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About this Course
Yet another eposode of the ADLMM saga..



Mission and Goal
[…] This course presents recent advances in deep learning that brought data-driven 
models to achieve state-of-the-art performance in solving 3D vision problems.

Students will become acquainted with the biggest challenges of handling 3D data 
that are scattered in nature, thus are not suited for traditional filtering operations 
underpinning convolutional layers. 

The course will illustrate the most important layers for handling 3D data, as well as 
the neural networks for solving 3D Computer Vision problems and their application 
to Robotics and Computational Geometry.

This is intended as an advanced course, thus proficiency in neural networks, 
convolutional neural networks and basic notions of optimization are assumed as 
pre-requirement to the participants. 



The Course Outline
• 17/01/2024, Deep Learning for Volumetric Data and 3D Point Clouds, Giacomo 

Boracchi

• 24/01/2024, Deep Learning for Depth Estimation, Luca Magri

• 31/01/2024, Deep Learning in 3D Non-rigid Shape Registration, Simone Melzi
(Univ. Bicocca)

• 09/02/2024 , Deep Learning in 3D for Robotics, Matteo Matteucci

• 4/02/2024, Hackaton Session

This lecture has changed!



Course Logistics
• 17/01/2024 from 14:00 to 18:00 in Sala Conferenze Emilio Gatti Ed. 20 

• 24/01/2024 from 14:00 to 18:00 in Sala Conferenze Emilio Gatti Ed. 20 

• 31/01/2024 from 14:00 to 18:00 in Sala Conferenze Emilio Gatti Ed. 20 

• 09/02/2024 from 14:00 to 18:00 in Room 3.1.7

• 14/02/2024 from 14:00 to 19:0 in Room 3.1.7



Teaching Organization
Traditional lectures for presenting theory and the most important models will be 
structured as follows: 

• Providing a clear formulation of the addressed problems …

• Provide a unified description of the considered model.

• Provide an overview of applications of the considered model. 

• Overview research directions and papers presenting the most important 
achievements in the literature. 

Where possible we will give guided computer-laboratory sessions 

Hands-on session (the last day), to develop an application in groups 

All the lectures will be held in presence in the Leonardo Campus



Course Details for PhD Students: 
• Minimum 70% attendance required. In practice you can skip a single lecture

• You have to sign papers we will circulate during the break

• Assessment is pass-or-fail.

• The exam consists in successfully taking part to the hackathon 

• During the hackathon you can gather in groups of 2 students and proactively 
interact with the instructors to demonstrate you are familiar in using these 
models.



Course Details for MSc Students: 
• No attendance requirements, but please fill the form 

• Exam grading is 18 – 30L as usual

• Take part to the hackathon, become very familiar with all the materials 

• After the hackathon, you need to agree with us a follow up project

• You can gather in groups of 2-3 students 



Project for MSc
The project: 

You are requested to implement the solution presented in the paper and or extend 
it (if there is a public implementation available). Apply the solution to a different 
domain you prefer.

The exam:

• You need to write a paper-like resume presenting your solution / application. 
Templates will be provided

• There is no exam schedule for PhD courses. We will organize a few presentation 
days where everybody is welcome to attend. 

• The exam will be a discussion on your work and on the most important contents 
seen during lectures.

Dates:  July, September, December



You might want to check previous editions..
2023 Advanced Deep Learning Models And Methods: The Rise of Transformers

2022 Advanced Deep Learning Models And Methods (multiple topics)

2020 Machine Learning For Non-Matrix Data 

2019 Advances In Deep Learning With Applications In Text And Image Processing

2018 Image Classification: Modern Approaches

Or some missing item in AN2DL

https://www11.ceda.polimi.it/schedaincarico/schedaincarico/controller/scheda_pubblica/SchedaPublic.do?&evn_default=evento&c_classe=795871&polij_device_category=DESKTOP&__pj0=0&__pj1=e19adaff2efeead20289752b1e972671
https://boracchi.faculty.polimi.it/teaching/AdvancedDLMM.htm
https://boracchi.faculty.polimi.it/teaching/Non-Matrix.htm
https://boracchi.faculty.polimi.it/teaching/AdvancedDL.htm
https://boracchi.faculty.polimi.it/teaching/ImageClassification.htm
https://boracchi.faculty.polimi.it/teaching/AN2DL.htm


Credits / Good Resources
This course is inspired by many good sources, some materials are from these.

Hao Su 3D Deep Learning Tutorial CVPR 17 Tutorial 

Lecture 17 on 3D Vision from Justin Johnson, Michigan University

"Geometry processing and machine learning for geometric data" PhD Course given
in Bicocca by Prof. Melzi and Marin 
https://elearning.unimib.it/course/info.php?id=53007

https://elearning.unimib.it/course/info.php?id=53007


Deep Learning for 3D Point 
Clouds and Volumetric Data
The Lecture Outline



Outline
Part1: 3D data for Deep Learning

• 3D Data Representations

• 3D Imaging Sensors

• Challenges and Datasets

Part2: Deep Learning on Voxelized Data

• 3D CNN for Classification

• 3D CNN for Segmentation

• Challenges and Advanced Models

Part3: Deep Learning on Point Clouds

• PointNet and Variants

• Point Convolutional Operators

Part4: Demo hands on



Part1: 3D data for Deep 
Learning



3D Data and Their Representation



Visual Recognition & Deep Learning
We are used to solving 
visual recognition
problems on images / 
videos

• Image Classification

• Object Detection

• Instance Segmentation

• Image Generation

You know DL achieves
super-human performance 
in these tasks when
handling 2D images



Intrinsic Ambiguity od 2D Projections
The 3D world is though more 
complicated than 2D images.

Unfortunately, there is an intrinsic 
ambiguity of 3𝐷𝐷 → 2𝐷𝐷 mapping:  
some information is simply lost.

After projection, different depths
cannot be distinguished in the image 
plane.

Courtesy slide S. Lazebnik



Multiple Views
Multiple views of the same scene help us 
resolve these potential ambiguities and 
perceive depths.

In fact, the same scene from a different 
viewpoint wouldn’t give rise to the same 
ambiguity.



Multi View Geometry

Stereo Vision Systems leverages Calibrated cameras and 
point correspondences enables 3D reconstruction  



Establishing Correspondences is Key!

                   
                    
           

               
                     
                    

                   
                
               

                   
                        
                     

Find a set of distinctive key points 

Define a region around each keypoint

Compute a local descriptor for the 
normalized region

Match local descriptor

Extract and normalize the region content

Robust model fitting



3D Data in Applications 
Many application domains typically handle 3D data to interpret the real world:

• Medical Imaging (CT scans, MRI)

• Autonomous Driving and UaV (Lidar)

• Augmented Reality / Gaming (this is natively 3D)

• Robotics (require 3D interaction)

https://www.cvlibs.net/datasets/kitti-360/index.php



3D Data Representations
In contrast with images, which always come in an array form, 3D data are encoded
in different ways 

• Point Clouds

• Depth Maps 

• Voxelized Grid

• Meshes

• Implicit Definitions

Different representation feature differenent properties and require different models



Point Clouds
This is the canonical form of raw 3D data.

These can be seen as set of points in ℝ𝑑𝑑 .
Definition:

𝑃𝑃 ⊂ ℝ𝑑𝑑

When 𝑑𝑑 = 3
• just saving the 3D coorinates of points

When 𝑑𝑑 > 3
• When additional information is associated

to the point coordinates

These are very popular in autonomous driving

Image courtesy of Melzi Marin



To each 3D point it is possible 
to associate additional 
information, like the color 
(RGB triplet), the normal to 
the surface (another 
normalized triplet)… and in 
practice also data-driven 
features

Image Courtesy of Giuseppe Bertolini






𝑝𝑝 = (𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑧𝑧𝑝𝑝)

A Pointwise point of view:

Image courtesy of Melzi Marin



…an arbitrary reference system 𝑥𝑥,𝑦𝑦, 𝑧𝑧 would change all the input values!

𝑝𝑝 = (𝑥𝑥𝑥𝑝𝑝,𝑦𝑦𝑥𝑝𝑝, 𝑧𝑧𝑥𝑝𝑝)

What is the relation between
𝑥𝑥𝑥𝑝𝑝,𝑦𝑦𝑥𝑝𝑝, 𝑧𝑧𝑥𝑝𝑝 and 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑧𝑧𝑝𝑝

A Pointwise point of view:

Image courtesy of Melzi Marin



𝑛𝑛 points sampled on a surface
+ a fixed reference system

We can order the points 𝑝𝑝1,𝑝𝑝2, 𝑝𝑝3,𝑝𝑝4,⋯ ,𝑝𝑝𝑛𝑛

A Matrix point of view:

Image courtesy of Melzi Marin



𝑥𝑥1 𝑦𝑦1 𝑧𝑧1

𝑥𝑥2 𝑦𝑦2 𝑧𝑧2

𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛 𝑉𝑉 ∈ ℝ𝑛𝑛×3

A Matrix point of view:

⋮ ⋮

⋮

⋮
Digitare l'equazione qui.𝑥𝑥 𝑦𝑦 𝑧𝑧

⋮ ⋮ ⋮

⋮

⋮

⋮ ⋮

⋮

⋮

⋮ ⋮

⋮

Image courtesy of Melzi Marin



Digitare l'equazione qui.

𝑥𝑥1 𝑦𝑦1 𝑧𝑧1

𝑥𝑥2 𝑦𝑦2 𝑧𝑧2

𝑥𝑥 𝑦𝑦 𝑧𝑧

𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

We can store them
in a matrix 𝑉𝑉 ∈ ℝ𝑛𝑛×3

This matrix 𝑽𝑽 has several
dependencies:

1. The reference system
2. The order of the points
3. The sampling of the points

A Matrix point of view:

Image courtesy of Melzi Marin



Voxels
Represents the 3D word as a discrete grid 𝑁𝑁 × 𝑁𝑁 × 𝑁𝑁, primarily containing binary
values. In each cell of the grid store whether it is occupied or not

𝑉𝑉 ∈ 0,1 𝑁𝑁×𝑁𝑁×𝑁𝑁

Very simple representation of the 3D world (Minecraft like)

(+) Conceptually simple: just a 3D grid!

(-) Need high spatial resolution to capture fine structures

(-) Scaling to high resolutions is nontrivial!



https://www.researchgate.net/figure/Drawing-of-the-LVS-descriptor-with-cubic-volume-definition-voxelization-and-voxel-label_fig3_328129223

Voxels can be obtained by 
discretizing point clouds, 
setting 1 whether the 
voxel area is full or to 0 
where this is empty

Voxels



Voxels and intensity information
It is also possible to introduce in each voxel more information than {0,1}

https://www.kaggle.com/datasets/daavoo/3d-mnist
By OpenStax -
https://cnx.org/contents/FPtK1zmh@8.25:fEI
3C8Ot@10/Preface, CC BY 4.0

By Dwayne Reed at English Wikipedia, CC BY-SA 3.0
By Xavier Gigandet et. al. - Gigandet X, 
Hagmann P, Kurant M, Cammoun L, Meuli
R, et al. (2008) Estimating the Confidence 
Level of White Matter Connections 
Obtained with MRI Tractography. PLoS ONE 
3(12): e4006

3D mnist Toy dataset MRI fMRI MRI with DTI

https://www.kaggle.com/datasets/daavoo/3d-mnist


Volumetric Data are typically sparse… in particular 
at high resolutions!

Image from CVPR2017 Tutorial from Hao Su



Point Clouds vs Voxels
Pros of Point Clouds:

• More compact representation (does not allocate space for empty regions)

• They can «adapt» and be denser in regions where there are finer details.

Cons of Point Clouds:

• Points are scattered, i.e., they do not belong to a grid (and when you project 
them on a grid you loose the above advantages)

• NN / CNN are meant for vectors / arrays! We need new architectures

• Points have size = 0, they do not represent the 3D object, in principle.

• PC representation depends on the reference axis

• PC are sets, as such the order of points is irrelevant. This is in contrast with 
CNN, based on the concept of locality (neighbors defined over the grid)



RGB-D Images
These are images captured by raw (possibly low cost) 3D sensors like Microsoft 
Kinect / Intel Real Sense, Face ID on iPhone.

The returned image has 4 values per pixel

• 3 are standard RGB

• 1 is the depth

These are called 2.5D images, as they are not «fully» 3D data, as they cannot
capture occluded objects

Slightly less powerful representation than native 3D data.



RGB
+D

RGB



Depth image



RGB-D Images
These images are also
called 2.5D images, as
they are not «fully» 3D 
data, since they cannot
capture the structure
behind occlusions! 

Slightly less powerful
representation than
native 3D data.

Shadows as well as nonreflecting 
surfaces give rise to missing values 

We cannot “sense” behind occlusions
 (e.g. the table behind the object)



Implicit Function
We can also represent the 3D object as
a function

𝑓𝑓:ℝ3 → 0,1
where 0,1 denotes being occupied or 
not, or

𝑓𝑓:ℝ3 → ℝ

This representation identifies a surface
as the 0-level set of 𝑓𝑓

We can also consider the voxelized
representation as a discretized version
of the implicit function

Image courtesy of Melzi Marin



Implicit Function
We can also represent the 3D object as
a function

𝑓𝑓:ℝ3 → 0,1
where 0,1 denotes being occupied or 
not, or

𝑓𝑓:ℝ3 → ℝ

This representation identifies a surface
as the 0-level set of 𝑓𝑓

We can also consider the voxelized
representation as a discretized version
of the implicit function

0

> 0

< 0

Image courtesy of Melzi Marin



Image from http://people.csail.mit.edu/jstraub/

Implicit surfaces

http://people.csail.mit.edu/jstraub/


Signed distance function SDF

Image from https://arxiv.org/pdf/2002.10099.pdf

https://arxiv.org/pdf/2002.10099.pdf


Meshes
A very common representation in Computer 
Graphics.

It is a pair 𝑃𝑃,𝐹𝐹 where:

• 𝑃𝑃 vertices, a point cloud in 3D 
𝑃𝑃 ⊂ ℝ3

• 𝐸𝐸 edges set of pair of points connecting 
vertices

𝐸𝐸 ⊂ ℝ3 × ℝ3

• 𝐹𝐹 faces, this is a set of triangular faces 
over vertices

𝐹𝐹 ⊂ ℝ3 × ℝ3 × ℝ3

Image courtesy of Melzi Marin



Meshes
Pros: 

• Standard in Computer Graphics

• They represents 3D shapes, not just points or voxels

• They are adaptive: very efficient for flat surfaces, 
can allocate more vertices at fine details

• Can attach data on vertices: RGB colors, texture 
coordinates, normal vectors, etc.

• Can natively interpolate values on vertices and map 
to other surfaces.

• They are a special type of graphs

Cons:

• Nontrivial feeding this structure in NN, they require 
special NN architecture



3D Imaging Sensors



Voxels

Computed Tomography Scan
• Diagnostic imaging technique to obtain detailed internal images of the body. 

• Multiple X-ray measurements taken from different angles are processed on a 
computer using tomographic reconstruction algorithms (such as filtered back 
projection) to produce cross-sectional images as virtual slices of a body.

• Data are discretized using a grid of voxels containing the CT number, 
proportional to the local value of the density.

https://ssip2021.riteh.hr/student-projects/p18/#services https://maxfacts.uk/diagnosis/tests/ct-scans

https://ssip2021.riteh.hr/student-projects/p18/#services


Filtered Back Projection: Intuition
Projections acquired from the CT Scan are i) filtered (high-passed) and ii) projected
back to the 2D space. Summing all the filtered backprojection the image is
reconstructed

Author Kolibril13 from Wikipedia https://en.wikipedia.org/wiki/File:Tomographic_reconstruction-_Projection,_Back_projection_and_Filtered_back_projection.webm#metadata



By setting a treshold on the CT number, we can 
extract 3D surfaces, removing areas where the 
density (the CT number) is locally low, i.e., 
empty cavities.

https://3dqlab.stanford.edu/computed-tomography-ct/

Computed Tomography Scan
The slicing process in the 3D space 
returns a reconstructed 3D volume of 
the scanned object, which is
discretized in a grid of 3D voxels.



LIDAR ToL / Time of Flight Cameras
Measures the time it takes the laser beam to hit the object and come back

Time of Flight Cameras have an array of sensors to acquire the distance of the 
whole scene in one shot, 

Lidars emit a laser pulse that sweeps the entire scene to reconstruct the depths of 
the scene one line at a time. 

Slide credits to D. Panozzo

LASER

distance



Scanning patterns of Lidar



https://www.cvlibs.net/datasets/kitti-360/index.php

Autonomous 
vehicles are 
equipped with 
multiple vision 
sensor, 
including 
natively 3D 
ones (LIDAR)



Multiview
A simple camera can be a 3D 
sensing device as far as there
are multiple pictures acquired
from different viewpoints. 

Ad-hoc software like meta-
shape, colmap etc.. can both 
reconstruct the camera pose (3D 
location and orientation) and the 
3D shape of the depicted object



Laser triangulation

Slide credits to D. Panozzo

• A laser beam
• A camera

1. Laser dot/blade is captured
2. The location of the dot /blade is 

triangulated to obtain the distance to the object

LASER

lens
camera



Structured light
Active sensors have an emitter that projects a specific and known pattern of light 
and shadows over the 3D scene, like a series of vertical stripes. 

The way the pattern deforms depends on the 3D structure of the scene

Comparing the projected and the observed pattern, it is possible to compute the 
distance of every point of the ball from the camera.



Structured light

Image from: H. Sarbolandi et al. 
«Kinect range sensing: Structured-light versus Time-of-Flight Kinect»

https://www.sciencedirect.com/science/article/abs/pii/S1077314215001071


Coded Light
• Two cameras and an emitter (projector) that are accurately synchronized 

• Emitter sends a large number of black and white patterns at high 
frequency

• Each point in the 3D scene is illuminated by a black and white sequence 
that works as a signature
(or as a descriptor) of each 3D point. 

• This signature enables creating 
correspondences between pixels 
in the two images very easily 
and accurately.

• Emitter can be non-visible light 
(e.g. infrared in Kinect)



3D Imaging Datasets



ModelNet
• The first large-scale 3D CAD model dataset.

• Voxels or Point Clouds are obtained by 
sampling or discretizing from these CAD 
models.

• Contains 151,128 3D CAD models belonging 
to 660 unique object categories

• Typically used in 10 or 40 class variants

Wu et al, “3D ShapeNets: A Deep Representation for Volumetric Shapes”, CVPR 2015



ModelNet
• The first large-scale 3D CAD model dataset.

• Voxels or Point Clouds are obtained by 
sampling or discretizing from these CAD 
models.

• Contains 151,128 3D CAD models belonging 
to 660 unique object categories

• Typically used in 10 or 40 class variants

Wu et al, “3D ShapeNets: A Deep Representation for Volumetric Shapes”, CVPR 2015



ShapeNet
ShapeNet is an ongoing effort to establish a richly-
annotated, large-scale dataset of 3D shapes.

• 55 categories, 

• 53.100 3D CAD models

Standard split has 13 categories, and ~44k models. Images 
are also provided (25 render pre model ≈ 1M images)

This dataset absorbs MobileNet, and deals with a 
multitude of semantic categories and organizes them 
under the WordNet taxonomy

Includes a ShapeNetPart version, where parts are carefully 
anotated

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., ... & Yu, F. (2015). Shapenet: An information-rich 3d model 
repository. arXiv preprint arXiv:1512.03012.



ShapeNetSem

Savva, M., Chang, A. X., & Hanrahan, P. (2015). Semantically-enriched 3D models for common-sense knowledge. CVPR 2015 Workshops

12,000 models spread over a 
broader set of 270 
categories.

Models are annotated with 
real-world dimensions, 
estimates of their material 
composition at the category 
level, and estimates of their 
total volume and weight.



ScanNet
This dataset contains scans from 1513 scenes with 3D camera poses, surface 
reconstructions, and semantic segmentations

Data are acquired from real world scene
by RGB-D cameras, reconstructed in 3D
on the cloud and then annotated 
manually.

3D object classification, semantic voxel 
labeling, and CAD model retrieval

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., & Nießner, M. Scannet: Richly-annotated 3d reconstructions of indoor scenes CVPR 2017



Datasets for OutDoor Scenes
Kitti 360, Lidar, labeled by 3D Bounding Boxes and semantic segmentation

Waymo Open Dataset: LIDAR data, labeled by 3D bounding boxes

https://www.cvlibs.net/datasets/kitti/



BradTS
BraTS focuses on the segmentation of brain 
tumors in multimodal magnetic resonance 
imaging (MRI) scans

There are 369 CT scans with 

• spatial resolution 240 × 240 × 155
• 4 channels corresponding to different 

modalities

There are segmentation labels over 4 classes 
corresponding to different stages of the tumor

B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al. "The Multimodal Brain Tumor Image Segmentation
Benchmark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-2024 (2015) 



Part2: Deep Learning on
Voxelized 3D Data



The typical architecture of a (2D) CNN

The input of a CNN 
is an entire image

When progressing along the network, the 
«number of images» or the «number of 
channels in the images» increases, while
the image size decreases

Once the image 
gets to a vector, 
this is fed to a 
traditional 
neural network

The image gets
convolved against
many filters

24@64x64 24@16x16



“Locality-Aware” vs “Dense” Processing

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236

Locality-Aware: this is made of 
convolutional layers, spatial 
dimension matters. 
Give rise to 3D activations

Dense: this is made 
of MLP layers  
This is meant to 
process 1D vector



Locality Aware Part: Convolutional Layers
Convolutional layers "mix" all the input components 

The output is a linear combination of all the values in a region of the input, 
considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣,𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣,𝑘𝑘) + 𝑏𝑏1

The parameters of this layer are called filters.

The same filter is used through the
whole spatial extent of the input

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236



Convolutional Layers
Convolutional layers "mix" all the input components 

The output is a linear combination of all the values in a region of the input, 
considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣,𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣,𝑘𝑘) + 𝑏𝑏1

Along the spatial dimension it’s a convolution:

- local processing: filters spans a small neigborhood 𝑈𝑈
This is equivalent to sparse connectivity

- 𝑈𝑈 needs to be specified, it is a very important
attribute of the filter

- It operates in the same way along all the channels
weight sharing.

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236



Convolutional Layers
Convolutional layers "mix" all the input components 

The output is a linear combination of all the values in a region of the input, 
considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣,𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣,𝑘𝑘) + 𝑏𝑏1

The channel dimension:

- spans the entire input depth (no local processing)

- there is no need to specify that in the 
filter attributes 

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236



Convolutional Layers

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236

𝐼𝐼 𝑤𝑤1 𝑏𝑏1
𝑎𝑎(: , : , 1)



Convolutional Layers
Different filters yield different layers in the output

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝒙𝒙(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏1

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 2) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤2(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝒙𝒙(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏2

Different filters of the same layer have the 
same spatial extent



Convolutional Layers

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236

𝐼𝐼 𝑤𝑤1, 𝑏𝑏1

𝑎𝑎(: , : , 1)

𝑤𝑤𝑛𝑛, 𝑏𝑏𝑛𝑛

𝑎𝑎(: , : ,𝑛𝑛)



Pooling Layers in 3D data
Maxpooling: simply affect only the spatial dimension, replacing a 3D subvolume by 
a number

BatchNorm: treats all the spatial dimensions the same, averaging over the same 
channel on all the dimension



Flattening or Global Pooling Layers
Flattening: simply unfold the 3D volume of activations in a vector 

𝐴𝐴 → 𝐴𝐴(: )
Global Pooling Layer: Perform a global operation on each channel, along the spatial 
components. Out of each channel, keep a single value. Pooling operations can be 
the average (GAP), or the maximum (GMP)

𝐹𝐹𝑘𝑘 =
1

𝐻𝐻 ⋅ 𝑊𝑊
�

(𝑥𝑥,𝑦𝑦)

𝑓𝑓(𝑥𝑥,𝑦𝑦,𝑘𝑘) ,𝑘𝑘 = 1, … ,𝐶𝐶

𝐻𝐻

𝑊𝑊
𝐶𝐶

𝐶𝐶

1



“Locality-Aware” vs “Dense” Processing

How to move from locality-aware to dense part in the CNN?



CNN for 3D voxel grid
Key intuitions:

• The (three) spatial dimensions need to be handled in the same way:

• Locality / sparse connectivity, 

• Translation invariance / weight sharing 

• The channel dimension preserves the same meaning

• Features are always computed by aggregating all the input channels

• The GAP and pooling layers, aggregate all the spatial dimensions, keeping 
channels separate.

3D CNN have been used for solving classification problems in:

• Voxelized data

• Video Clips, where the temporal dimenison is consdiered as 𝑧𝑧 axis.
Wu et al, “3D ShapeNets: A Deep Representation for Volumetric Shapes”, CVPR 2015
Ji, S., Xu, W., Yang, M., & Yu, K. 3D convolutional neural networks for human action recognition, TPAMI 2012
Tran, D., Bourdev, L., Fergus, R., Torresani, L., & Paluri, M.  Learning spatiotemporal features with 3d convolutional networks. ICCV 2015
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks, CVPR2014



3D convolution

Image Credits Mariusz Wiśniewski



3D convolution

Image Credits Mariusz Wiśniewski

(SCALAR) (SCALAR)

Filter Size? 



3D convolution

Image Credits Mariusz Wiśniewski

(SCALAR) (SCALAR)

Filter Size? 3x3x3 (+1 bias)



What with 4 filters?

G. Boracchi

(SCALAR) Output size?



More filters..

G. Boracchi

(SCALAR)

Channel 1 
Channel 2 Channel 3 

Channel 4 

Output size?
It’s a tensor 3x3x3 x4



Next Layer

G. Boracchi

Add a convolutional 
layer with 𝟏𝟏 Filter

 𝟑𝟑 × 𝟑𝟑 × 𝟑𝟑 
padding valid3

3

3

The output 

The filter will have 𝟏𝟏𝟏𝟏 channels and mix all the input channels together

Input: a tensor having 
size 𝟑𝟑 × 𝟑𝟑 × 𝟑𝟑 × 𝟒𝟒



Next Layer

G. Boracchi

5

5

5

The output 3x3 

The filter will have 𝟏𝟏𝟏𝟏 channels and mix all the input channels together

Add a convolutional 
layer with 𝟏𝟏 Filter

 𝟑𝟑 × 𝟑𝟑 × 𝟑𝟑 
padding valid

Input: a tensor having 
size 𝟓𝟓 × 𝟓𝟓 × 𝟓𝟓 × 𝟒𝟒



Gloval Average Pooling Layer
Assume you are getting at the last activation as 4 d volume 𝑁𝑁 × 𝑁𝑁 × 𝑁𝑁 × 𝐶𝐶

G. Boracchi

𝐻𝐻 … 

𝑍𝑍



Gloval Average Pooling Layer
Assume you are getting at the last activation as 4 d volume 𝑁𝑁 × 𝑁𝑁 × 𝑁𝑁 × 𝐶𝐶

G. Boracchi

𝐻𝐻 … 

𝑊𝑊

𝑍𝑍

𝐹𝐹𝑘𝑘 =
1

𝐻𝐻 ⋅ 𝑊𝑊 ⋅ 𝑍𝑍
�

(𝑥𝑥,𝑦𝑦,𝑧𝑧)

𝑓𝑓𝑘𝑘(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ,𝑘𝑘 = 1, … ,𝐶𝐶

… 



Gloval Average Pooling Layer
Assume you are getting at the last activation as 4 d volume 𝑁𝑁 × 𝑁𝑁 × 𝑁𝑁 × 𝐶𝐶

G. Boracchi

𝐻𝐻 … 

𝑊𝑊

𝑍𝑍

𝐹𝐹𝑘𝑘 =
1

𝐻𝐻 ⋅ 𝑊𝑊 ⋅ 𝑍𝑍
�

(𝑥𝑥,𝑦𝑦,𝑧𝑧)

𝑓𝑓𝑘𝑘(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ,𝑘𝑘 = 1, … ,𝐶𝐶

… 



(2+1)D Convolution

Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., & Paluri, M. A closer look at spatiotemporal convolutions for action recognition. CVPR 2018

In case of videos, the third dimension (time) is not equivalent to the spatial ones

Therefore, it can be convenient to treat this dimension differently

Instead of applying 3D convolution it is possible to
perform in cascade

• 2D convolution along the spatial dimension

• 1D convolution along the temporal dimension



(2+1)D Convolution

Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., & Paluri, M. A closer look at spatiotemporal convolutions for action recognition. CVPR 2018



(2+1)D Convolution

Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., & Paluri, M. A closer look at spatiotemporal convolutions for action recognition. CVPR 2018

Advantages:

• An additional nonlinearity

• In practice these turn to be easier to optimize

No computational advantages

• (2+1)D conv corresponds to “aggregating terms in the multiply and accumulate 
expressions”

• MobileNet, leverages a similar principle but shares the same 2D activations for 
multiple 1D filters… this gives computational advantages



3D Convolution in Videos
Mixed Convolution: employ conv3D only in the early layers of the network, then 
conv2D. Early layers model motion via 3D convolutions, and spatial reasoning over 
mid-level motion features in deep layers

Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., & Paluri, M. A closer look at spatiotemporal convolutions for action recognition. CVPR 2018



OctTree
Octree are 3D grid structures with adaptive cell size enabling lossless reduction of 
memory consumption wrt a regular voxel grid.

Riegler, G., Osman Ulusoy, A., & Geiger, A. “Octnet: Learning deep 3d representations at high resolutions” CVPR 2017



OctTree
Octree are 3D grid structures with adaptive cell size enabling lossless reduction of 
memory consumption wrt a regular voxel grid.

However, these networks lack flexibility as their kernels are constrained to use 33 = 
27 or 53 = 125 voxels. 

Riegler, G., Osman Ulusoy, A., & Geiger, A. “Octnet: Learning deep 3d representations at high resolutions” CVPR 2017



Multi-View CNN
Recognize 3D shapes from a collection of their rendered views several 2D images. 

No need to use large input size, better training on (smaller) images. Can leverage 
pre-trained models and datasets for images.

Seem related to “test time augmentation”, but learns how to aggregate a fixed 
number of views rendered from virtual cameras in pre-defined locations (e.g. 30 
degrees shift above). View pooling layer by maxpooling elements across the view. 

They also test “traditional” CV features + SVM classification approach.

H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, "Multi-view Convolutional Neural Networks for 3D Shape Recognition", ICCV 2015



Part3: Deep Learning on
Point Clouds



Point Net & Deep Sets





The Limitations of Voxelization
Lidars and other 3D scanning devices provide sparse 3D outputs

Moving to voxels or multiple images to perform deep learning is suboptimal:
- data becomes incredibly larger
- introduce artifacts and approximations
- we loose intrinsic invariances of the 3D sets

Point Clouds need to be treated as sets of 3D points:
- these do not admit duplicates, 
- do not have a specific order,
- need to be invariant to rigid rotations
- relative position matters, as they are embedded 
in a metric space



PointNet
This is a network meant to process sets of 3D points

• We do not want the order of points in the PC to matter!

We want the network to perform only operations that are invariant to the 
order of points. 

• We do not want the chosen reference system to matter!

The semantic labeling of a point cloud must be invariant if the point cloud 
undergoes rigid transformations. Therefore, the learnt representation by 
our point set need to be invariant to these transformations.

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017



PointNet and DL on Sets
Three options for handling unordered set of points:

1) sort input into a canonical order; 

2) treat the input as a sequence to train an RNN, but augment the

training data by all kinds of permutations; 

3) use a simple symmetric function to aggregate information from each point.



PointNet

𝑥𝑥1 𝑦𝑦1 𝑧𝑧1
𝑥𝑥2 𝑦𝑦2 𝑧𝑧2

𝑥𝑥𝑁𝑁 𝑦𝑦𝑁𝑁 𝑧𝑧𝑁𝑁

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

The input

3

𝑁𝑁



PointNet

𝑥𝑥1 𝑦𝑦1 𝑧𝑧1
𝑥𝑥2 𝑦𝑦2 𝑧𝑧2

𝑥𝑥𝑁𝑁 𝑦𝑦𝑁𝑁 𝑧𝑧𝑁𝑁

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

The input

6

𝑁𝑁

𝑟𝑟1 𝑔𝑔1 𝑏𝑏1
𝑟𝑟2 𝑔𝑔2 𝑏𝑏2

𝑟𝑟𝑁𝑁 𝑔𝑔𝑁𝑁 𝑏𝑏𝑁𝑁



PointNet

𝑥𝑥1 𝑦𝑦1 𝑧𝑧1
𝑥𝑥2 𝑦𝑦2 𝑧𝑧2
… … …

𝑥𝑥𝑁𝑁 𝑦𝑦𝑁𝑁 𝑧𝑧𝑁𝑁

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

The input

𝑁𝑁

𝑓𝑓1 … 𝑓𝑓1𝑀𝑀

𝑓𝑓2 … 𝑓𝑓2𝑀𝑀

𝑓𝑓𝑁𝑁 … 𝑓𝑓𝑁𝑁𝑀𝑀

𝑑𝑑



PointNet

𝑥𝑥1 𝑦𝑦1 𝑧𝑧1
𝑥𝑥2 𝑦𝑦2 𝑧𝑧2
… … …

𝑥𝑥𝑁𝑁 𝑦𝑦𝑁𝑁 𝑧𝑧𝑁𝑁

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

The input

𝑁𝑁

𝑓𝑓1 … 𝑓𝑓1𝑀𝑀

𝑓𝑓2 … 𝑓𝑓2𝑀𝑀

𝑓𝑓𝑁𝑁 … 𝑓𝑓𝑁𝑁𝑀𝑀

𝑑𝑑



PointNet
The input does not change when changing the order of points by a permutation 
function 𝜋𝜋, so should do the output 

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

𝑑𝑑

𝑁𝑁
…

…… …
dog

𝒙𝒙𝟏𝟏

𝒙𝒙𝑵𝑵

𝒙𝒙𝟏𝟏,𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝑵𝑵

𝑓𝑓 𝒙𝒙𝟏𝟏,𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝑵𝑵



PointNet
The input does not change when changing the order of points by a permutation 
function 𝜋𝜋, so should do the output 

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

𝑑𝑑

𝑁𝑁
…

…… …

cat

𝒙𝒙𝟏𝟏

𝒙𝒙𝑵𝑵

𝒙𝒙𝝅𝝅𝟏𝟏

𝒙𝒙𝝅𝝅𝑵𝑵

𝒙𝒙𝟏𝟏,𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝑵𝑵 𝒙𝒙𝝅𝝅𝟏𝟏 ,𝒙𝒙𝝅𝝅𝟏𝟏 , … ,𝒙𝒙𝝅𝝅𝑵𝑵

𝑓𝑓 𝒙𝒙𝝅𝝅𝟏𝟏 ,𝒙𝒙𝝅𝝅𝟏𝟏 , … ,𝒙𝒙𝝅𝝅𝑵𝑵

…

…… …
dog

𝑓𝑓 𝒙𝒙𝟏𝟏,𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝑵𝑵



PointNet
The input does not change when changing the order of points by a permutation 
function 𝜋𝜋, so should do the output 

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

𝑑𝑑

𝑁𝑁
…

…… …

cat

𝒙𝒙𝟏𝟏

𝒙𝒙𝑵𝑵

𝒙𝒙𝝅𝝅𝟏𝟏

𝒙𝒙𝝅𝝅𝑵𝑵

𝒙𝒙𝟏𝟏,𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝑵𝑵 𝒙𝒙𝝅𝝅𝟏𝟏 ,𝒙𝒙𝝅𝝅𝟏𝟏 , … ,𝒙𝒙𝝅𝝅𝑵𝑵

𝑓𝑓 𝒙𝒙𝝅𝝅𝟏𝟏 ,𝒙𝒙𝝅𝝅𝟏𝟏 , … ,𝒙𝒙𝝅𝝅𝑵𝑵

…

…… …
dog

𝑓𝑓 𝒙𝒙𝟏𝟏,𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝑵𝑵

In MLP the input order matters, and the same holds
for any CNN architecture. 

Therefore, output changes when the unput
undergoes a permutation



Permutation Invariant Networks
The “ideal” classification function 

𝑘𝑘: 2ℝ𝑁𝑁 → ℝ𝐾𝐾

Need to be a symmetric function, namely invariant to the input order.
Example of invariant functions:
• Aggregation functions (maximum, minimum, average)
• Any function taking a single input

PointNet decision: can approximate our classification network by the following 
symmetric function

𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 ≈ 𝛾𝛾 ∘ 𝑔𝑔 ℎ 𝑥𝑥1 , … ,ℎ 𝑥𝑥𝑁𝑁
where: 
- ℎ, 𝛾𝛾 are MLP taking as input a single vector
- 𝑔𝑔 an aggregation function



PointNet Vanilla (1-layer PointNet)

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

𝒙𝒙𝟏𝟏

𝒙𝒙𝑵𝑵

3

𝑁𝑁

Simple symmetric function, need to 
guarantee invariance, aggregate each feature 

component along the 𝑁𝑁 points

Input points

Point embeddings 
(features)

Network output 
(predictions)



PointNet Vanilla (1-layer PointNet)

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

For each feature, take the maximum along all 
the points. Returns 𝐷𝐷-dimensional vector𝒙𝒙𝟏𝟏

𝒙𝒙𝑵𝑵

…
…… …

ℎ: MLP performing Point Embedding 
𝑑𝑑 input neurons and 𝐷𝐷 output neurons.

Applied on each of the 𝑁𝑁 points

𝛾𝛾: MLP performing classification of 
aggregated features from the PC.
Takes 𝐷𝐷 inputs and outputs 𝐾𝐾, 
number of classes/predictions

3 or 𝑑𝑑

𝑁𝑁

𝒙𝒙𝟏𝟏



PointNet Vanilla (1-layer PointNet)

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

For each feature, take the maximum along all 
the points. Returns 𝐷𝐷-dimensional vector𝒙𝒙𝟏𝟏

𝒙𝒙𝑵𝑵

…
…… …

ℎ: MLP performing Point Embedding 
𝑑𝑑 input neurons and 𝐷𝐷 output neurons.

Applied on each of the 𝑁𝑁 points

𝛾𝛾: MLP performing classification of 
aggregated features from the PC.
Takes 𝐷𝐷 inputs and outputs 𝐾𝐾, 
number of classes/predictions

3 or 𝑑𝑑

𝑁𝑁

𝒙𝒙𝟏𝟏

PointNet by design can process an arbitrary number of points. 
This is apparent from the architecture and is a desiderata when 

workingon point clouds 



Theorem
In the paper a theoretical results about which symmetric functions can be 
approximated by PointNet is reported.

Symmetric functions

PointNet (vanilla)



How to make PointNet Deep?
Aggregate multiple point-wise embedding layers.

These always operate on each point separately, to preserve symmetry

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

𝒙𝒙𝟏𝟏

𝒙𝒙𝑵𝑵

3 or 𝑑𝑑

𝑁𝑁

𝒇𝒇𝟏𝟏

𝒇𝒇𝑵𝑵

ℎ1 ℎ2 ℎ𝑛𝑛
… 

… 

… 

… 



PointNet
This is a network meant to process sets of 3D points

• We do not want the order of points in the PC to matter!

We want the network to perform only operations that are invariant to the 
order of points. 

• We do not want the chosen reference system to matter!

The semantic labeling of a point cloud must be invariant if the point cloud 
undergoes rigid transformations. Therefore, the learnt representation by 
our point set need to be invariant to these transformations.

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017



Transformation Network
Idea behind transformation network 

- learn a transformation to align all the input points to a canonical space!

- apply the same principle to feature space

3 × 3 matrix 𝐴𝐴

∀𝑖𝑖 𝑥𝑥𝑖𝑖 → 𝑥𝑥𝑖𝑖 ⋅ 𝐴𝐴

Trainable

Non-Trainable

This has to be a symmetric function, 
It’s a vanilla PointNet trained for 
regression with 9 outputs



Transformation Network
Idea behind transformation network 

- learn a transformation to align all the input points to a canonical space! 

- apply the same principle to feature space

𝐾𝐾 × 𝐾𝐾 matrix 𝐴𝐴
𝐾𝐾 𝐾𝐾

Feature

This network solves a more difficult learning 
problem since feature dimension is larger than 

inputs (𝐷𝐷 ≫ 𝑑𝑑)

A regularization term added to the loss to get a 
better conditioned matrix (close to a rotation) 

ℛ 𝐴𝐴 = 𝐼𝐼 − 𝐴𝐴𝑇𝑇 ⋅ 𝐴𝐴 𝐹𝐹

∀𝑖𝑖 𝑥𝑥𝑖𝑖 → 𝑥𝑥𝑖𝑖 ⋅ 𝐴𝐴

Trainable

Non-Trainable



PointNet Classification Architecture

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

3 input neur., 
64 hidden neur., 
64 output neur.

64 inputs, 
64 hidden, 
128 hidden, 
1024 output.

𝑔𝑔: maxpooling
along the points 
for each
component. 
This is still, the 
only operation
mixing points.



PointNet Segmentation Architecture
Conflicting goals of segmentation: you need to combine locality (we need 
prediction on each point) and global information (we need to interpret semantic)

Idea:

• Compute first a global embedding from the input point cloud,

• Feed it back to each point features by concatenation,

• Process the augmented input with a new MLP combining local/global features

• Achieve dense prediction on each point

Point feature (and predictions) are now aware of both the local and global 
information.



PointNet Segmentation Architecture
The architecture partially overlaps with PointNet for Classification

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

𝑛𝑛 × (64 + 2014)



PointNet Applications

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

Assign part category label (e.g. chair 
leg, cup handle) to each point or face.



Classification Performance
PointNet is much faster and 
more accurate / on par than 
state of the art deep learning 
models based on voxelized
representation.

With only fully connected layers 
and max pooling, our net gains 
a strong lead in inference 
speed and can be easily 
parallelized in CPU as well

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017



Ability to Process 3D PC with missing data 

This emphasizes that PC can have 
different sizes and Point-Net based 
architecture can natively process sets 
with different inputs





Deep Sets
More general perspective: designing ML models for tasks where inputs and possibly 
outputs are sets.

Addresses more general problems: population statistic estimation, point cloud 
classification, set expansion (retrieval), and outlier detection.

Get to a very similar theoretical results

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep sets. NeurIPS



Deep Sets
The structure of permutation invariant functions

𝜌𝜌 �
𝑥𝑥∈𝑋𝑋

𝜙𝜙(𝑥𝑥)

We replace 𝜌𝜌 and 𝜙𝜙 by universal approximators (e.g. MLP) to be learned.

1. Each input point 𝑥𝑥 is individually mapped via a MLP 𝜙𝜙 to its own representation

2. All the representations of the sets are summed

3. Another MLP 𝛾𝛾 is used to infer predictions

The key is to add up all representations and then apply nonlinear transformations

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep sets. NeurIPS



PointNet Limitations
By design PointNet does not capture local structures, while locality in the inputs 
matters since points live in a metric space. 

Global features depend on absolute coordinates, difficult to generalize to unseen 
settings

Local patterns are important to increase the power of deep NN on visual data

• in recognizing fine-grained patterns

• generalizing to complex scenes

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017

Neurons along the network depth can grasp details at 
different resolution, as their receptive field increases (and 

features are richer with more nonlinearities)



PointNet++

Qi, C. R., Yi, L., Su, H., & Guibas, L. J. “Pointnet++: Deep hierarchical feature learning on point sets in a metric space”. NIPS 2017



PointNet++
A hierarchical neural network that processes a subset of points sampled in a metric space 
in a hierarchical manner.

Idea:

- Group points into nonoverlapping regions (neighborhoods) by considering 3D distances.

- Extract features in small neighborhoods.

- Produce higher-level features by aggregating local features in larger units.

Issues:

- how to define neighborhoods from a point set?           

- how to extract local features from point clouds?          

Qi et al, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”, NeurIPS 2017



PointNet++
A hierarchical neural network that processes a subset of points sampled in a metric space 
in a hierarchical manner.

Idea:

- Group points into nonoverlapping regions (neighborhoods) by considering 3D distances.

- Extract features in small neighborhoods.

- Produce higher-level features by aggregating local features in larger units.

Issues:

- how to define neighborhoods from a point set?           -> will see soon

- how to extract local features from point clouds?          -> using PointNet as a

building block, of course…

Qi et al, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”, NeurIPS 2017



Local Processing in PointNet++ 
PointNet++: a hierarchical stack of set abstraction levels that group points and 
progressively abstract higher-level feature from larger local regions 

Set abstraction level:

1. Sample points in the input at random (anchor points) or using an algorithm (FPS).

2. Introduce local neighborhoods around each anchor:

• Balls, characterized by center and radius (slow)

• k-NN neighboroods (faster)

3. From each local neighbor we extract a single local feature using pointNet. This reduces 
the point set cardinality. Preserve the coordinates of anchors in the output

By concatenating a few set abstraction levels, as the PC progresses along the network, 
fewer points remain and features are associated to larger regions.

Qi et al, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”, NeurIPS 2017



Classification in PointNet++

Qi et al, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”, NeurIPS 2017

The sampling and grouping is new to PointNet

This classification block is based on 
PointNet, followed by a MLP 
classification head



Set Abstraction levels
Set abstraction level: it takes as input a set of points to 
abstract a new set with fewer points and richer features:

- Sampling layer,

- Grouping layer,

- PointNet layer.

Input of Set Abstraction level: 𝑁𝑁 points, 𝑑𝑑 + 𝐶𝐶 values each.

Output of Set Abstraction level: 𝑁𝑁𝑥 points, 𝑑𝑑 + 𝐶𝐶𝑥 values 
each. Preserve the original coordinates of anchor points

Typically points decrease (𝑁𝑁 ≥ 𝑁𝑁𝑥) 
while features increase (𝐶𝐶 ≤ 𝐶𝐶𝑥)

Qi et al, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”, NeurIPS 2017



Sampling layer
Farthest Point Sampling (FPS): Given 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 select a set of query points 

𝑥𝑥𝑖𝑖1 , … , 𝑥𝑥𝑖𝑖𝑁𝑁𝑁 such that 𝑥𝑥𝑖𝑖𝑗𝑗 is the most distant point from 𝑥𝑥𝑖𝑖1 , … , 𝑥𝑥𝑖𝑖𝑗𝑗−1
FPS: Better than random search, NN training converges faster.  
Moreover, the receptive fields depend on data!

Slide arranged from Melzi and Marin

Farthest Point 
Sampling

𝑑𝑑



Grouping layer
Extract neighbors around query points. Balls centered around query points  

Slide arranged from Melzi and Marin

Neighborhood

𝑁𝑁𝑁 Query points 𝑁𝑁𝑥 neighbors of 𝐾𝐾 points maximum each
𝑁𝑁′ × 𝐾𝐾 × (𝑑𝑑 + 𝐶𝐶). Neighborhood can overlap



PoinNet layer
Runs PointNet on each ball. PointNet can handle a varying number of inputs. 
Coordinates in the neighbor are expressed relative to the center.

Slide arranged from Credits Melzi and Marin

PointNet

⋯

⋯

⋯

⋯

Coordinates +
learned features

𝑁𝑁𝑥 neighbors of 𝐾𝐾 points maximum
𝑁𝑁′ × 𝐾𝐾 × (𝑑𝑑 + 𝐶𝐶)

One feature vector 
(size 𝑑𝑑 + 𝐶𝐶𝑥) per 
query point 𝑁𝑁′



Different Densities

Real world point clouds are not uniform

dense

sparse



Dense adaptive layer: Multi-scale grouping (MSG)
The radius for grouping is fixed by multiple groups are selected per anchor.
Each group undergoes a PointNet layer and the output gets concatenated

PointNet

+ Random input dropout 
during training to show the 
network different densities

Not efficient: Large neighborhood for all 

centroids where to run PointNet

PointNet

PointNet



Dense adaptive layer: Multi-resolution grouping (MRG)
Concatenate features from the previous layers in two ways

The radius is fixed

Apply PointNet to all 

the points that fall in 

the previous 

neighborhood

Standard grouping 

of features from 

the last level



Segmentation in PointNet++
Issue when using PointNet++ for Segmentation: the abstraction level discards 
points, while we need dense predictions.

Design an “expanding path” of the network, to recover the discarded points in the 
contractive path (as in U-Net)

The issue is what feature to assign to “recovered” points?

• We recover coordinates of the points from the contractive path via skip 
connections (retrieve the same original location before downsampling).

• We propagate features from the 𝑖𝑖 − 1 layer to layer 𝑖𝑖 via linear interpolation  
of features extracted from the previous layer.



Segmentation in PointNet++

Qi et al, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”, NeurIPS 2017



Interpolation

𝑥𝑥𝑖𝑖  are the 𝑘𝑘 nearest points (𝑘𝑘 = 3) and 𝑓𝑓𝑖𝑖
(𝑗𝑗) are its feature in the 𝑗𝑗-th dimension (𝑝𝑝 = 2)

 



Interpolation

Unit Pointnet (like a 1 × 1 conv layer) to learn the best merging strategy for these 

features (always point-wise)

Iterate the process until recovering features from all the original points 



Point Convolutional Operators



Locality in PointNet and PointNet++
PointNet (and PointNet++) process each point 
from a PC (or from a subset of PC) 
independently, without considering the 
relative position of points.

In a 2D convolution, locality is described by 
indexes. In a PC, locality is described by the 
values of point coordinates.

Rmk: Convolution can be defined on 
scattered points, as long as we can define
the kernel 𝑔𝑔 in any location

ℱ ∗ 𝑔𝑔 𝑥𝑥 = �
𝑥𝑥𝑖𝑖∈𝒩𝒩𝑥𝑥

𝑔𝑔 𝑥𝑥𝑖𝑖 − 𝑥𝑥 𝑓𝑓𝑖𝑖

�
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣,𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣,𝑘𝑘) + 𝑏𝑏1



A channel-wise view of conv2D in (deep) CNN
Look at this expression “channel wise” for the 𝑗𝑗 − 𝑡𝑡ℎ filter

�
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

�
𝑘𝑘

𝑤𝑤𝑗𝑗(𝑢𝑢, 𝑣𝑣,𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣,𝑘𝑘) + 𝑏𝑏1

You can write the inner sum as an inner product

�
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝒙𝒙 𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, : T ⋅ 𝒘𝒘𝒋𝒋 𝑢𝑢,𝑣𝑣, : + 𝑏𝑏1

Where 𝒙𝒙 𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, : T and 𝒘𝒘𝒋𝒋 𝑢𝑢,𝑣𝑣, : are vectors of 𝐷𝐷𝑖𝑖𝑛𝑛 × 1 the number of 
input channels

When you have 𝐷𝐷𝑜𝑜𝑢𝑢𝑜𝑜 filters, then 𝑾𝑾 𝑢𝑢, 𝑣𝑣, : is a matrix of size 𝐷𝐷𝑖𝑖𝑛𝑛 × 𝐷𝐷𝑜𝑜𝑢𝑢𝑜𝑜



A channel-wise view of conv2D in (deep) CNN

Thomas H, Qi CR, Deschaud JE, Marcotegui B, Goulette F, Guibas LJ. Kpconv: Flexible and deformable convolution for point clouds. ICCV 2019

These are channels 
(i.e. 𝐷𝐷𝑖𝑖𝑛𝑛 = 4 features) 

associated to the 𝐾𝐾 = 9 
pixel locations in the 
neighbor (in blue)

Each column of the 𝐾𝐾 = 9 matrices 
contains the weights for transforming 
the feature vector of a single point in 
the neighbor. Since we are extracting 
𝐷𝐷𝑜𝑜𝑢𝑢𝑜𝑜 features, we have a matrix 

(corresponding to using  𝐷𝐷𝑜𝑜𝑢𝑢𝑜𝑜 filters)

These vectors are then 
summed all over the 

neighbor (𝐾𝐾 = 9). The 
remaining 𝐷𝐷𝑜𝑜𝑢𝑢𝑜𝑜 dimensional 
vector is the feature at the 

central pixel



A channel-wise view of conv2D in (deep) CNN

Thomas H, Qi CR, Deschaud JE, Marcotegui B, Goulette F, Guibas LJ. Kpconv: Flexible and deformable convolution for point clouds. ICCV 2019

These are channels 
(i.e. 𝐷𝐷𝑖𝑖𝑛𝑛 = 4 features) 

associated to the 𝐾𝐾 = 9 
pixel locations in the 
neighbor (in blue)

Each column of the 𝐾𝐾 = 9 matrices 
contains the weights for transforming 
the feature vector of a single point in 
the neighbor. Since we are extracting 
𝐷𝐷𝑜𝑜𝑢𝑢𝑜𝑜 features, we have a matrix 

(corresponding to using  𝐷𝐷𝑜𝑜𝑢𝑢𝑜𝑜 filters)

These vectors are then 
summed all over the 

neighbor (𝐾𝐾 = 9). The 
remaining 𝐷𝐷𝑜𝑜𝑢𝑢𝑜𝑜 dimensional 
vector is the feature at the 

central pixel

KPConv uses this view on 
convolution to define the filter 𝑔𝑔 at

any location in 3D

ℱ ∗ 𝑔𝑔 𝑥𝑥 = �
𝑥𝑥𝑖𝑖∈𝒩𝒩𝑥𝑥

𝑔𝑔 𝑥𝑥𝑖𝑖 − 𝑥𝑥 𝑓𝑓𝑖𝑖



KPConv

Thomas H, Qi CR, Deschaud JE, Marcotegui B, Goulette F, Guibas LJ. Kpconv: Flexible and deformable convolution for point clouds. ICCV 2019

These are features 
(𝐷𝐷𝑖𝑖𝑛𝑛 = 4 ) associated to 
the varying number of 
pixels in the neighbor 

𝑥𝑥 point where to 
compute the 
output

𝒩𝒩𝑥𝑥 = 𝑥𝑥𝑖𝑖 ∈ 𝒫𝒫 s. t. 𝑥𝑥𝑖𝑖 − 𝑥𝑥 2 < 𝑟𝑟 ℬ𝑟𝑟 = 𝑦𝑦 ∈ ℝ3 s. t. 𝑦𝑦 2 < 𝑟𝑟

The neighbor of 𝒙𝒙 The centered neighbor where 𝑔𝑔
is defined. 

𝐾𝐾 = 7 Kernel points �𝒙𝒙𝒊𝒊
The filter is defined at
these locations, which are 
fixed w.r.t. the center 𝒙𝒙



KPConv (cnt)

Thomas H, Qi CR, Deschaud JE, Marcotegui B, Goulette F, Guibas LJ. Kpconv: Flexible and deformable convolution for point clouds. ICCV 2019

Each of the 𝐾𝐾 = 7 kernel point 
is associated to a matrix.

All the matrices are scaled and 
summed together, multiplied to the 
input feature. When changing the 
input feature, the procedure is 
repeated. Only as the weights change

For each point 𝒚𝒚𝒊𝒊, we compute the filter function 
𝒈𝒈(𝒚𝒚𝒊𝒊) = ∑𝒉𝒉 𝒚𝒚𝒊𝒊, �𝒙𝒙𝒌𝒌 𝑾𝑾𝒌𝒌

As a linear combination of all the matrices. Weights 𝒉𝒉 𝒚𝒚𝒊𝒊,�𝒙𝒙𝒌𝒌
encode the Euclidean distance between 𝒚𝒚𝒊𝒊 and the kernel points.

Different 𝒇𝒇𝒊𝒊 have different
filters 𝑔𝑔 𝑦𝑦𝑖𝑖 as they are 
associated to different locations 𝒚𝒚𝒊𝒊



KPConv (cnt)

Thomas H, Qi CR, Deschaud JE, Marcotegui B, Goulette F, Guibas LJ. Kpconv: Flexible and deformable convolution for point clouds. ICCV 2019

There is an output feature vector for each input feature. These 
are all summed up to provide the layer output 

The output feature is 𝑫𝑫𝒐𝒐𝒐𝒐𝒐𝒐 dimensional, 
as defined by the number of columns of 
the matrices in the filter.
The output is associated to the central 
pixel of the negihborhood



KPConv

Thomas H, Qi CR, Deschaud JE, Marcotegui B, Goulette F, Guibas LJ. Kpconv: Flexible and deformable convolution for point clouds. ICCV 2019

Input points 𝒫𝒫 ∈ ℝ𝑁𝑁×3 and their associated 𝐷𝐷-dimensional features ℱ ∈ ℝ𝑁𝑁×𝐷𝐷

ℱ ∗ 𝑔𝑔 (𝑥𝑥) = �
𝑥𝑥𝑖𝑖∈𝒩𝒩𝑥𝑥

𝑔𝑔 𝑥𝑥𝑖𝑖 − 𝑥𝑥 𝑓𝑓𝑖𝑖

Where 𝑔𝑔 is the kernel, 𝑥𝑥 is the output point,
𝒩𝒩𝑥𝑥 = 𝑥𝑥𝑖𝑖 ∈ 𝒫𝒫 s. t. 𝑥𝑥𝑖𝑖 − 𝑥𝑥 2 < 𝑟𝑟

𝑥𝑥𝑖𝑖 is a point and 𝑓𝑓𝑖𝑖 is the corresponding feature.

𝒩𝒩𝑥𝑥 is defined from a fixed radius ensures robustness to varying densities



KPConv

ℱ ∗ 𝑔𝑔 (𝑥𝑥) = �
𝑥𝑥𝑖𝑖∈𝒩𝒩𝑥𝑥

𝑔𝑔 𝑥𝑥𝑖𝑖 − 𝑥𝑥 𝑓𝑓𝑖𝑖

The Kernel 𝑔𝑔 is defined as a linear combination of inner products against a 
learnable set of 𝐾𝐾 matrices

𝑔𝑔 𝑦𝑦𝑖𝑖 = �
𝑘𝑘≤𝐾𝐾

ℎ(𝑦𝑦𝑖𝑖 , �𝑥𝑥𝑘𝑘)𝑊𝑊𝑘𝑘

Matrices 𝑊𝑊𝑘𝑘 are associated to 𝐾𝐾 anchor points { �𝑥𝑥𝑘𝑘} expressed in a relative 
position w.r.t. the center

The weights depend on the distance function ℎ of inputs to the center

ℎ 𝑦𝑦𝑖𝑖 , �𝑥𝑥𝑘𝑘 = max 0, 1 −
||𝑦𝑦𝑖𝑖 − �𝑥𝑥𝑘𝑘||

𝜎𝜎



Link to Colab Sessions
https://drive.google.com/drive/folders/1GgRDVk4fTJ5CTfrcv1mAUS3fgIV152QC?usp=dri
ve_link



Concluding Remarks



Concluding Remarks
On the one hand, truly 3D data representations offer several benefits

• They are compact and very informative

On the other hand, traditional ML models and NN (in particular CNN) are meant for 
«matrix data». Brute force attempts (voxelization / projection) are 

• suboptimal in terms of information loss and space requirments

• with the increase of truly 3D dataset, they won’t be anylonger convenient

3D data are ubiquitous and going to be increasingly used in diverse fields

3D data have opened (and will open) new challenges for modern Deep Learning 
and Comptuer Vision research
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