Part 5



Two main meanings for SSL

e Systems that learn to extract meaningful representations from the
data itself



Learning to see by listening

A robot that acquires its own training data...
... and learns useful representations through an audio pretext task
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An experiment in self-supervised
learning for Robots

A robot that acquires its own training data...
but then solves a standard Supervised Learning problem



Mighty Thymio

« 5 front-facing infra-red sensors
« /20p camera

« ODRIOD C1

* Wi-Fi connectivity







Cross-sensor prediction (image -> proximity)




Problem definition example
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Sensor's range

Thymio




d=0cm

Sensor's range

Thymio












Data gathering

 Various examples:

» Different distances and directions
* Floors with different textures

« Obstacles with different shapes, materials

and colors
» 8 recording sessions

» 36k training examples




An (optional) controller for efficient data
gathering

Fig. 4. Example trajectory generated by the data acquisition controller.



Distance

Quantitative evaluation

Area Under the Receiver Operating Characteristic Curve
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Sensors

Symmetric
Decreases on sides
Decreases with distance

Distance = 0 cm is the hardest

14



Why Ocm is so hard? the camera blind spot!
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Prediction

Target

Prediction

Target
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It works!
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Video
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Video
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Generalizing...
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(a) A mobile robot at pose p(t) has a long-range sensor L (red) and

(b) a short-range sensor .S. Our objective is to predict the value of S at n target
poses p1,p2,...p, from the value of L(p(t)). (c, d) For a given 1,nstance,
we generate ground truth for a subset of labels by searching the robot’s future

trajectory for poses close to the target poses.

https://github.com/idsia-robotics/learning-long-range-perception
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VIDEOS, DATASETS, AND CODE

Videos, datasets, and code to reproduce our re-
sults are available at: tps://github.com/idsia-
robotics/learning-long-range-perception

L. INTRODUCTION

E CONSIDER a mobile robot capable of odometry and

U » equipped with at least two sensors; a long-range one,
such as a camera or laser scanner; and a short-range sensor such
45 4 proximuty sensor or a contact sensor (bumper). We then con-
sider aspecific perception task, such as detecting obstacles while
roaming the environment. Regardless on the specific choice of
the task and sensors, it is often the se that the long-range
sensors produce a large amount of data, whose interpretation
for the task at hand is complex; conversely, the
sor readings directly solve the ¥

short-range sen-
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Fig. 1. The Mighty Thymio robot in two environments: five proximity sensors
n casily detect obstacles at very close range (blue arcas), whereas the camera
has a much longer range (red area) but its outputs are hard to interpret

example, detecting obstacles in the video stream of a forward-
pointing camera is difficult but potentially allows us to detect
them while they are still far; solving the same task with a prox-
imity sensor or bumper is straightforward as the sensor directly
reports the presence of an obstacle, but only works at very close
range.

In this letter we propose a novel technique for solving a
perception task by learning to interpret the long-range sensor
data; in particular, we adopt a self-supervised learning approach
in which future outputs from the short-range sensor are used as
a supervisory signal. We develop the complete pipeline for an
obstacle-detection task using camera frames as the long-range
sensor and proximity sensor readings as the short-range sensor
(see Figure 1). In this context, the camera frame acquired at time
t (input) is associated to proximity sensor readings obtained
at a different time ' # ¢ (labels): for example, if the robot's
odometry detects it has advanced straight for 10 ¢cm
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https://github.com/idsia-robotics/learning-long-range-perception

A seminal paper from 2006

A robot that acquires its own training data...
but then solves a standard Supervised Learning problem



Self-supervised online learning for big-ass Robots

i t Navigation
Improving Robo .
through Self-Supervised
Online Learning

Boris Sofman, Ellie Lin, J. Andrew Bagnell,
John Cole, Nicolas Vandapel,

and Anthony Stentz
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In mobile robotics, there are often features that, while potentially powerful for improving
navigation, prove difficult to profit from as they gvn.cm]l/c poorly to m.»\ el situations
Overhead imagery data, for instance, have the potential to greatly enhance autonomous
robot navigation in complex outdoor environments. In pmclu}‘v, reliable and vm"(n\‘v au-
tomated interpretation of imagery from diverse terrain, environmental mndmfms, and
sensor varieties proves challenging. Similarly, fixed techniques that successfully interpret
on-board sensor data across many environments begin to fail past short ranges as the
density and accuracy necessary for such computation quickly degrade and features that
are able to be computed from distant data are very domain specific. We introduce an on-
line, probabilistic model to effectively learn to use these scope-limited features by lever-
aging other features that, while perhaps otherwise more limited, generalize reliably. We
apply our approach to provide an efficient, self-supervised learning method that accu-
rately predicts traversal costs over large areas from overhead data. We present results
from field testing on-board a robot operating over large distances in v.
vironments. Additionally, we show how our algorithm can be used offline with overhead
data to produce a priori traversal cost maps and detect misalignments between overhead
data and estimated vehicle positions. This approach can significantly improve the ver-

satility of many unmanned ground vehicles by allowing them to traverse highly v
terrains with increased performance. © 2007 Wiley Periodicals, Inc -
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The task

Predict the traversal cost of terrain given overhead data

Figure 2. Sample results of terrain traversal cost predic-
tions. (a) 0.35 m resolution color overhead imagery used
by our online learning algorithm and (b) corresponding
predictions of terrain traversal costs. Traversal costs are
color-scaled for improved visibility. Blue and red corre-
spond to lowest and highest traversal cost estimates,
respectively.



Supervision

e Short range ladar

* Robot assigns traversal
costs to areas in front of
itself from features
computed by interpreting
the position, density, and
point cloud distributions
of sensed obstacles

Figure 1. Typical ladar response from vehicle’s percep-
tion system. Ladar points are color coded by elevation
with lowest points appearing in blue and highest points
appearing in yellow. Vehicle position is shown by the or-
ange square. Notice the large drop in ladar response den-
sity (especially on the ground) as distance from the vehicle
increases. Large objects such as the trees on the left gener-
ate ladar responses even at far ranges but are difficult to
interpret through fixed techniques across different
environments.



Traversal Costs (Local)

P )

Traversal Costs (Global)

Quiz:

What would you call

|”

“supervisory signal” here?




A big advantage: online learning
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How do you evaluate something like this?

Figure 7. Comparison of paths executed by our robot for
shown course when using only on-board perception (in
solid red) and with OOLL (in dashed blue) and FROLL (in
dotted cyan) used in real-time on-board the robot. Course
started at the top right and ended at the bottom left.

Table I. Statistics for course traversals with and without online learning algorithm

Without algorithm With OOLL
Total Traversal time (s) 1369.86 1000.82
Total distance traveled (m) 1815.71 1681.73
Avera%e speed (m/s) 1.33 1.68
interventions 1 0




How do you evaluate something like this?




Conclusions for the whole lecture

* In deep learning:
* Labeled training data is precious
* Unlabled training data is often abundant

» Self-supervised methods are used to learn useful representations from
unlabeled data, using pretext tasks

* In robotics:
* Labeled training data is precious
* Robots can collect large amounts of labeled data cheaply

* Learning from limited supervision is possible!



