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Plan of the lecture

e Part 1: introduction

e Part 2: warm-up on the CIFAR-10 dataset

* Part 3: what is self-supervised learning?

* Part 4: implement&test a simple self-supervised learning method
* Part 5: some examples of self-supervised learning in robotics
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Two main meanings for SSL

e Systems that learn to extract meaningful representations from the
data itself

 Systems (typically robots) that collect their own training data but then
solve a standard supervised learning task
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Self-supervised (aka self-taught)
deep learning



Shades of supervision: full supervision

To some extent, any visual task can be solved now by:
1. Construct a large-scale dataset labelled for that task
2. Specify a training loss and neural network architecture
3. Train the network and deploy
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But...

e Labeled data is expensive (eg medical, or whatever problem they are
paying you to solve)

* Huge amounts of unlabeled data
* Facebook: one billion images uploaded per day
* 300 hours of video are uploaded to YouTube every minute

- we want to exploit unlabeled data, at least in part



Using pretrained weights

Step 1

Prediction

i

Trained
classifier

i

Trained
convolutional
base

Input



Shades of supervision: self-supervised
learning

Can we learn something WITHOUT labels?
How do we (humans) learn?!?

The Scientist in the Crib: What Early Learning Tells Us About the Mind
by Alison Gopnik, Andrew N. Meltzoff and Patricia K. Kuhl

The Development of Embodied Cognition: Six Lessons from Babies

by Linda Smith and Michael Gasser




Definition

* You are interested in solving problem A

* Take a lot of data similar to the one you’ll use, without labels
(of course: you are lazy)

* Invent a problem B (pretext task) on the data for which
* you can get a ground truth for free from the data itself
* you need to “understand” the data in order to solve it

* Train a network for B

- The network has learned something valuable for A, i.e. to
understand the data



You already know at least one method to
achieve this: autoencoders

Input layer Hidden layers Output layer

Pretext task desiderata:
* you can get a ground truth
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* you need to “understand”
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https://www.jeremyjordan.me/autoencoders/



Jnsupervised Visual
Representation Learning

oy Context Prediction

https://arxiv.org/abs/1505.05192,
2015
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we show that the learned ConvNet can be used in the R-
CNN framework [2 1] and provides a significant boost over
a randomly-initialized ConvNet, resulting in state-of-the-
art performance among algorithms which use only Pascal-
provided training set annotations.

1. Introduction

Recently. new computer vision methods have lev eraged
large datasets of millions of labeled examples to leam rich,
high-performance visual representations [32]. Yet effons
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Figure 1. Our task for learning patch representations involves ran-
domly sampling a patch (blue) and then one of cight p(-)\\lhlc
neighbors (red). Can you guess the spatial configuration for the
two pairs of patches? Note that the task is much casier once you
have recognized the object!
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in the context (i.e.. a few words before and/or after) given
the vector. This converts an apparently unsupervised prob-
lem (finding a good similarity metric between words) into
a "self-supervised” one: learning a function from a given
word to the words surrounding it. Here the context predic-
tion task is just a “pretext” to force the model to leam a
good word embedding, which. in tum, has been shown to
be useful in a number of real tasks, such as semantic word
similarity [£0]

Our paper aims to provide a similar “self-supervised™”
f(v)m.lulalion for image data: a supervised task involving pre-
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Pretext task desiderata:

Some more, e * you can get a ground truth

for free from the data itself

e you need to “understand”
the data in order to solve it
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How can we evaluate
whether the representation
makes sense?

e Given a query patch, we
can look for nearest
neighbors in the dataset

Are these semantically
similar?
* |t turns out that... Yes,
they are

 Surprisingly they also are
somewhat similar if the
network is randomly
initialized (!)
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B MWAHAHRHRHARSS
Find the bug - ——

* The network will CHEAT if it can

* When designing a pretext task,
care must be taken to ensure that
the task forces the network to
extract the desired information
(high-level semantics, in our case),
without taking “trivial”

shortcuts. Pretext task desiderata:

=)

e you can get a ground truth
for free from the data itself

e you need to “understand”
the data in order to solve it




Brainstorm: you are a lazy neural network

_ I— You are a network that, given the

| center patch and one of the others,
has to predict the relative position
of the second wrt the first (8
possible classes).

Think of lazy ways to solve the
problem without actually
understanding the image!




Anti-cheat 1 and 2!

low-level cues like boundary patterns or
Include a textures continuing between patches

could potentially serve as a lazy shortcut
gap
: it is possible that long lines spanning
Jitter the patCh neighboring patches could could give
locations away the correct answer

)




What is cheat 3? Hint...

> P ) L g e

-f?-"-




Chromatic aberration




Cheat 3 (genius!)

* Chromatic aberration arises from
differences in the way the lens focuses
light at different wavelengths. In some
cameras, one color channel (commonly
green) is shrunk toward the image center
relative to the others.

A ConvNet, it turns out, can learn to
localize a patch relative to the lens itself
simply by detecting the separation
BIetV\;een green and magenta (red +

ue).

* Once the network learns the absolute
location on the lens, solving the relative
location task becomes trivial.

.
o
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Anti-cheat 3
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work (CNN). The representation contains complementary information to
that leamed from supervised image datasets like ImageNet. Qualitative
results show that our method captures information that is temporally
varying, such as human pose. \When used as pre-training for action recog-
nition, our method gives significant gains over leaming without external
data on benchmark datasets like UCF101 and HMDB51. To demonstrate
its sensitivity to human pose, we show results for pose estimation on the
FLIC and MPII datasets that are competitive, or better than approaches
using significantly more supervision. Our method can be combined with

supervised representations to provide an additional boost in accuracy.

Keywords: Unsupervised leaming: Videos: Sequence Verification; Ac-

tion Recognition; Pose Estimation: Convolutional Neural Networks
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Pretext problem (classification): LEEAcEESREEIEE
* you can get a ground truth

Q)

re these frames in the correct .
for free from the data itself

order? e you need to “understand”
the data in order to solve it
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* What is the problem if

you sample frames from
any video?

* That most samples will be
impossible to predict due

to almost no motion S I
sampling
* Then, only sample from to high
high-motion windows motion
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Colorful image
colorization

2016
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Colorful Image Colorization
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photograph as input. this paper attacks
ausible color version of the photograph.
\strained, so previous approaches have
raction or resulted in desaturated col-
that produces vibrant

Abstract. Given a grayscale
the problem of hallucinating a pl
This problem is clearly undercor
either relied on significant user inte
orizations. We propose a fully automatic approach :
and realistic colorizations. We embrace the underlying uncertainty 9f the
problem by posing it as a classification task and use cla.\s‘-robale}u('lug at
training time to increase the diversity of colors in the result. The sys-
tem is implemented as a feed-forward pass in a CNN at test time and is
trained on over a million color images. We evaluate our algorithm using a
“colorization Turing test.” asking human participants to choose between
a generated and ground truth color image. Our method successfully fools
humans on 32% of the trials, significantly higher than previous methods.
Moreover, we show that colorization can be a powerful pretext task for
self-supervised feature learning, acting as a cross-channel encoder. This
approach results in state-of-the-art performance on several feature learn-
ing benchmarks.

Keywords: Colorization, Vision for Graphics, CNNs, Self-supervised
learning

1 Introduction
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Image colorization (haIIucmate colors)
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Pretext task desiderata:
e you can get a ground truth
for free from the data itself

g

"2 * you need to “understand”
the data in order to solve it




Main idea

Learned
representation
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SIMCLR: Contrastive
Learning of Visual
Representations

https://arxiv.org/pdf/2002.05709.pdf
2020
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cf presents SimCLR: a sumple framework
o preseatations.

This pay

for contrastive learning of visual re .
We simplify recently proposed contrasive s¢ :
algonthms without requinng

supervised learming
= s or a memory bank. In

specialized arc hitectur
order to understand what enables the contrastive
prediction tasks to learn useful representations,
we systematically study the majoe componcnts of
our I‘unr\wtk We show that (1) composition of
data augmentations playsa cntical role in defining
effective predictive tasks, (2) introducing a leam-
able nonlincar transformation between the repre-
sentation and the contrastive Joss substantially im-
proves the quality of the learned representations,
and (3) contrastive leaming benefits from larger
batch sizes and more training steps compared to
supervised leaming. By combining these findings,
we are able to considerably outperform previous
methods for self-supervised and semi-supervised
learning on ImageNet. A lincar classifier trained
on self-supervised representations learned by Sim-
CLR achicves 76.5% top- 1 accuracy, which is a
7% relative improvement over previous state-of -
the-an, matching the performance of a supervised
ResNet-50. When fine-tuned on oaly 1% of the
labels, we achieve 85.8% top-$ accuracy, outper-
forming AlexNet with 100 fewer labels. '

L. Introduction
Learning effective visual fepresentations without human
supervision is a long-standing problem
appeoaches fall into one
chminative. Generative approaches leam to generate of
otherwise model pixels in the iny
2006; Kingma & Welling,

Most mainstream

2013; Goodfellow et al, 2014)
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Figure 1. ImageNet Top-1 accuracy of hincar classfiers trained
on representations leamed with different self-supervised meth
ods (pretrained on ImageNet). Gray cross indicates supervised
ReNet-50. Our method. SimCLR. 15 shown in bold

However, pixel-level generation is computationally expen-
sive and may not be necessary for representation leaming
Discriminative approaches learn representations using objec-
tive functions similar 1o those used for supervised leaming,
but train networks to perform pretext tasks where both the in-
puts and labels are derived from an unlabeled dataset. Many
such approaches have relied on heuristics to design pretext
tasks (Doersch et al., 2015; Zhang et al., 2016; Noroozi &
Favaro, 2016; Gidaris et al., 2018), which could limit the
gencrality of the learned representations Discriminative
approaches based on contrastive leaming in the latent space
have recently shown great pronuse, achicving state-of-the-
ant results (Hadsell et al., 2006; Dosovitskiy et al., 2014
Oord ct al., 2018; Bachman etal, 2019)

In this work, we introduce a simple framework for con-
(u\u.\c leaming of visual fepresentations, which we
SimCLR. Not only does SimCLR outy

(Figure 1), but it is also simpler, requiring neither special-
1zed architectures (Bachman et al, 2019; Hénaff et al 2019)
Ror a memory bank (Wu et al : 19
ctal, 2019; Misra

call
perform previous work

2018; Tian et al., 2019; He
& van der Maaten, 2019)
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Ponents of our fram

les good contrastive repre-
Wwe systematically study the major com-
ework and show that




What can we expect about the
representations of these four images?




Main idea

Use a contrastive learning loss
to train CNN and MLP such that:

- similar outputs for different
augmentations of the same
Image

- different outputs for different
Images

https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html



Pretext task desiderata:
* you can get a ground truth

Wh |Ch a Ugmeﬂtathn |S for free from the data itself
beSt? e you need to “understand”

the data in order to solve it

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering



Seems fine... ?

(a) Original

(c) Crop, resize (and flip)

-

| can be lazy and just check if
the color histograms
approximately match!

a




Seems fine... ?

| can be lazy and just check if
the geometry approximately
matches!

(~a)AQItiginal ) (e) Color distort. (jitter)




The datal

e Any individual
augmentation is not very
helpful

* Applying two
augmentations at the
same time (Color and
Crop) forces the model to
actually learn semantics!

| HAVE TO LEARN

-
SEMANTICS

Crop

Cutout

Color

Sobel

Noise

1st transformation

Blur

Rotate

N\ . \! e e
o N\ \o' e 22 A XS
(@ (,0"0 ) (_)00 W %) @0‘6 w‘e( )

2nd transformation

Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-
dividual or composition of data augmentations, applied only to
one branch. For all columns but the last, diagonal entries corre-
spond to single transformation, and off-diagonals correspond to
composition of two transformations (applied sequentially). The
last column reflects the average over the row.
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Why the projection?

It turns out that the best
representation to use for
downstream tasks is not the
MLP output, but its input.

But the MLP is useful during
training. Why?

The MLP loses information, e.g.
color, in order to achieve the
contrastive loss. This
information might be relevant
for downstream tasks!
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Barlow Twins:
Self-Supervised Learning
via Redundancy
Reduction

https://arxiv.org/pdf/2103.03230.pdf
2021

The method is called Barlow Twins, owing to
neuroscientist H. Barlow's redundancy-reduction
principle applied to a pair of identical networks.

Barlow Twins:

Jure Zbontar LiJing’

Abstract

Self-supervised leaming (SSL) 1s rapidly closing
the gap with supervised methods on large cm?).
puter vision benchmarks A successful approach
1o SSL is to learn embeddings which are invanant
to distortions of the input sample However. a
recurring issuc with this approach is the existence
of m\uAl constant solutions. Most current meth-
ods avoid such solutions by carcful implementa-
tion details. We propose an objective function
that naturally avoids collapse by mecasunng the
cross-correlation matrix between the outputs of
two identical networks fed with distorted versions
of a sample, and making it as close to the identity
matrix as possible. This causes the embedding
vectors of distorted versions of a sample to be sim-
ilar, while minimizing the redundancy between
the components of these vectors. The method is
called BARLOW TWINS. owing to neuroscientist
H. Barlow's redundancy-reduction princ iple ap-
plied to a pair of identical networks. BARLOW
TWINS does not require large batches nor asym-
metry between the network twins such as a pre-
dictor network, gradient stopping, or a moving
.n-cmgc on the weight updates. lnlngunngl) it ben-
chts from very hlxh«hmcmwml output vectors.
BARLOW TWINS outperforms previous methods
on ImageNet for Semi-supervised classification in
the low-data regime. and is on par with current
state of the ant for ImageNet classification with
:l-l:::t:::;:t]cm; :;Jd and for transfer tasks of
Ject detection, !

Self-Supervised Learnin

Ishan Misra'

g via Redundancy Reduction

Stéphane Deny ’

Yann LeCun’ :

Figure 1. BARLOW TWINS's objective function measures the Cross-
u:rlu;l.:lu-n matrix between the embeddings of two identical net-
works fed with distorted versions of a batch of samples, and tries to
make this matrix close to the identity. This causes the embedding
vectors of distorted versions of a sample to be simular, while mini-
mizing the redundancy between the components of these vectors
BARLOW TWINS is competitive with state-of-the-art methods for
self-supervised leaming while being conceptually simpler, natu-
rally avoiding trivial constant (1e. collapsed) embeddings, and
being robust to the training batch size

1. Introduction

Self-supervised learning aims to learn useful representa-
tions of the input data without relying on human annota-
tions. Recent advances in self-supervised leaming for visual
data (Caron ct al., 2020; Chen et al.,

2020a: Grill et al., 2020-
He et al., 2019; Misra

& van der Maaten, 2019) show that
1t 1s possible to learn self-supervised representations that
dre competitive with supervised representations.,
underlying theme that unites these methods is t
am to leamn representations that are invariant u

distortions (also referred to as “data aug
—_—
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Representations
(for transfer tasks)

Main idea Pirted A ing

; Empirical Target
yA ’ 7A Cross-corr. Cross-corr.
Images ‘f,_f] [ ‘ \‘ i} C A

When we train a visual T — o LoT
classification model, our ideal Jo '
features are: YB‘D_Q"ZB/ dimenyon

* Invariant to transformations Encoder  Projector

that do not affect the class

Figure 1. BARLOW TWINS’s objective function measures the cross-

* Not correlated to each other correlation matrix between the embeddings of two identical net-
works fed with distorted versions of a batch of samples, and tries to
make this matrix close to the identity. This causes the embedding
vectors of distorted versions of a sample to be similar, while mini-
mizing the redundancy between the components of these vectors.
BARLOW TWINS is competitive with state-of-the-art methods for
self-supervised learning while being conceptually simpler, natu-
rally avoiding trivial constant (i.e. collapsed) embeddings, and
being robust to the training batch size.



More about the cross correlation matrix...
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Self-supervised deep learning conclusions

* You are interested in solving problem A

* Take a lot of data similar to the one you’ll use, without labels
(of course: you are lazy)

* Invent a problem B (pretext task) on the data for which
* you can get a ground truth for free from the data itself
* you need to “understand” the data in order to solve it

* Train a network for B

- The network has learned something valuable for A, i.e. to
understand the data



Plan of the lecture

e Part 1: introduction

e Part 2: warm-up on the CIFAR-10 dataset

* Part 3: what is self-supervised learning?

* Part 4: implement&test a simple self-supervised learning method
* Part 5: some examples of self-supervised learning in robotics



We are now going try on CIFAR-10!

What we did before...

50’000 labeled images

What we are going to do now...

| 49’800 unlabeled images

[

200 labeled images




Train

Step 1: train the model on the pretext task using all unlabeled images

Flatten
Pretext Outputs




Flatten

Step 2: discard the classification layer




49’800 unlabeled images

Train

Freeze

MP
MP
Flatten
Dense
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Step 3: freeze the convolutional layers and train a new classification layer using only labeled data




Pretext task desiderata:
WhICh pretext task e you can get a ground truth

for free from the data itself

should we implement? T T

the data in order to solve it




