Learning with Limited Supervision

Alessandro Giusti

Dalle Molle Institute for Artificial Intelligence

USI and SUPSI Lugano, Switzerland

Scuola universitaria professionale della Svizzera italiana

Contact: alessandrog@idsia.ch

https://idsia-robotics.github.io/

Lugano, Switzerland

Lugano, Switzerland

A world-class research institute on AI founded in 1988 in Lugano 120+ staff working on:

- Deep learning
- Statistics and data mining
- Visual Computing
- Autonomous robotics
- Natural language processing
- Operations research

A world-class research institute on AI founded in 1988 in Lugano 120+ staff working on:

- Deep learning
- Statistics and data mining
- Visual Computing
- Autonomous robotics
- Natural language processing
- Operations research

GTC keynote on Tuesday April 5, 2016 Jensen H Huang, CEO of NVIDIA

100

Stanford

winersity.

Université m de Montréal

OXFORD

Frameworks for Multi-GPU Pascal Large-scale Deep Learning Reinforcement Learning Unsupervised and Transfer Learning Natural Language

Understanding

Autonomous Driving

Medical Applications

PIONEERS IN AI RESEARCH

Robotics lab: People & Robots

People

- 5 Postdoc researchers
- 2 Researchers without PhD
- 3 PhD Students

Robots

- 6 ground (1-10 kg)
- 10+ flying (20-500 g)
- 30+ swarm (50-200 g)

90 sqm **robot lab** equipped with 18-camera mocap system

Research Themes

Perception for Autonomous Mobile Robots

- Self-supervised Deep Learning
- Nano-quadrotors

Human-Robot Interaction

Robot Swarms

Industrial applications

- Manufacturing / Machining
- Optical Inspection
- Space

Visual control of drones in forests

QUADCOPTER NAVIGATION IN THE FOREST

TRAIL FOLLOWING UNDER THE TREE CANOPY

Finalist, AAAI video awards, 2016, Phoenix, USA

Giusti et al., Robotics and Automation Letters, 2016 -- https://youtu.be/umRdt3zGgpU

Visual control of nano drones in human proximity

Mategazza et al., ICRA 2019 -- https://github.com/idsia-robotics/proximity-quadrotor-learning

Visual control of nano drones in human proximity

- Full onboard CNN inference and control at 130 frames per second on a 30-gram drone
- < 1 mJ per frame on Parallel Ultra Low Power platform
- Self-supervised learning approach improves performance without explicit ground truth

Palossi et al., Internet of Things Journal, 2021 -- https://github.com/idsia-robotics/pulp-frontnet

Optical analysis of circuit boards

Deep Neural Networks predict multiple component characteristics (type, number of pins, material, dimensions, ...) for self-programming of Automated **Optical Inspection machines**

Deep Neural Networks trained without ground truth estimate component precise localization and rotation

Intelligence Applied to AOI

with Delvitech SA

Visual detection of counterfeit brand labels

Training data augmentation to the rescue

Original

6 out of 500 random variations

Training data augmentation

●●●○○ vodafone 😤

9:41 AM

〈 Chats

ML noob

I have a problem with my model. It has a very low accuracy. Do you think I should implement the retrograde tensor fuzzyfication technique from neurIPS 2019 to improve it?

yesterday

How many instances in your training set? How many parameters in your model? vesterday V

fifteen instances. 4 million parameters. why?

yesterday

Training data is RARE!

For most real-world ML problems

The ML Pipeline (F. Chollet)

- Define the problem at hand and the data on which you'll train. Collect this data, or annotate it with labels if need be.
- Choose how you'll measure success on your problem. Which metrics will you monitor on your validation data?
- Determine your evaluation protocol: hold-out validation? K-fold validation? Which portion of the data should you use for validation?
- Develop a first model that does better than a basic baseline: a model with statistical power.
- Develop a model that overfits.
- Regularize your model and tune its hyperparameters, based on performance on the validation data. A lot of machine-learning research tends to focus only on this step—but keep the big picture in mind.

Plan of the lecture

- Part 1: introduction
- Part 2: warm-up on the CIFAR-10 dataset
- Part **3**: what is self-supervised learning?
- Part 4: implement&test a simple self-supervised learning method
- Part 5: some examples of self-supervised learning in robotics

Plan of the lecture

- Part 1: introduction
- Part 2: warm-up on the CIFAR-10 dataset
- Part **3**: what is self-supervised learning?
- Part 4: implement&test a simple self-supervised learning method
- Part 5: some examples of self-supervised learning in robotics