predict a mask to model occlusions and moving object
- The loss accounts also for regularizing the mask and smooth depth values

Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe, Unsupervised Learning of Depth and Egomotion from Video, CVPR 2017

Traditional
 \section*{methods}

Deep learning + geometry

Depth CNN

Pose CNN

Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe, Unsupervised Learning of Depth and Egomotion from Video, CVPR 2017

Traditional methods

Relative depth and relative pose

Deep learning + geometry

Depth from a single image and relative pose	Absolute depth and absolute pose	Relative depth and relative pose

\checkmark By using mono-training we can predict the depthmap for a video acquired by a moving camera
\checkmark Other and more robust losses can be used: such as ICP loss, motion segmentation loss, or epipolar loss.
X With respect to stereo self-supervision result are less accurate (edges are not sharp). Why?

More things to learn! (depth and pose)
Unknown scale, by estimating the depth from a single image we are addressing an ill-posed problem.

Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe, Unsupervised Learning of Depth and Egomotion from Video, CVPR 2017

Supervised SfM

Traditional

 Deep learning + geometry methodsDepth from a single image and relative pose
Absolute depth
and absolute
pose and absolute pose

Relative depth and relative pose

- Ground-truth depth as supervision,
- poseNet need to estimate camera poses with absolute scale (ill-posed)
- to mitigate this use dataset priors and semantic knowledge of the scene

Ummenhofer, Benjamin, et al. "Demon: Depth and motion network for learning monocular stereo" CVPR. 2017
\square Wang,et al. "Displacement-invariant matching cost learning for accurate optical flow estimation" NIPS 2020
Wei, Xingkui, et al. "Deepsfm: Structure from motion via deep bundle adjustment" ECCV 2020

Removing posenet

Traditional methods

Relative depth and relative pose

Deep learning + geometry

Supervised SfM assume that a consistent scale of depth and pose can be learned across all input samples, which makes the learning problem harder, resulting in degraded performance and limited generalization.
The idea is to disentangles scale from the network estimation and follow more closely traditional pipelines

	Traditional	Deep + geometry
Correspondences	Sparse handcrafted features	Optical flow
Relative pose	Robust fitting	Robust fitting
	(8/5 points algorithm)	(8/5 points algorithm)
3D scene	Triangulation	Depth estimation

Zhao, Wang, et al. "Towards better generalization: Joint depth-pose learning without posenet." CVPR 2020.
Wang, Jianyuan, et al. "Deep two-view structure-from-motion revisited." CVPR 2021.

[^23]
RanSaC in short

Sample minimal subset

Generate minimal sample model

Is the model interesting? Keep it! e.g., count inliers

Generate non minimal sample model

Removing posenet
Traditional methods

Relative depth and relative
pose

Deep learning + geometry

| Depth from a |
| :---: | :---: | :---: |
| single image and |
| relative pose |\quad| Absolute depth |
| :---: |
| and absolute |
| pose |\quad| Relative depth |
| :---: |
| and relative |

and absolute

Aligned depth

Removing posenet: two view triangulation as depth supervision

Aligning the depth with the pose

1. Select accurate correspondences (taking into consideration epipolar distance, and occlusion mask)
2. Reconstruct an up to scale structure using mid-point triangulation (differentiable)

The loss of the network is composed by:
Loss between triangulated and predicted depth

- The unsupervised loss for the optical flow,
- The loss between triangulated, and predicted depth,
- The reprojection error (depth map reconstruction + flow error between optical flow and rigid flow generated by depth reprojection),
- Depth smoothness term.

Zhao, Wang, et al. "Towards better generalization: Joint depth-pose learning without posenet." CVPR 2020.

Static scene assumption

All SfM methods rely on the assumption that the scene is static, thus, as regard moving objects we have two approaches:

1. Detect and ignore: e.g.:

Masks estimated by SfMLearner

Automasking stationary pixels by Monodepthv2: ignore pixels in the loss which don't appear to change between images. Allow to ignore whole frames in monocular videos when the camera stops moving.

Zhao, Wang, et al. "Towards better generalization: Joint depth-pose learning without posenet." CVPR 2020.

Static scene assumption

All SfM methods rely on the assumption that the scene is static, thus, as regard moving objects we have two approaches:

1. Detect and ignore:
2. Clever tricks: Mannequin Challenge Dataset

Li, Zhengqi, et al. "MannequinChallenge: Learning the depths of moving people by watching frozen
people." TPAMI 2020 .

[^24]
Static scene assumption

All SfM methods rely on the assumption that the scene is static, thus, as regard moving objects we have two approaches:

1. Detect and ignore
2. Clever tricks
3. Modeling moving objects

Dal Cin, Andrea Porfiri, Giacomo Boracchi, and Luca Magri. "Multi-body Depth and Camera Pose Estimation from Multiple Views." ICCV, 2023.

Multi-body Depth and Camera Pose Estimation

Setup:

- The scene is composed by multiple rigid bodies moving independently
- We have a sparse set of images (this differs from the previous monodepth approach where the input is typically a video)

Problem:

If one is able to segment the scene, using SfM pipelines you get indepent reconstruction each in its own scale.

Goal:
We want to reconcile all the reconstruction to the same scale

Dal Cin, Andrea Porfiri, Giacomo Boracchi, and Luca Magri. "Multi-body Depth and Camera Pose Estimation from Multiple Views." ICCV, 2023.

Multi-body Depth and Camera Pose Estimation

Combine several ingredients that we have seen so far...

Multi-body Depth and Camera Pose Estimation

Motion segmentation leverages multi-model robust fitting on the optical flow between the two input images to estimate several essential matrices.

- SIFT keypoints are clustered according to object motion (multi-model fitting + synchronization)
- Dense optical flow matches augment the set of keypoints
- For each motion in the scene, we compute essential matrices, and up-to-scale camera poses

Multi-body Depth and Camera Pose Estimation

Scale estimation: The monocular depth is used as a prior that can be used to reconcile all the poses in the same scale.

For each image and each moving object, the ratio between the mono and triangulated depth is computed using a Kernel Density Voting.

Scale factor λ

Plane sweep

At the core of several traditional plane estimation algorithm, based on photoconsitency
Input: an image pair of a source and a target image

- Tentative depth planes parallel to the target are sampled
- For each pixel u, and each plane at depth d_{l} the intersection of the optical ray and the plane is projected onto the source view (the projection u_{l} depends both on depth and relative pose)
- A photometric error is computed by comparing the image values of pixels u and u_{l}

The errors can be packaged in a cost volume and the depth of the scene is the surface with the minimum cost

Multi-body plane sweep

This time, each pixel can be projected in different ways according to all the relative motions involved in the dynamic scenes.
All scene motions are considered when constructing the depth cost volume

Multi-body plane sweep network

Multi-body plane sweep network

- Receives RGB images and correctly scaled camera poses as input
- Outputs dense depth maps and refined camera poses for each input image
- Includes our multi-body plane sweep algorithm to regress geometrically consistent depths

Multi-body plane sweep network

Qualitative comparisons on ETH3D and Multi-body Unstructured.
The yellow boxes highlight moving objects reconstructed by our method but not by the state-of-the-art DeepSfM

Monodepth training

- More abundant data since we can use video sequences
- Multiple viewpoint for reprojection improving the robustness
- Uniform region and moving object must be handled with care

To sum up

- Depth estimation from a single image is possible
- Compared to other tasks (e.g. object detection, semantic segmentation...) accurate manual annotation is unfeasible
- Geometry come to rescue: self-supervision is possible by exploiting stonger or weaker constraints...

What's next?

Monocular networks can still be easily fooled!
Although self-supervised techniques allow to increase the amount of training data with low effort, we are far from considering single image depth estimation to be solved.

Conversely to other task, such as Optical Flow and stereo, synthetic images have been rarely used, pretrainig on synthetic samples and fine-tuning on the domain at hand could improve the results.

Even when 3D data are not needed for training, still they are needed for testing.

[^0]: Luca Magri 2024

[^1]: Luca Magri 2024

[^2]: Luca Magri 2024

[^3]: Luca Magri 2024

[^4]: Luca Magri 2024

[^5]: 言硅 Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014

[^6]: 佰] Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014

[^7]: 佰] Eigen et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network, NIPS 2014

[^8]: Luca Magri 2024

[^9]: Luca Magri 2024

[^10]: Luca Magri 2024

[^11]: Luca Magri 2024

[^12]: Luca Magri 2024

[^13]: 気
 Ranftl et al. Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer. TPAMI 2020

[^14]: Luca Magri 2024

[^15]: Hu et al., Visualization of Convolutional Neural Networks for Monocular Depth Estimation, ICCV, 2019

[^16]: Kendall and Gal. "What uncertainties do we need in bayesian deep learning for computer vision?." NIPS 2017

[^17]: 気
 Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation with left-right consistency." CVPR. 2017

[^18]: 国 Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation with left-right consistency." CVPR. 2017

[^19]: 国 Godard, Clément, Oisin Mac Aodha, and Gabriel J. Brostow. "Unsupervised monocular depth estimation

[^20]: Luca Magri 2024

[^21]: Luca Magri 2024

[^22]: Luca Magri 2024

[^23]: Luca Magri 2024

[^24]: Luca Magri 2024

