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Part 1

Variational AutoEncoders
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Plan of the Lecture

● Brief introduction to Variational Inference

● Evidence Lower Bound

● Variational Auto-Encoders

● Geometry of the Latent Space

● Advances in VAEs
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Generative Models in Deep Learning
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Notation for Bayesian Inference

X, Z multivariate random variables, Z continuous, with
probability density functions (pdf) p(x) and p(z) respectively

p(z) is the prior and p(x) the marginal

p(x,z) is the pdf of the joint random variable (X,Z)

p(x|z), p(z|x) are the conditional pdfs of the random variables
X|Z = z and Z|X = x

p(z|x) is the posterior
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General Setting

The continuous latent r.v. Z generates X, 

through fθ(·) a differentiable function such that

�ʃ pθ(x|z) p(z) dz is intractable

The goal is inference, i.e., finding pθ(z|x)

In Variational Inference [1] we approximate

the true posterior pθ(z|x) with qφ(z|x), by minimizing the
Kullback-Leibler divergence KL(qφ(z|x) ∥ pθ(z|x)).

Approach to the solution: maximizing a lower bound 
of the log likelihood.
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Variational Inference 1/2

Deriving the lower-bound

Minimizing the KL is equivalent to maximizing the lower-
bound

The maximum of the lower-bound is the log-likelihood, and it
is obtained when KL(qφ(z|x) ∥ pθ(z|x)) = 0, thus, the problems
are equivalent
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Variational Inference 2/2

Optimizing the lower bound maximizes the log likelihood

The distribution of X can be approximated with importance
sampling

where z(i) ∼ qφ(·|x)

Fixing the family of distributions for the r.v., e.g. we assume
they are Gaussians, we move from variational calculus to
regular optimization of the parameters. The problem becomes
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Variational AutoEncoders

Variational AutoEncoders [6], [11] tackle the problem of
variational inference in the context of neural networks

The parameters φ and θ of qφ(z|x) and pθ(x|z) are learned
through two different neural networks: the encoder and the
decoder
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Applications

● Encode data point: learn a lower dimensional
representation of the dataset, by sampling from qφ(·|x)

● The dimension of the latent variable Z is assumed to be
much smaller than the dimension of the dataset.

●

● Generate new samples from noise examples that resemble
the ones seen during training

● The prior p(z) on the latent variable is assumed Gaussian
N(0,I) and samples are fed through the network to output
the conditional probabilities pθ(x | z)
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Details of the Algorithm

Encoder qφ(z|x) - Gaussian N(μ, D) with diagonal covariance,
parametrized by φ

Decoder pθ(x|z) - Gaussian with diagonal covariance
(continuous data) or Bernoulli vector (discrete data)
parametrized by θ i

For a data point x, rewrite the lower bound L(θ, φ; x)
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Back-propagating through Stochastic Layers

Training neural networks requires computing the gradient of
the cost function, using back-propagation

Difficulty when computing ∇ φEqφ(z|x)[ln pθ(x|z)], indeed the
Monte Carlo estimation of the gradient has high variance

The reparameterization trick: find gφ(·) differentiable
transformation and random variable Γ with pdf p(·), such that
Z = gφ(Γ)

Example: for X∼N(μ,Σ), with Σ=LLT Cholesky decomposition 

X = μ + LΓ , with Γ ∼ N (0, I)
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Limitations and Challenges

Limitations
● The conditional independence assumption on the latent

variables given the observations limits the expressive
power of the approximate posterior

● Limitation on the number of active latent variables when
using a hierarchy of stochastic layers [13]

Challenges
● Difficulty when training on text data: empirical observation

that the learned latent representation is not meaningful [2]
● How to improve the quality of the generated samples, in

case of a dataset of images? How can we find a better
correlation between the images generated and the
maximization of the lower bound?

● How to estimate the tightness of the bound?
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Research Directions

More complex representations for qφ(z|x), by transforming a
simple distribution through invertible differentiable functions,
as in [10] and [5]

Increased complexity of the graphical models, e.g. a hierarchy
of latent variables or auxiliary variables as in [13] and [9]

Designing tighter bounds
● importance weighting estimates of the log-likelihood [3]

● minimizing different divergences (Renyi [8] and α-
divergence [4])

Overcoming the challenge of training VAE on text data [2]
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Gaussian Graphical Models for the Latent Variables

● Gaussian Graphical Models [7] introduce correlations in
the latent variables

● For instance a chain of r.v. ⇒  sparse precision matrix 
P = Σ−1 with number of non-zero components linear in the
dimension of the latent variable

● The encoder network outputs the mean μ and the
Cholesky factor L of the precision matrix. L will have a
special sparse structure and will ensure the positive
definiteness of Σ.

● To sample from N (μ, Σ): solve linear system LT ν = ε,
where ε ∼ N (0, I), and output z = μ + ν

● Sampling from N (μ, Σ) and computing KL(N (μ, Σ) ∥ N (0,
I)) can be done in linear time ⇒  introduce expressiveness
without extra computational complexity.
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Chain of Gaussian Random Variables

The precision matrix P is tridiagonal

The Cholesky factor of such a matrix is lower-bidiagonal
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Analysis of the Representations in the Latent Space

Experiments on MNIST dataset to understand the
representation of the images in the learned latent space

Principal Components Analysis of the latent means will give
us insights about which components are relevant for the
representation.

The components with a low variation along the dataset are
the ones not meaningful.

PCA eigenvalues of the posterior samples are very close to 1
⇒  the KL minimization forces some components to be N (0, I)
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Interpretation of the Plot

VAE trained with latent size 20 on MNIST, only around 15 of
the latent variables are relevant for the representation

The number remains constant when training with a larger
latent size

This is a consequence of the KL regularization term in the
ELBO, which forces some components to be Gaussian noise
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PCA Plots



  

Identification of variables carring information

The number of components carrying information slight change
with the type of lower bound, but not with the hidden space
dimension



  

Identification of variables carrying information

The number of components carrying information slight change
with the type of lower bound, but not with the hidden space
dimension



  

Sparse representations / data compression

We observe, sparsity which implies data compression

The level of sparsity is
● controlled by the regularization parameter
● independent from the latent space dimension

(for dimension large enough)
● independent from the encoder network topology (for

networks which are large enough)

Sparsity appears also for generalized lower bounds (for
instance based on Renyi divergence)
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Geometry of the Latent Space: VAE vs AE

VAE is trained on MNIST with 2 latent variables. The plot
represents the means of the posterior for each point in the
dataset, colored by corresponding class

● Linear separability of the classes in 
the space of latent representations

● Sampling in the latent space from 
the empty regions ⇒  images that
are not digits

● Linear interpolation property
⇒  continuous deformation in the 
latent space between two different 
images
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Geometry of the Latent Space: VAE vs AE

Source: Difference between AutoEncoder (AE) and Variational AutoEncoder (VAE),
Aqeel Anwar, https://towardsdatascience.com/



  

Maps from Observations to Statistical Models
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x

sampling
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Linear separability over the manifold qθ(z|x)

The manifold parameterization (μ
x
,Σ

x
) carries more

structure than the latent space



  

Geodesics over independent Gaussians

Statistical models admit a Riemannian geometry based on the
Fisher Rao metric, which gives invariant notions of distances,
geodetics, gradients (Amari, 1982)

μ
x

Σ
x



  

Interpolations of Images

● Linear interpolation in the input space
● Linear interpolation between the latent mean vectors 
● Linear interpolation between two hidden representations
● Decoded samples from the normal distributions found along the Fisher-Rao

geodesic in the latent space
● Decoded latent means of the normal distributions found along the Fisher-Rao

geodesic in the latent space



  

Advances in VAEs: Normalizing Flows

Normalizing Flow (Rezende et al., 2015) and IAF (Kingma et.
al, 2016) allow to build building flexible posterior distributions
through an iterative procedure



  

Advances in VAEs: Bidirectional Inference

Inverse Autoregressive Flows (Kingma et. al, 2016)



  

Advances in VAEs: Vector Quantization

VQ-VAE (Aaron van den Oord et al., 2018)
● Discrete representation learned during training
● Nearest element embedding
● No backpropagation, gradient is estimate as in straight-

through estimator (from decoder input to encoder output)
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Part 2a

Anomaly Detection based on Variational AutoEncoders
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Surveys
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arXiv:2007.02500, 2020

● Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen,
Grégoire Montavon, Wojciech Samek, Marius Kloft, Thomas G.
Dietterich, Klaus-Robert Müller, A Unifying Review of Deep and
Shallow Anomaly Detection, arXiv:2009.11732, 2020
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What is Anomaly Detection?

Identification of instances which are not normal/regular w.r.t. a
set of observations

Several challenges
● Anomalies are usually uncommon (few samples, difficulties to

label data)
● Anomalies may not be known in advance when the algorithm is

designed (or trained)
● Interpretability: Identification of the anomaly in the instance

(e.g., portion of image or time window for a signal)

● Different domains: images, signals, categorical data, time
series, etc
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Examples of Anomalies in Industrial Applications

MVTec Anomaly Detection Dataset - MVTec AD
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Examples of Anomalies in Healthcare

BRATS dataset          Heartbeat dataset
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Many Approaches, No Unified Taxonomy

Supervised vs weakly-supervised vs unsupervised methods 

Model-based vs distance-based anomaly detection

Clustering-based (distance are used and a cluster is a model)

Training (requires a training set) vs non-training of a model (data
are directly fed to the algorithm)

Methods based on Deep Learning: “Deep” Anomaly Detection
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Supervised vs Unsupervised Methods

Supervised methods
● A labelled dataset is available
● Anomaly detection can be formalize as binary classification

dataset
● Anomalies are commonly rare: high imbalance

Non-supervised methods
● Anomalies are typically not used in training
● Only regular instances are used in training: weakly/partially

or semi-supervised
● Since many methods are robust w.r.t. outliers in training,

semi-supervised methods are referred as unsupervised
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Distance-based Anomaly Detection

● These methods rely on a distance computation to identify
anomalies

● Distances are used to compute densities, anomalies
appear in low density regions

Distances are used to compute densities in
● nearest-neighbor-based methods
● density-based methods

Example: Local Outlier Factor (LOF)

The density of a data point is compared with those of its k-
nearest neighbors under the assumption that for inliers these
two quantities are similar
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Model-based Anomaly Detection

A model of the regular instances in learned in training
(typically in an unsupervised or weakly supervised way)

Outliers are identified as those observations which do not fit
the model

Usually robust to outliers when the method is unsupervised

Example: OneClass Support Vector Machines

Data points are projected in a high dimensional space using
kernels

OneClass SVM computes a boundary around the data points
together with a decision function, by solving an opt problem

The score function is based on the margin
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Clustering-based Anomaly Detection

The main idea is to cluster data set and then to flag
anomalies as those data points which do not belong to any
cluster

In unsupervised methods, clustering algorithms need to be
robust, to avoid to add outliers to a cluster

If multiple outliers form a cluster, they may be considered as
regular points (inspection of small or sparse clusters)

Example is FindOut [13], which does not force outliers into
clusters, or k-means with extra checks for anomalous clusters
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“Deep” Anomaly Detection

A set of methods for Anomaly Detection based on the use of
Deep Learning models

● Features Extractors (e.g., classifications model used as
features extractors)

● Reconstruction Models (AE, VAE, etc)
● Generative Models (VAE, GAN, etc)

DL allows an end-to-end approach to Anomaly Detection: the
anomaly score is learned in training simultaneously with the
features
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A Toy Example 1/2

Take a pre-trained model, e.g., VGG16 on ImageNet



46

A Toy Example 2/2

Features extracted from fc6 layer, followed by a 2-dim PCA

 3         4            5           6

18

19

20
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Anomaly Detection using (Variational) AutoEncoders

Main characteristics of AutoEncoders (AE)
● provide a compact hidden representation (dimensionality

reduction)
● are trained to reconstruct good quality images

Additionally, Variational AutoEncoders (VAE)
● are generative models with a prior distribution on the latent

space
● the bottleneck layer is obtained by sampling from a

statistical model (approximate posterior)
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Anomaly Scores with (Variational) AutoEncoders

In addition anomaly scores
● can be defined in the input space (high-dimensional) or in

the latent space (compact representations)
● may have a statistical interpretation

– AE can be trained by maximization of the likelihood 

– VAE are trained my the maximization of a lower-bound of
the likelihood, the ELBO)

– for VAE, anomaly scores can be defined over the space of
approximate posteriors
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Anomaly Scores for AEs: Input Space

An AE trained on regular instances only should not perform
well in reconstructing anomalies

Main idea: the model has learned a truth manifold structure of
prototypical representation, and thus large reconstruction
errors would imply off-manifold or non-prototypical instances

A candidate reconstruction loss is given by the reconstruction
error s(x) = || x – r ○ e(x)||2

Typically, no statistical interpretation for such reconstruction
loss



50

Anomaly Scores for AEs: Latent Space

Distance functions can loose their meaning and function in
high dimensions 

AEs provide compact representation of the input data in the
bottleneck layer

Anomaly Scores typically used with shallow models can be
used on the lower-dimensional latent representations

Examples
● Distance-based Anomaly Detection (Local Outlier Factor)
● Model-based Anomaly Detection (OneClass SVM)
● Clustering-based Anomaly Detection (FindOut, k-means)

Typically better performance compare to the input space
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Anomaly Scores for VAEs: Reconstruction Loss

Anomaly scores based on p(x)

1. Sample z from the prior p(z)

2. Estimate p(x) through Ez∼p(z) [pθ(x|z)]

This has a nice theoretical interpretation, but it performs
worse than conditioning on x 

 1. Sample z from qϕ(z|x)

 2. Estimate p(x) through Ez∼qϕ(z|x) [pθ(x|z)]

(probabilistic reconstruction model)
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A Partial List of Algorithms based on VAE for AD

● Vuet al. (2019) introduced an approach combining VAEs
and adversarial training

● João Pereira et. al (2018) introduce a local metric based
on Wasserstein distance in the latent space

● Zimmerer et al. (2019) proposed to combine context-
encoders and VAEs to obtain a more robust anomaly
detection framework

● Chen et al. (2018) a  regularizer  that  encourages  the
learning  of  more suitable  latent  space  representations
for  unhealthy  images  and  their  healthy counterparts
was introduced (representation consistency)

=> they observe that abnormal images are not necessarily
mapped outside the predetermined latent distribution
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Identifying Where the Anomaly Appears

Identifying the anomaly in the dataset is a more complex task
than simply classifying anomalous vs regular instances

Several alternatives are possible
● If the Anomaly Score is compute in the input space, the

segmentation task can be obtained by taking the difference
between the input image and its reconstruction

● If the Anomaly Score is computed in the latent space, a
directional derivative in the “direction of normality” can be
computed with respect to the pixels of the image
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Part 2b

Two Applications in Anomaly Detection in Healthcare
based on Variational AutoEncoders
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Thanks for your attention

www.luigimalago.it

malago@tins.ro
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