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Setting up the stage

Convolutional neural networks



LeNet-5 (1998)

Yann LeCun's LeNet-5 model was developed in 1998 to identify
handwritten digits for zip code recognition in the postal service.

This pioneering work introduced one of the most common CNN
architecture, widely used today.

Parameters: 60.000, input size (32 x 32)

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
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LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998)



2D Convolution

Linear Transformation: Linearity implies that

T|I](r,c) = Z w(x,y)*I(r+x,c+7y)
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We can consider weights as a filter h

The filter h entirely defines convolution

Convolution operates the same in each pixel
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We can consider weights as a filter h
The filter h entirely defines convolution
Convolution operates the same in each pixel
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Convolutional Layers

Convolutional layers: compute feature maps as the convolution
between a learnable filter and some volume (either the input image or
the output of some previous layer).

In CNNs Convolutional filters are 3D and mix all the components in the
input image (or volume of the previous layer).

The output is also called volume

or activation maps -
Each filter yields a different slice of the -
output volume @:>QQQQ<
/
32
By Aphex34 - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php ?curid=45659236 3



Convolutional Layers

Remarks:
Convolutional Layers have very small spatial extent

Very deep 3D extent, as they cover the whole volume fed to the layer

The output of the convolution against a filter becomes a slice

in the volume feed to the next layer

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php ?curid=45659236
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Convolutions as MLP

If you unroll the input image to a vector, you can consider convolution
weights as the weights of a Multilayer Perceptron Network



Sparse connectivity

Fully connected

3x1 convolutional
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Activation Layers

Introduce nonlinearities in the network, otherwise the CNN might be
equivalent to a linear classifier...

RELU (Rectifier Linear Units): normalize the feature maps e.g. by
max(0,:) operator.
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T(I)

0 T()

T, 0),if I(r,¢) = 1(r,¢)
T(10r,0) = 0, if I(r,c) <0




Pooling Layers

Pooling Layers are downsampling layers used to reduce the spatial size
of the volume.

The Pooling Layer operates independently on every depth slice of the
input and resizes it spatially, often using the MAX operation.

Typically it discards 75% of samples in a volume  224x224x64

112x112x64
Single depth slice pool
Jl1]1]2]4
max pool with 2x2 filters
5|16 7| 8 and stride 2 6 | 8
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3 | 2 HiNE 3 4 l
1| 2 BSR4 .
~ S 112
. e Y downsampling =
y 112

224
CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Convolutional Neural Networks (CNN)

The input/output of each layer is a volume, typically having decreasing
height and width and increasing depth.

height

0000 Oowidth

I

By Aphex34 - Own worR, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45661858



LeNet-5 (1998)

Stack of Conv2D + RELU + MAX-POOLING A TRADITIONAL MLP

l—‘—\l_‘_\

C3: f. maps 16@10x10

INPUT gézl‘ggf?uare maps S4: f. maps 16@5x5
32x32 S2: f. maps

ot |T—I_ »

?golayer |=5 layer OUTPUT

\\

‘ Full conrjlectlnn Gaussmn connections
Convolutions Subsampling Convolutions Subsamplmg Full cnnnectlon

LeCun, Yann, et al. "Gradient-based learning applied to document recognition.” Proceedings of the IEEE 86.11 (1998)



model.summary()

Layer (type) Output Shape Param #
conv2d 1 (Conv2D) (None, 28, 28, 6) 156
average pooling2d 1 (Average (None, 14, 14, 6)

conv2d 2 (Conv2D) (None, 10, 10, 16) 2416
average pooling2d 2 (Average (None, 5, 5, 16)

flatten 1 (Flatten) (None, 400) 0
dense 1 (Dense) (None, 120) 48120
dense 2 (Dense) (None, 84) 10164
dense 3 (Dense) (None, 10) 850

Total params: 61,706

Trainable params: 61,706

Non-trainable params:

0



LeNet-5 (1998)

Stack of Conv2D + RELU + MAX-POOLING A TRADITIONAL MLP
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C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28
32x32 @28x S2: f. maps

ot |T—I_ »

?gulayer |=5 layer OUTPUT
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dense 1 dense 3
conv2d 1 average conv2d 2 average_ dense 2
pooling2d 1 pooling2d 2 -

LeCun, Yann, et al. "Gradient-based learning applied to document recognition.” Proceedings of the IEEE 86.11 (1998)



Most of parameters are in MLP

What about a MLP taking as input the whole image’

Input 32 X 32 = 1024 pixels, fed to a 84 neurons -> 86950 parameters

But.. If you take an RGB input: 32 X 32 X 3,
CNN: only the nr. of parameters in the first filters increases 156 -> 456
MLP: everything increases by a factor 3



Weight Sharing / Spatial Invariance

In a CNN, all the neurons in the same depth slice use the same weights
and bias: this dramatically reduce the nr. of parameters in the CNN.

Underlying assumption: if one feature is useful to compute at some
spatial position (x,y), then it should also be useful to compute at a
different position (x2,y2)

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
32x32 @2 S2: f. maps

e I-rl_ r

O, layer P layer OUTPUT

T — .

FuII conrjlectlon | Gaussuan connections
Convolutions Subsampling Convolutions Subsamplmg Full connection



Activations in a convolutional network

RELU RELU RELU RELU RELU RELU
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CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Activations in a convolutional network
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Each layer in the volume is represented as an image here
(using the same size but different resolution for visualization sake)

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Activations in a convolutional network
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CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Activations in a convolutional network
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AlexNet (2012)

AlexNet was developed by Alex Krizhevsky et al. in 2012 to compete in
the ImageNet competition. The general architecture is quite similar to

LeNet-5, although this model is considerably larger. It won the ImageNet
2012 competition

Parameters: 60 million
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Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural
networks." Advances in neural information processing systems. 2012.



VGG16 (2014)

The VGG16, introduced in 2014 is a deeper variant of the AlexNet
convolutional structure

Parameters: 138 million

224 x224x3 224 x224x64

112 x 128

Considers small filters:
Multiple 3x3 convolution in
sequence can emulate the
effect of larger receptive
fields, for examples 5xg
and 7x7.

56|x 56 X 256
28><28><51214 14 ’I2X7><512
A Xl.) 1 x1x4096 1x1x1000

@ convolution+RelLU

@ max pooling
| fully connected+ReLLU

/] softmax

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image
recognition." arXiv preprint arXiv:1409.1556 (2014).



The Receptive field

In a CNN each neuron connects to a local region of the input volume:
the receptive field of the neuron.

The deeper you go, the wider the receptive field: maxpooling,
convolutions and stride > 1 increase the receptive field

Usually, the receptive field refers to the final output unit of the
network in relation to the network input

@~——>@OOQC

3
By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45659236




Receptive fields

Fully connected

3x1 convolutional
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Receptive fields

Deeper neurons depend on wider patches of the input (convolution is
enough to increase receptive field, no need of maxpooling)

@ @
4

3x1 convolutional

S

3x1 convolutional



As we move deeper...

As we move to deeper layers:
 spatial resolution is reduced
* the number of maps increases

We search for higher-level patterns, and don’t care too much about
their exact location.

There are more high-level patterns than low-level details!



Feature Maps Visualization

Convolutional layers: compute feature maps as the convolution between a
learnable filter and some volume (either the input image or the output of some
previous layer).

Learned filters represent the features that are most important for image
classification. Here there is an example of filters and examples of image regions
that are strongly activated by these
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Layer 2 (16 filters)
ZFNet: Zeiler and Fergus “Visualizing and Understanding Convolutional Networks”



Semantic Segmentation



Semantic Segmentation Task

Objects appearing Iin the Image:

Lt Eeleliz Person ://www.robots.ox.ac.uk/~szheng/crfasrnndemo

Zheng et al. “Conditional Random Fields as Recurrent Neural Networks”, ICCV 2015
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The Straightforward Solution

1000 X 2000 pixels

e A pretrained model is meant to process a
fixed input size (e.g. 224 x 224)

* Slide on the image a window of that size and
classify each region.

* Assign the predicted label to the central pixel
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The Straightforward Solution

1000 X 2000 pixels

* A pretrained model is meant to process a
fixed input size (e.g. 224 x 224)

» Slide on the image a window of that size and
classify each region.

* Assign the predicted label to the central pixel




Many drawbacks...

cons:

* Very inefficient! Does not re-use features that are «shared» among
overlapping crops

* Not able to capture details at different scale!

Plus:
 No need of retraining the CNN




What happens when chaning
the image size/



Convolutional Neural Networks (CNN)

The typical architecture of a convolutional neural network .
size=1X1XN

*.. Output
»

I ] i '
I Convolutions Subsampling Convolutions Subsamplingl IFuIIy connected

CNNs are meant to process input of a fixed size (e.g. 200 x 200).

The convolutional and subsampling layers operate in a sliding manner
over image having arbitrary size

The fully connected layer constrains the input to a fixed size.

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45679374

Feature maps




Convolutional Neural Networks (CNN)

The typical architecture of a convolutional neural network

Input size=1X1XN

Feature maps

! 1 ¥ v
I Convolutions Subsampling Convolutions Subsamplingl ':ully connected I

What happens when we feed a larger image to the network?

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45679374



Convolutional Neural Networks (CNN)

Convolutional filters can be applied to volumes of any size, yielding
larger volumes in the network until the FC layer.

The FC network however requires a fixed input size
Thus, CNN cannot compute class scores, yet can extract features!

/ize=M1XM2XN
N,
‘u‘Dutput
\\“z-

| ] " '
I Convolutions Subsampling Convolutions Subsamplingl Fully connected

Input

Feature maps




Fully Convolutional Neural Networks (f-CNN)

However, since the FC is linear, it can be represented as convolution!
Weights associated to output neuron i : w; = {W; j}i=j.n

SZ Q 0; = Z Wi,ij+bi
@ j=1:N

sa () ,
Q 0i=WiS+bi

0; = (Wi @ S)(0,0) + bi

Second-last layer, N neurons
9]
NN

Output Layer

A FC layer of L outputs is a 2DConv against L filters of size 1 X 1 X N



Fully Convolutional Neural Networks (f-CNN)

However, since the FC is linear, it can be represented as convolution
against L filters of size 1 X1 X N

Each of these convolutional filters contains the weights of the FC for
the corresponding output neuron

Feature maps

size=M{; XM, XL

I ] v v
I Convolutions Subsampling Convolutions Subsamplingl Fully connected

Long, J., Shelhamer, E., Darrell, T. “Fully convolutional networks for semantic segmentation”. CVPR 2015



Fully Convolutional Neural Networks (f-CNN)

The CNN becomes fully convolutional FCNN!

Feature maps ize = M1 X Mz X N

|

size=M{; XM, XL

I ] Y v
ICunvqulions Subsampling Convolutions Subsamplingl l:ully connected I

Long, J., Shelhamer, E., Darrell, T. “Fully convolutional networks for semantic segmentation”. CVPR 2015




Fully Convolutional Neural Networks (f-CNN)

For each output class we obtain an image, having:

e Lower resolution than the input image

* Containing class probabilities for the image region referring to each
pixel (receptive field)

Feature maps

size=M{; XM, XL

I 1 v v
I Convolutions Subsampling Convolutions Subsampli ngl Fully connected

Long, J., Shelhamer, E., Darrell, T. “Fully convolutional networks for semantic segmentation”. CVPR 2015



Output of a FCNN as heatmaps

"Castle" probability

N

Trained

Fully [ >

CNN

"Wheel" __—~
probability

A larger image than
those used for training
the network




Output of a FCNN as heatmaps

"Castle" probability

\
O

"Wheel"

probability

Each pixel in the heatmap

corresponds to a "receptive ~]

field" in the input image




Migration to FCNN of a pretrained model

“tabby cat”
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Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.“ CVPR 2015



Migration to FCNN of a pretrained model

This stack of convlutions operates on the whole image as a filter.

Significantly more efficient than patch extraction and classification
(avoids multiple repeated computations within overlapping patches)

tabby cat heatmap
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Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” CVPR 2015



Fully convolutional networks in keras

It is necessary to get and set the weights of networks by means of the
methods get weights and set weights

» get the weights of the trained CNN
w7/, b7 = model.layers[7] .get weights()

e reshape these weights to become a convolution
w7 .reshape (20, 20, 10, 256)

e assign these weights to the FCNN architecture
model2.layers[i] .set weights (w7, b7)



Semantic Segmentation
using CNN

Predicting dense outputs for abritrary-sized inputs



Direct Heatmap Predictions

We can assign the predicted label in the heatmap to the whole
receptive field, however that would be a very coarse estimate

tabby cat heatmap

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” CVPR 2015



Only Convolutions

What if we avoid any pooling (just convad and activation layers)?
* Very small receptive field
* Very inefficient

Conv Conv Conv Conv argmax

—_—

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Drawbacks...

On the one hand we need to “go deep” to extract high level
information on the image

On the other hand we want to stay local not to loose spatial resolution
in the predictions

Semantic segmentation faces an inherent tension between semantics
and location:

* global information resolves what, while
* local information resolves where |...]

Combining fine layers and coarse layers lets the model make local
predictions that respect global structure.

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” CVPR 2015



The Shift and Stich

Shift and Stich: Consider a ratio f between input size and the heatmap
e Compute heatmaps for all f2 possible shifts of the input

 Map predictions to the image: each pixel in the heatmap provides
prediction to the central pixel of the receptive field

* Interleave the heatmaps to form an image as large as the input
This allows exploiting the whole depth of the network

Efficient implementation through the a trous algorithm in wavelet
However, sort of rigid: upsampling is better

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” CVPR 2015



Prediction Upsampling

Linear upsampling can be implemented as a convolution filter (with a
fractional input stride)

Upsampling filter can thus be learned during network training.

upsampling
32x upsampled
image convl pooll conv2 pool2 conva pool3 conv4 pool4 convo poold conv6-T  prediction (FCN-32s)

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” CVPR 2015



How to perform upsampling?

32x upsampled
poolb prediction (FCN-32s)

—)

Nearest Neighbor AR I “Bed of Nails” 1 ol2 o
1 2 1 112 2 LI 0 0fo o0
3 4 3 3|4 4 3 4 3.0 | 4 0
3|4 010 O

Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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How to perform upsampling?

32x upsampled
poolb prediction (FCN-32s)

—)

You have to keep track of the maxpooling locations

Max Pooling .
. Max Unpooling

Remember which element was max! Use positions from
1 216 3 pooling layer 0o 0 2 0
3 5|2 1 5 6 1T 2 0 1 0 O

. . wwew i 2 |
1 2|2 ! 78 Rest of the network 01000
7 314 8 3 0 0 4
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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How to perform upsampling?

poold

S

32x upsampled
prediction (FCN-32s)

Input: 2 x 2

3 x 3 transpose convolution, stride 2 pad 1

Input gives
weight for
filter

Output: 4 x 4

Sum where
output overlaps

Filter moves 2 pixels in

the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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How to perform upsampling?

Transpose Convolution can be seen as a
traditional convolution after having
upsampled the input image

output

Many names for transpose convolution:
fractional strided convolution, backward
strided convolution, deconvolution (very
misleading!!!)
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Upsamping based on convolution gives input 2>
more degrees of freedom as the filters "
can be learned!

N >

https://github.com/vdumoulin/conv arithmetic

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).


https://github.com/vdumoulin/conv_arithmetic

Prediction Upsampling FCN-32s  Ground truth

Y

L)
T

These predictions however are very coarse

a
Upsampling filters are learned with )
initialization equal to the bilinear
interpolation

upsampling
32x upsampled
image convl pooll conv2 pool2 conva pool3 conv4 pool4 convo poold conv6-T  prediction (FCN-32s)

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” CVPR 2015



Solution: Skip Connections!

upsampling

32x upsampled
image convl pooll conv2 pool2 conv3d pool3 conv4 pool4d convo poold  conv6-T prediction (FCN-32s)

16x upsampled

Supplement a traditional 2x convd prediction (FCN.16s)

«contracting» network by successive poold

layers where convolution is replaced —

by upsampling operations

Upsamp“ng iS UbiQUitOUS 4x conv’T prei}i{cégza?ﬁé‘%i?@s}
Upsampling filters are learned 2% poold

during training pool3

Upsampling filters are initialized
using bilinear interpolation

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” CVPR 2015



Solution: Skip Connections!

Upsampling
[ 1 Output
2x upsampled 2x upsampled 8x upsampled
prediction prediction prediction (FCN-8s)
Encoder module
#
conv layers not shown [
( ¥ W) { H‘
image pooll pool2 pool3 poold poold "I poold § e poold
TTTT] [ | | prediction 4 prediction
__.--""""./ J"‘
‘ /
\ e
e S S
IanIt -------------------------------------------------------------------------------------------------
l |

Skip connections

https://www.jeremyjordan.me/semantic-segmentation/



Solution: Skip Connections!

32x upsampled
image convl pooll conv2 pool2 conv3d pool3 conv4 pool4d convo poold  conv6-T prediction (FCN-32s)

16x upsampled

This yields 3 networks. 2x convT prediction (FCN-165)
All the upsampling filters are poold
learned during training

First train the lowest resolution
network (FCN-32s)

Then, the weights of the next
network (FCN-16s) are initialized
with (FCN-32s)

The same for FCN-8s

8x upsampled
4x conv’T prediction (FCN-8s)
2x poold

pool3

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” CVPR 2015



Semantic Segmentation

Retaining intermediate information is beneficial, the deeper layers
contribute to provide a better refined estimate of segments

FCN-32s FCN-16s FCN-8s Ground truth

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” CVPR 2015



Ground Truth [mage

FCNN Training

A pixel-wise ground truth (annotated images) can

be used for training a classification or

segmentation model in an end-to-end manner

Full-Image Training:

* Provides dense output by re-projecting
heatmap predictions to their receptive fields. o,

* The global loss of an input image is averaged
over the spatial dimension of
the output layer

f(x, 6) — z f'(xi’j, 8)

xi,j
 The true label of each pixel in the heatmap is
the label of the central pixel

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.“ CVPR 2015




Ground Truth [mage

Full-Image Training

* «Equivalent» to patch-wise training

* Take advantage of FCNN efficiency, no
re-computation of features in
overlapping regions

e Batches in patch-wise training are
randomly assembled
 Some form of loss function masking
needed here

* Patch resampling for solving class
imbalance not possible
e Adopt loss re-weighting

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.“ CVPR 2015



Semantic Segmentation

FCN-8s SDS | 17] Ground 'Iruth _

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation.” CVPR 2015




U-net

Network formed by:
* A contracting path
* An expansive path

No fully connected layers

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image
segmentation.” International Conference on Medical image computing and computer-assisted intervention, 2015.
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U-net: contracting path

Repeats blocks of:

3 X 3 convolution + ReLU

e 3 X 3 convolution + ReLU

e Maxpooling 2 X 2

At each downsampling the number of feature maps is doubled

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image
segmentation.” International Conference on Medical image computing and computer-assisted intervention, 2015.
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segmentation.” International Conference on Medical image computing and computer-assisted intervention, 2015.



U-net: Expanding path

repeats blocks of:

2 X 2 transpose convolution, halving the number of feature maps
Concatenation of corresponding cropped features in the contracting
3 x 3 convolution + RelLU

3 x 3 convolution + RelLU

Maxpooling 2 X 2

No fully connected layers: at the end there are 1 X 1 X N convolutions
to yield predictions out of the convolutional feature maps

Output image is smaller than the input image by a constant border

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image
segmentation.” International Conference on Medical image computing and computer-assisted intervention, 2015.



U-net: Training

Full-image training, by using a weigthed loss function
(dl(x)+dz(x))
w(x) =w.(x) +wye 202

To balance class proportions (w,) and enhance segmentation at borders:
* d, is the distance to the border of the closest cell
. dz is the distance to the border of the second closest cell

*f]

Ronneberger, Olaf Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image
segmentation." International Conference on Medical image computing and computer-assisted intervention, 2015s.



Global Averaging Pooling



Networks in Network

A different architecture composed of many layers of a MLP having
limited spatial extent

No pooling and no fully connected at the very end
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The Global Averaging Pooling (GAP) Layer

GAP squeezes each layer in the
convolutional feature volume to an
equivalent vector that is as long as the

volume depth /

Then, just a soft-max over these averages
provides accurate classification

Rmk: the number of feature maps has to be
equal to the number of output classes!

AV

Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400v3 (2014).
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Rationale behind GAP

Fully connected layers are prone to overfitting

 They have many parameters

* Dropout was proposed as a regularized that randomly sets to zero a
percentage of activations in the FC nayers during training

The GAP strategy is:
 Remove the fully connected layer at the end of the network!



The Global Averaging Pooling (GAP) Layer

e Since just a soft-max is employed, using
GAP introduces a correspondence ‘

between feature maps and object
categories (feature maps as confidence /
score on classes).

e This makes GAP a structural regularizer

 No parameters, no risk of overfitting

 Makes the network independent of the
Input size

 Robust to spatial variations in the input
(e.g. shifts) A

Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400v3 (2014).
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The Global Averaging Pooling (GAP) Layer

We indeed see that GAP is acting as a

(structural) regularizer

Method

Testing Error

mlpconv + Fully Connected
mlpconv + Fully Connected + Dropout
mlpconv + Global Average Pooling

11.59%
10.88%
10.41%

Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400v3 (2014).
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