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CNN FOR IMAGE DENOISING
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literature survey
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OBSERVATION MODEL

z(x) =yx)+nx),xeX
z : X = IR observed noisy image

y: X = R unknown original image (grayscale)

n: X - Ri.i.d. Gaussian white noise, n ~ N(0,0%)

Boracchi, 2022



GOAL OF IMAGE DENOISING

The purpose of any denoising algorithm is to provide y, an estimate of the original
image .

Boracchi, 2022



GOAL OF IMAGE DENOISING

And the same works for RGB images

Boracchi, 2022



IMAGE DENOISING

Denoising plays a crucial role in many stages of imaging pipelines:

* Preprocessing: to enhance output quality and improve the effectiveness of
subsequent algorithms

« Post-processing: to remove compression artifacts (e.g. blocks and ringing)

* Plug-and-play filter: as an implicit regularization prior in various imaging applications

Katkovnik, V., Foi, A., Egiazarian, K., & Astola, J.From local Rernel to nonlocal multiple-model image denoising. International journal of computer vision, 2010



STRAIGHTFORWARD SOLUTION
NN architecture: a CNN having the same input and output size, like those for semantic
segmentation.
Training data: TR = {(y,z), being y a natural image}
Easy to gather large TR, given the forward model to generate noisy images.

Inverse pass, ill-posed, unknown

CNN

y Boracchi, 2022




STRAIGHTFORWARD SOLUTION

NN architecture: a CNN having the same input and output size, like those for semantic
segmentation.

Training data: TR = {(y,z), being y a natural image}

Easy to gather large TR, given the forward model to generate noisy images.

Forward pass, ruled by physical laws / sensor Inverse pass, ill-posed, unknown

As long as the forward model is know and reallstlc and as far as |
can train the CNN, the same procedure can be used for any type
of perturbation
e.g. denoising, deblocking, deblurring, super-resolution, inpainting,
enhancement de ra:mng

y Z Z y Boracchi, 2022



IMAGE DENOISING BY CNNS

We will consider this a reference problem.

> Is denoising by deep neural network a Superivsed or Unsupervised Learning probem?

* |t is an unsupervised problem since no label / annotation is required for training.

* The loss function however is typical of supervised learning, say the MSE
1Y =l

Weight optimization by reducing a loss function has made a substantial difference w.r.t.
existing denoising algorithm, which were primarily designed over statistical modeling of
the input and the noise.



SIMPLE DEEP NNS FOR IMAGE DENOISING
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Beyond a Gaussian Denoiser: Residual Learning
of Deep CNN for Image Denoising

Kai Zhang, Wangmeng Zuo, Senior Member, IEEE, Yunjin Chen, Deyu Meng,
and Le1 Zhang, Senior Member, IEEE



DN-CNN: THE ARCHITECTURE (FCNN)

Noisy Image

Residual Image

Conv + RelU
Conv + BN + RelLU
Conv + BN + RelLU
Conv + BN + RelLU

Conv

ni=42j — )i

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” |EEE
Transactions on Image Processing, vol. 26, no. 7, pp. 3142-3155. |uly 2017.



RESIDUAL LEARNING

The network is trained to predict the
noise, rather than the noise-free
image
TR={(z,n), z=y+n}
Thus the output will be
Yy=z —1N=z—CNN(2)

It easier to optimize the loss function
over the noise ||[n — CNN(2)||,
rather than on the image

CNN




DNCNN ARCHITECTURE

Network architecture:
e Conv+RelU : 64 filters of size 3 x 3 x ¢ (layer 1)..
e Conv+BN+ReLU: 64 filters of size 3 x 3 x 64 (layer 2 -d — 1) + Batch Normalization

e Conv: c filters of size 3 x 3 x 64 are used to reconstruct the input

Border artifacts:

zero padding outside the image before the processing

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” IEEE Transactions on Image
Processing. vol. 26. no. 7, pp. 3142-3155. July 2017.



DNCNN DETAILS

LosS to minimize

N
1
£(0) = o > ICNN(z;,0) = (z; — y)II?
=1

* Assessing on how good the network can estimate the noise realizations in images
* Training samples are easy to generate: add synthetic corruption

* To ease the training process, the loss is assessed on patches cropped from noisy
images.

* Since the network is fully convolutional, it can be applied to images of arbitrary size

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” IEEE Transactions on Image
Processing. vol. 26. no. 7, pp. 3142-3155. July 2017.



DNCNN DETAILS
Training:

400 images of 180 x 180 pixels (larger training sets do not improve performance
substantially)

Network training is performed patch-wise
* 40x40 patches for Gaussian denoising
e 50x50 patches for other denoising problems

Repeat training when corrupting training images by different noise levels o

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” IEEE Transactions on Image
Processing, vol. 26, no. 7, pp. 3142-3155, July 2017.



BATCH NORMALIZATION

Consider a batch of activations {x;}, the following transformation bring these to unit
variance and zero mean

, X — Ex]
X; =
Jvar[xi]
Where E|x;] and \/var[xi] are computed from each batch and separately for each

channell
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Wu and He, “Group Normalization”, ECCV 2018

Can we get more flexibility than zero-mean, unit variance?

loffe, S. and Szegedy, C., Batch normalization: Accelerating deep networR training by reducing internal covariate shift. ICML 2015



BATCH NORMALIZATION

Batch normalization adds after standard normalization
,_ X~ Elx]

X; =
Jvar[xl]

a further a parametric transformation
Yij =VjXi + B

Where parameters y and f are learnable scale and shift parameters.

Rmk: estimates E[x;] and /var[x;] are computed on each minibatch, need to be fixed

after training. After trammg, these are replaced by (running) averages of values seen
during training.

loffe, S. and Szegedy, C., Batch normalization: Accelerating deep networR training by reducing internal covariate shift. ICML 2015



BATCH NORMALIZATION

Input: Values of z over a mini-batch: B = {z; ,,}:
Parameters to be learned: -, /3
Output: {y; = BN, s(z;)}
<— ! i // mini-batch
! — T mini-batch mean
1B m 2=
O L i(r — ug)° // mini-batch variance
Som i=1 1
T; 4 i — BB // normalize
\ /G’BE + €
y; < vx; + B = BN, g(x;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

loffe, S. and Szegedy, C., Batch normalization: Accelerating deep networR training by reducing internal covariate shift. ICML 2015



BATCH NORMALIZATION

During testing batch normalization becomes a linear operator! Can be fused with the
previous fully-connected or conv layer

In practice networks that use Batch Normalization are significantly more robust to bad
initialization

Typically Batch Normalization is used in between FC layers of deep CNN, but sometimes
also between Conv Layers

loffe, S. and Szegedy, C., Batch normalization: Accelerating deep networR training by reducing internal covariate shift. ICML 2015 Boracchi, 2022



BATCH NORMALIZATION

Pros:

* Makes deep networks much easier to train!

* Improves gradient flow

* Allows higher learning rates, faster convergence

* Networks become more robust to initialization

e Acts as regularization during training

« Zero overhead at test-time: can be fused with conv!
Watch out:

* Behaves differently during training and testing: this is a very common source of
bugs!

Boracchi, 2022



DNCNN DETAILS

Denoising task:

* Denoising additive white Gaussian noise
e with a known variance
e With unknown variance

* Denoising other artifacts:
e bicubic upsampling (Super-resolution)
e |peg compression

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” IEEE Transactions on Image
Processing, vol. 26, no. 7, pp. 3142-3155, July 2017.



THE RECEPTIVE FIELD
A VERY IMPORTANT ASPECT IN CNNS



THE RECEPTIVE FIELD

One of the basic concepts in deep CNNs.

Due to sparse connectivity, unlike in FC networks where the value of each output
depends on the entire input, in CNN an output only depends on a region of the input.

This region in the input is the receptive field for that output

The deeper you go, the wider the receptive field is: maxpooling, convolutions and stride
> 1 increase the receptive field

Usually, the receptive field refers to the final

output unit of the network in relation to the /
network input, but the same definition holds 42

for intermediate volumes — =0 0000

3
By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45659236

Boracchi, 2022



RECEPTIVE FIELDS

Fully connected

3x1 convolutional

Ts
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I3

T2
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RECEPTIVE FIELDS

Deeper neurons depend on wider patches of the input (convolution is enough to
increase receptive field, no need of maxpooling)
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3x1 convolutional
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RECEPTIVE FIELDS

Input map
C;z ™ ™ ™ ™ ™
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How large is the receptive field of the black neuron?
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Boracchi, 2022



AS WE MOVE DEEPER..

As we move to deeper layers:

e spatial resolution is reduced

e the number of maps increases

We search for higher-level patterns, and ¢

There are more high-level patterns than ¢

111

cat”




DN-CNN DEPTH AND RECEPTIVE FIELD

Network depth:

To be sized depending on the "receptive field", to make that comparable to receptive fields in image
denoising algorithms.

Having only 3x3 convolutions, the receptive field of a d-layered network is (2d + 1) X (2d + 1)
« d =17 for Gaussian denoising (known variance)

« d =20 for Gaussian denoising (unknown variance) and artefact removal (superresolution / jpeg)

TABLE 1
THE EFFECTIVE PATCH SIZES OF DIFFERENT METHODS WITH NOISE LEVEL o = 25.

Methods BM3D [] WNNM [ 7] EPLL [7] MLP [71] CSF [11] TNRD [16]
Effective Patch Size 49 x 49 361 x 361 36 x 36 47T =% 47 61 x 61 61 x 61

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” IEEE Transactions on Image
Processing. vol. 26. no. 7, pp. 3142-3155. July 2017.



DNCNN LIMITATIONS
DNCNN learns a mapping function
z->F(@O, 2)

Where the network parameters @, depend on o, the noise standard deviation

DNCNN is hard to be deployed to images corrupted by:
- different noise levels.
- different noise models

- spatially variant / signal deptendent noise.

Zhang, Kai, Wangmeng Zuo, and Lei Zhang. "FFDNet: Toward a fast and flexible solution for CNN-based image denoising." IEEE Transactions on Image Processing 27.9
(2018): 4608-4622.



LOSS FUNCTIONS FOR TRAINING
A DENOISING CNN
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LLoss Functions for Image Restoration
With Neural Networks

Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz

Abstract—Neural networks are becoming central in several ar-
eas of computer vision and image processing and different archi-
tectures have been proposed to solve specific problems. The impact
of the loss layer of neural networks, however, has not received
much attention in the context of image processing: the default and
virtually only choice is £,. In this paper, we bring attention to
alternative choices for image restoration. In particular, we show
the importance of perceptually-motivated losses when the result-
ing image is to be evaluated by a human observer. We compare the
performance of several losses, and propose a novel, differentiable
error function. We show that the quality of the results improves
significantly with better loss functions, even when the network ar-
chitecture is left unchanged.

Index Terms—Image processing, image restoration, neural net-
works, loss functions.

trying to fool networks with specific inputs [6]. Other advances
were made on the techniques to improve the network’s conver-
gence [7].

The loss layer, despite being the effective driver of the net-
work’s learning, has attracted little attention within the image
processing research community: the choice of the cost function
generally defaults to the squared 5 norm of the error [3], [8]—
[10]. This is understandable, given the many desirable properties
this norm possesses. There 1s also a less well-founded, but just
as relevant reason for the continued popularity of ¢5: standard
neural networks packages, such as Caffe [11], only offer the
implementation for this metric.

However, ¢5 suffers from well-known limitations. For in-

1 a1 . k| « 1 1 h | 1% tul



LOSS FUNCTIONS FOR RESTORATION

General loss for a patch:

5P =+ 3 E)

peP

The choice of the cost function generally defaults to the squared ¢, norm of the error.
But, ¢, correlates poorly with image quality as perceived by a human observer.

* E.g. £, assumes that the impact of noise is independent of the local characteristics of
the image.

Typically, £,works under the assumption of white Gaussian noise, which is not valid in
general.

Zhao et al. “Loss Functions for Image Restoration With Neural Networks” 2017



LOSSES: ¢,

It does not over-penalize larger errors, and, consequently, it may have different
convergence properties wrt #,.

L (P Z z(p) — y(p),

pEP

0L (p)/0q = 0,Yq # p OL™(P)/dx(p) = sign (z(p) — y(p))

Zhao et al. “Loss Functions for Image Restoration With Neural Networks” 2017



LOSSES: SSIM

The loss is the SSIM index in all the pixel of the patch

L£SM(p) = % > 1 —SSIM(p)

peP
Where SSIM(p) 22”$”192+ Ci 22%9:02
Hz +py +C1 o op +0y+ 0o
= Il(p) - es(p)
The means and standard deviations are computed with a Gaussian filter with standard
deviation o.

Since the network is convolutional, it is possible to compute the patch loss as the SSIM
at the central pixel of the patch p

L3M(P) =1 — SSIM(p)

Wang, Zhou, and Alan C. Bovik. "A universal image quality index." IEEE signal processing letters 9.3 (2002): 81-84.



LOSSES: SSIM

Limitations of SSIM used for training CNN

* Small o, the network loses the ability to preserve the local structure introduce
artifcts in flat regions;

* large o; we observe that the network tends to preserve noise in the proximity of
edges.

For color images, SSIM-based losses are still an approximation since were designed for
grayscale images



LOSSES: MS-SSIM

Instead of fine tuning o it is possible to adopt a multiscale version of the SSIM

LMSSSIM( Py — 1 — MS-SSIM(5)

The MS-SSIM should be computed over an image pyramid, which is computationally

demanding

However, it can be well by the SSIM using different
values of o,

Zhao et al. “Loss Functions for Image Restoration With Neural Networks” 2017

Level 4
Blur and L1/16 resolution

subsample ’ Level 3

Blur and 1/8 resolution
subsample ' | Level 2
; 1/4 resolution
Blur and
subsample -
Ls Level 1
1/2 resolution
Blur and
subsample
Level 0
Original

image



LOSSES: MIXED £1 AND MS-SSIM

By design, both MS-SSIM and SSIM are not particularly sensitive to uniform biases,
resulting in changes of brightness or shifts of colors. MS-SSIM preserves the contrast in
high-frequency regions better than €4 and 1.

£1 preserves colors and luminance —an error is weighed equally regardless of the local
structure— but does not produce quite the same contrast as MS-SSIM.

To capture the best characteristics of both error functions

LMix — o - EMS-SSIM + (1 . Oé) . Gggf . ££1
Where G _m is a Gaussian kernel point-wise multiplied to make the ¢1 comparable with

G
the MS-SSIM (which adopts Gaussian decay)

Zhao et al. “Loss Functions for Image Restoration With Neural Networks” 2017



LOSSES: EXPERIMENTS

h k f Denoising + demosaicking Training cost function
Image quality metric Noisy | BM3D 2 15 SSIM5 | SSIMg | MS-SSIM Mix
T e networ per Ormance 1000 - £2 1.65 0.45 0.56 0.43 0.58 0.61 0.55 0.41
. . PSNR 28.24 34.05 33.18 34.42 33.15 32.98 33.29 34.61
IMProves with better loss 1000 - £1 27.36 | 14.14 | 1590 | 1347 | 1590 | 1633 15.99 13.19
SSIM 0.8075 0.9479 0.9346 | 0.9535 | 0.9500 | 0.9495 0.9536 0.9564
M MS-SSIM 0.8965 0.9719 0.9636 | 0.9745 | 0.9721 0.9718 0.9741 0.9757
functions , Even w hen the TW-SSIM 0.8673 | 09597 | 0.9473 | 0.9619 | 09587 | 0.9582 | 09617 | 0.9636
. GMSD 0.1229 0.0441 0.0490 | 0.0434 | 0.0452 | 0.0467 0.0437 0.0401
FSIM 0.9439 0.9744 0.9716 | 09775 | 09764 | 0.9759 0.9782 0.9795
n etWO rk a‘ rC h I te Ct u re FSIM, 0.9381 0.9737 0.9706 | 0.9767 | 0.9752 | 0.9746 0.9769 0.9788
i Super-resolution Training cost function
| S left u n C h a n ge d ‘ Image quality metric | Bilinear £y 4 MS-SSIM Mix
1000 - £ 2.5697 1.2407 1.1062 1.3223 1.0990
PSNR 27.16 30.66 31.26 30.11 31.34
1000 - ¢4 28.7764 | 20.4730 | 19.0643 22.3968 18.8983
1 SSIM 0.8632 0.9274 0.9322 0.9290 0.9334
TeSted O n dlffe re nt MS-SSIM 0.9603 0.9816 0.9826 0.9817 0.9829
. k IW-SSIM 0.9532 0.9868 0.9879 0.9866 0.9881
GMSD 0.0714 0.0298 0.0259 0.0316 0.0255
reStO ratl O n tas S FSIM 0.9070 0.9600 0.9671 0.9601 0.9680
FSIM,. 0.9064 | 0.9596 | 0.9667 0.9597 0.9677
JPEG de-blocking Training cost function
Image quality metric | Original JPEG Lo ‘1 MS-SSIM Mix
1000 - £2 0.6463 0.6511 0.6027 1.9262 0.5580
PSNR 32.60 32.73 32.96 27.66 33.25
1000 - £ 16.5129 16.2633 | 16.0687 33.6134 15.5489
SSIM 0.9410 0.9427 0.9467 0.9364 0.9501
MS-SSIM 0.9672 0.9692 0.9714 0.9674 0.9734
IW-SSIM 0.9527 0.9562 0.9591 0.9550 0.9625
GMSD 0.0467 0.0427 0.0413 0.0468 0.0402
FSIM 0.9805 0.9803 0.9825 0.9789 0.9830
FSIM. 0.9791 0.9790 0.9809 0.9705 0.9815

TABLE I: Average value of different image quality metrics on the testing dataset for the different cost functions. For SSIM, MS-SSIM,
IW-SSIM, GMSD and FSIM the value reported here has been obtained as an average of the three color channels. Best results are shown in

bold.(Lower is better for ¢1, £2, and GMSD, higher is better for the others.)
Zhao et al. “Loss Functions for Image Restoration With Neural Networks” 2017



LOSSES: £, VS 4,

Smoothness and convexity of £, could lead to a local minima.

Therefore: change the network loss after convergence and run a few more iterations

— ﬁrst7 {5 after Training cost function
— V5 first, ¢, after Image quality metric | /5 first, £1 after | 7y first, o after
o : 1000 - 75 0.3939 0.3896
8 PSNR 34.76 34.77
= 0.001 1 1000 - ¢4 12.7932 12.8919
X SSIM 0.9544 0.9540
i MS-SSIM 0.9753 0.9748
= IW-SSIM 0.9634 0.9624
GMSD 0.0432 0.0405
0.0004 O _ FSIM 0.9777 0.9781
L : : ' : FSIM . 0.9770 09774
05 1 12 1.5 2 25

Epochs x1000 TABLE 1II: Average value of different image quality metrics

for the networks trained for denoising + demosaicking with
alternating loss functions. Bold indicates that the network

achieves a better score than any of the networks in Table I,
see Section V-A.

Fig. 7: /> loss on the testing set for the two networks that switch
loss functions during training.

They still do not outperform the MIX loss on any perceptual metrics

Zhao et al. “Loss Functions for Image Restoration With Neural Networks” 2017



HANDLING NOISE MODEL
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FFDNet: Toward a Fast and Flexible Solution
for CNN-Based Image Denoising

Kai Zhang, Wangmeng Zuo™, Senior Member, IEEE, and Lei Zhang™, Fellow, IEEE



FFDNET
FFD-Net learns a mapping function
z->F(0O,z,M)

the network parameters @ does not depend on noise parameters (e.g. the standard
deviation),

Network inputs for an image W X H X C

* anoise level-map M of the noise standard deviation over z

4 downsampled and cropped images having size % X g X C, stacked in different
channels

Thus the input has size % X % X (4C + 1)

Zhang, Kai, Wangmeng Zuo, and Lei Zhang. "FFDNet: Toward a fast and flexible solution for CNN-based image denoising." IEEE Transactions on Image
Processing 27.9 (2018): 4608-4622.



FFDNET ARCHITECTURE

Input preparation, .
image downsampling upsampling

S\ 7 Nonlinear Mapping

 /
Conv + RelLU

\ 2

Conv + BN + RelU
v
4

Conv + BN + RelLU
\ 4

Conv

Zhang, Kai, Wangmeng Zuo, and Lei Zhang. "FFDNet: Toward a fast and flexible solution for CNN-based image denoising." IEEE Transactions on Image Processing 27.9
(2018): 4608-4622.



FFDNET ARCHITECTURE

All the convolutions are 3x3, as DnCNN
Grayscale images:

 depth level: d = 15,

 Number of filters per layer: 64
Color images:

 Depth level d = 12,

 Number of filters per layer: 96

Design driven by performance and «heuristic criteria»: use lower values of d in color
images to better exploit correlation among R,G,B channels

Zhang, Kai, Wangmeng Zuo, and Lei Zhang. "FFDNet: Toward a fast and flexible solution for CNN-based image denoising." IEEE Transactions on Image
Processing 27.9 (2018): 4608-4622.



FFDNET: THE INPUT

Resized images (pixel shuffle):

e Resize is meant to reduce spatial extent of the input, thus the computational
complexity in all the layers after the first one.

» Resizing also increases receptive field.

« “Downsampling” is indeed shuffling of the image among channels

Noise level-map M:

* An image reporting in each pixel the noise standard deviation

* It enables using a single model for different values of o without need to retrain

 In case of Additive White Gaussian Noise (AWGN), M corresponds to a uniform image
equal to the noise std o

* In case of spatial-variant noise, M is a non-uniform image defined by the noisy image
z and the sensor characteristics

Zhang, Kai, Wangmeng Zuo, and Lei Zhang. "FFDNet: Toward a fast and flexible solution for CNN-based image denoising." IEEE Transactions on Image Processing 27.9

(Aamna10). 2Z2A0 aZ~~



FFDNET: NOISE LEVEL MAPS

Naise Level
.
2 3

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN

for image denoising,” IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142-3155, July 2017. Boracchi, 2022



FFDNET TRAINING

LosS to minimize

N
1
2(0) = WZII?(ZL-,@, M) — yillf
1=

Assessing on how good the network can estimate noise-free patches
Patch-wise training
e Training samples are easy to generate: add synthetic noise,

 Loss measured on patches cropped from noisy images

* No need to train using heterogeneous noise maps, the fully convolutional network can operate on
locally uniform noise maps

«  Patch size soxso for grayscale, 70x70 in color (each patch have to include the receptive field)

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” IEEE

Transactions on Image Processing, vol. 26, no. 7, pp. 3142-3155, July 2017. Boracchi, 2022



DNCNN AND FFDNET PERFORMANCE

TABLE III
THE AVERAGE PSNR(dB) RESULTS OF DIFFERENT METHODS
ON BSD68 WITH NOISE LEVELS 15,25 35,50 AND 75
Methods BM3D | WNNM| MLP FFDNet
=15 31.07 31.37 — 31.63
o =25 28.57 28.83 28.96 29.19
o =39 27.08 27.30 27.50 27.73
o = 50 25.62 25.87 26.03 26.29
o=1T5 24.21 24.40 24.59 24.79

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image

denoising,” IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142-3155, July 2017.

Boracchi, 2022



DNCNN AND FFDNET PERFORMANCE (WRONG M)

42

40

38

18

16

14

FFDNet-5
FFDNet-15
FFDNet-25
FFDNet-50
= = = BM3D-5
= = = BM3D-15
BM3D-25
= = = BM3D-50 _
----- DnCNN-15
DnCNN-25 -
----- DnCNN-50

.
-""‘l--._
-""-,_‘_

10

15

20 25 30 35 40 45 50
Image Noise Level

Overestimating o results in
oversmoothing, thus the
PSNR is constant but does

not reach the same level as

when the noise level is
correct. This holds for all the
denoising algorithms.

Underestimating o results in
noisy outputs, thus
decreases the PSNR.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image

denoising,” IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142-3155, July 2017.

Boracchi, 2022
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GENERALIZATION TO DIFFERENT NOISE LEVELS

An important advantage of deep-learning techniques over traditional methodology is
that a single neural network can be trained to perform denoising at a wide range of
noise levels.

Empirical evidence that current state-of-the-art architectures systematically overfit to
the noise levels in the training set, performing very poorly at new noise levels.

Generalization can be achieved through a simple architectural modification: removing all
additive constants.

"bias-free" networRs attain state-of-the-art performance over a broad range of noise
levels, even when trained over a narrow range.

Mohan et al. “Robust And Interpretable Blind Image Denoising Via Bias-Free Convolutional Neural Networks” 2019 ICLR



BS-CNN: REMOVING BIASES

The shaded region in the plots denote the training range for the two networks (standard
DNCNN in red and the equivalent Bias-Free CNN in blue)
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Figure 3: Comparison of the performance of a CNN and a BF-CNN with the same architecture for
the experimental design described in Section|5| The performance is quantified by the PSNR of the
denoised image as a function of the input PSNR. Both networks are trained over a fixed ranges of
noise levels indicated by a blue background. In all cases, the performance of BF-CNN generalizes
robustly beyond the training range, while that of the CNN degrades significantly. The CNN used for
this example 1s DnCNN (Zhang et al.| 2017); using alternative architectures yields similar results (see
Figures 11 and|12).

Mohan et al. “Robust And Interpretable Blind Image Denoising Via Bias-Free Convolutional Neural Networks” 2019 ICLR



BS-CNN: REMOVING BIASES

Results are consistent with other CNN architectures
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Figure 11: Comparisons of architectures with (red curves) and without (blue curves) a net bias for
the experimental design described in Section 5| The performance is quantified by the PSNR of
the denoised image as a function of the input PSNR of the noisy image. All the architectures with
bias perform poorly out of their training range, whereas the bias-free versions all achieve excellent
generalization across noise levels. (a) Deep Convolutional Neural Network, DnCNN (Zhang et al.,
2017). (b) Recurrent architecture inspired by DURR (Zhang et al., 2018a)). (¢) Multiscale architecture
inspired by the UNet (Ronneberger et al., 2015). (d) Architecture with multiple skip connections
inspired by the DenseNet (Huang et al., 2017).

Mohan et al. “Robust And Interpretable Blind Image Denoising Via Bias-Free Convolutional Neural Networks” 2019 ICLR



BS-CNN: REMOVING BIASES

Results are consistent with other CNN architectures

LR L

61 / a6

4+

i

A% 4

[[E]

(a)

/ .
||I T ’l’ 0.4 1 T
/ Al
o -
24 "/ 0z
i
L
a.o

(b)

(c)

(d)

Figure 12: Comparisons of architectures with (red curves) and without (blue curves) a net bias
for the experimental design described in Section[5] The performance is quantified by the SSIM of
the denoised image as a function of the input SSIM of the noisy image. All the architectures with
bias perform poorly out of their training range, whereas the bias-free versions all achieve excellent
generalization across noise levels. (a) Deep Convolutional Neural Network, DnCNN (Zhang et al.

2017). (b) Recurrent architecture inspired by DURR (Zhang et al., 2018a

inspired by the UNet (Ronneberger et al.,|2015

inspired by the DenseNet (

Huang et al.,

2017).

n

. (¢) Multiscale architecture
). (d) Architecture with multiple skip connections

Mohan et al. “Robust And Interpretable Blind Image Denoising Via Bias-Free Convolutional Neural Networks” 2019 ICLR



CBDNET

* Existing CNN denoisers tend to be over-fitted to Gaussian noise and generalize poorly
to real-world noisy images with more sophisticated noise.

 Realistic noise model is the foremost issue for blind denoising of real photographs.

* Take into account both Poisson-Gaussian model and in-camera processing pipeline
(e.g. de-mosaicing, Gamma correction, and JPEG compression).

e (CBDNet is comprised of two subnetworks:
- noise estimation and
- non-blind denoising.

« Adopt an asymmetric loss by imposing more penalty on under-estimation error of
noise level.

* The network has a bottleneck

Guo et al. “Toward Convolutional Blind Denoising of Real Photographs” CVPR 2019



CBDNET: NETWORK

Lo symm : Asymmetric loss

Ly : TV regularizer

|

|

|

Lrec : Reconstruction loss :
|

|

|

CNN g : Noise Estimation Subnetwor

256
L7 128
64 CNN p : Non-blind Denoising Subnetwork
—>
/ Acwy'm’ir"n',L‘fcz',:sy’;r"n','m + Arv Ly Lirec
LI CBDNet : Convolutional Blind Denoising Network

Guo et al. “Toward Convolutional Blind Denoising of Real Photographs” CVPR 2019



CLASS-AWARE DENOISING
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KEY INGREDIENTS

Fully convolutional to enable denoising of images having different size.

e Fast execution and relatively low number of parameters

Gradual denoising as the volume circulates through the network

Improve prior on images: narrow down the space of images and train a network for a
specific class of images.

Remez, T., Litany, 0., Giryes, R., & Bronstein, A. M. (2018). Class-Aware Fully Convolutional Gaussian and Poisson Denoising. IEEE Transactions on Image Processing,
27(11), £707-5722.



THE NETWORK ARCHITECTURE

Input
WxHx1 WxHx63  WxHx63 WxHx63  WxHx63

J:WXHM J}WXHM J}WXHM J}WXHM AWXHM T

Remez, T., Litany, 0., Giryes, R., & Bronstein, A. M. (2018). Class-Aware Fully Convolutional Gaussian and Poisson Denoising. IEEE Transactions on Image Processing,
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THE NETWORK ARCHITECTURE 20 of such layers are being
stacked in this network

WxHx63 WxHx63 WxHx63  WxHx63

c!}WXHM J}WXHM J}WXHM c!>W><H><1 AWXHM T

Remez, T., Litany, 0., Giryes, R., & Bronstein, A. M. (2018). Class-Aware Fully Convolutional Gaussian and Poisson Denoising. IEEE Transactions on Image Processing,
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THE NETWORK ARCHITECTURE

Remez, T., Litany, 0., Giryes, R., ¢t Bronstein, A. M. (2018). Class-Aware Fully Convolutional Gaussian and

a2 A —-——

These are referred to as noise
estimates, because their sum

Input cancels out the noise
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Conv Conv Conv Conv
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Poisson Denoising. IEEE Transactions on Image Processing,



NOISE ESTIMATES

It is possible to analyze the process by visualizing noise estimates

ising

Gradual Deno

2981 dB 31.08 dB

Noise Estimates

Ground truth Layer 5 Layer 10 Layer 15 Layer 20

Remez, T., Litany, 0., Giryes, R., & Bronstein, A. M. (2018). Class-Aware Fully Convolutional Gaussian and Poisson Denoising. IEEE Transactions on Image Processing,
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NOISE ESTIMATES

It is possible to analyze the process by visualizing noise estimates

o0

7 T T VT T A T
% Shallower layers seem to handle finer details and noise. h |
o Deeper layers seem to recover edges and texture that might get
S lost during the filtering at the first layers.

E This is due to the larger receptive field of deep layers, that enable |
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Ground truth Layer 5 Layer 10 Layer 15 Layer 20

Remez, T., Litany, 0., Giryes, R., & Bronstein, A. M. (2018). Class-Aware Fully Convolutional Gaussian and Poisson Denoising. IEEE Transactions on Image Processing,
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CLASS-AWARE DENOISING
Training

e Train different networks for a specific class of images. Use the same FCNN
architecture. These are the classes: face, pet, flower, living room, street.

Testing

* Estimate the class from a classification CNN, thus the corresponding network

Remez, T., Litany, 0., Giryes, R., & Bronstein, A. M. (2018). Class-Aware Fully Convolutional Gaussian and Poisson Denoising. IEEE Transactions on Image Processing,
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CLASS-AWARE VS CLASS-AGNOSTIC DENOISING

Ground truth image Noisy image Class-agnostic denoiser [!] Our class-aware method
30.50 dB 30.88 dB

Remez, T., Litany, 0., Giryes, R., & Bronstein, A. M. (2018). Class-Aware Fully Convolutional Gaussian and Poisson Denoising. IEEE Transactions on Image Processing,
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NONLOCALITY



MORE ABOUT RECEPTIVE FIELDS

Understanding the Effective Receptive Field in
Deep Convolutional Neural Networks

Wenjie Luo® Yujia Li* Raquel Urtasun Richard Zemel
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{wenjie, yujiali, urtasun, zemel}@cs.toronto.edu

Boracchi, 2022



THE EFFECTIVE RECEPTIVE FIELD

Not all pixels in a receptive field contribute equally to an output unit’s response.
Intuitively it is easy to see that pixels at the center of a receptive field have a much
larger impact on an output.

In the forward pass, central pixels can propagate information to the output through
many different paths, while the pixels in the outer area of the receptive field have
very few paths to propagate its impact.

In the backward pass, gradients from an output unit are propagated across all the
paths, and therefore the central pixels have a much larger magnitude for the
gradient from that output.

In many cases, the impact in a receptive field distributes as a Gaussian: the effective
receptive field, only occupies a fraction of the theoretical receptive field.

Luo, Wenijie, et al. "Understanding the effective receptive field in deep convolutional neural networks." NIPS 2016;..cchi. 2022



THE EFFECTIVE RECEPTIVE FIELD

Place a gradient signal of 1 at the center of the output plane and o everywhere else, and
then back-propagate this gradient through the network to get input gradients.

Average the resulting gradients at the input over multiple inizialization of the network

5 layers, theoretical RF size=11 10 layers, theoretical RF size=21
n n
Uniform Random Random + RelLU Uniform Random Random + RelLU
20 layers, theoretical RF size=41 40 layers, theoretical RF size=81

Uniform Random Random + ReLLU | Uniform Random Random + ReLLU
The deeper the network, the smaller the ERF w.r.t. the thoeretical one!

Luo, Wenijie, et al. "Understanding the effective receptive field in deep convolutional neural networks." NIPS 2016



THE EFFECTIVE RECEPTIVE FIELD

How the network depth influences the ERF and the theoretical one
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Luo, Wenijie, et al. "Understanding the effective receptive field in deep convolutional neural networks." NIPS 2016



THE EFFECTIVE RECEPTIVE FIELD

Network training increases the ERF. Is random initialization bad?

CIFAR 10 CamVid

Before Training  After Training  Before Training  After Training

Luo, Wenijie, et al. "Understanding the effective receptive field in deep convolutional neural networks." NIPS 2016



THE EFFECTIVE RECEPTIVE FIELD

A new random weight initialization scheme that makes the weights at the center of
the convolution Rernel to have a smaller scale, and the weights on the outside to be
larger this diffuses the concentration on the center out to the periphery.

Practically, we can initialize the network with any initialization method, then scale
the weights according to a distribution that has a lower scale at the center and
higher scale on the outside.

[..] In a few cases we get a 30% speed-up of training compared to the more standard
initializations. But overall the benefit of this method is not always significant.

Luo, Wenijie, et al. "Understanding the effective receptive field in deep convolutional neural networks." NIPS 2016;..cchi. 2022
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Networks tor Image Denoising
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NONLOCAL SELF SIMILARITY

S

e |

In a natural image, for any given patch there exist many other similar looRing
patches at different spatial locations.

Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image Denoising by Sparse 3-D Transform-Domain Collaborative
Filtering. IEEE TRANSACTIONS ON IMAGE PROCESSING, 16(8). Boracchi, 2022




NONLOCAL FILTERS (NLF)

In image/signal processing, the NonLocal Filters are designed to exploit local image
regularities and redundancies, and to jointly process similar patches for extracting signal
information.

NonLocality: relative distance inside the receptive field is not taken into account to
assess pixel-wise similarity in images.

NLF rely on rather large (effective) receptive fields

TABLE 1

Methods BM3D [’] | WNNM [17] | EPLL [°F] | MLP [24] | CSF [14] | TNRD |

Effective Patch Size 49 = 49 361 x 361 36 x 36 AT = 47 61 x 61 61 =% 61

Cruz, C., Foi, A., Katkovnik, V., & Egiazarian, K. (2018). Nonlocality-reinforced convolutional neural networks for image denoising. IEEE Signal Processing Letters, 25(8),
1216-1220.



NN3D

A simple iterative framework that combines the advantages of
 CNN as powerful models to describe the image structures
e NLF (NonLocal Filters) that exploit image redundancies

In a plug-in approach that uses any generic CNN and NLF

The idea:

Due to the ERF size, CNN are biased towards local features. Introducing a nonlocal
filtering stage can improve their performance

Alternating CNN and NLF results in a powerful denoiser where the learned filters by the
CNN are used over an extended receptive field

Cruz, C., Foi, A., Katkovnik, V., & Egiazarian, K. (2018). Nonlocality-reinforced convolutional neural networks for image denoising. IEEE Signal Processing Letters, 25(8),



NN3D: THE ITERATIVE SCHEME
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Cruz, C., Foi, A., Katkovnik, V., & Egiazarian, K. (2018). Nonlocality-reinforced convolutional neural networks for image denoising. IEEE Signal Processing Letters, 25(8),
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NN3D: THE ITERATIVE SCHEME

Z Convex combination of noisy input and previous estimates,

= “DU=J| gk prd E,'J)
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Cruz, C., Foi, A., Katkovnik, V., & Egiazarian, K. (2018). Nonlocality-reinforced convolutional neural networks for image denoising. IEEE Signal Processing Letters, 25(8),
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NN3D: THE ITERATIVE SCHEME

When increasing k, A;, = 0 to reduce the influence of
noisy input, also 7, (regularization term in NLF)
decreases

. 3l Uk |z %
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Cruz, C., Foi, A., Katkovnik, V., & Egiazarian, K. (2018). Nonlocality-reinforced convolutional neural networks for image denoising. IEEE Signal Processing Letters, 25(8),
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NN3D PERFORMANCE

NN3D uses grouping and group-wise Haar filtering, K = 2

TABLE 1
PSNR (dB) PERFORMANCE OF THE PROPOSED NN3D VS COMPETITIVE STATE-OF-THE-ART METHODS. ITALIC RESULTS IN THE BASELINE WDNCNN
FOR 0 =75 INDICATE SCALING OF THE NOISY INPUT BY THE FACTOR 50/75 TO MATCH THE MODEL TRAINED FOR o = 50.

Dataset c  BM3D  DnCNN [11] NN3D(DnCNN) FFDNet [18]  NN3D(FFDNet)  WDnCNN [15] NNBD(WDHCNN)

30 29.12 29.54 29.66 29.63 29.66 29.91 29.96

Setl2 50  26.70 27.19 27.32 27.33 27.39 27.48 27.61
75 24.90 25.22 25.43 25.51 25.61 25.64 25.81

30 27.75 28.36 28.41 28.38 28.37 28.56 28.56

BSD6S 50 25.63 26.23 26.27 26.30 26.29 26.39 26.42
75 2422 24.64 24.71 24.79 24.80 24.85 2491

30 28.75 28.88 29.23 29.06 29.18 29.84 30.04

Urbanl00 50  25.95 26.28 26.63 26.55 26.76 27.08 27.49
75 23.93 23.99 24.45 24.53 24.81 25.06 25.53

Cruz, C., Foi, A., Katkovnik, V., & Egiazarian, K. (2018). Nonlocality-reinforced convolutional neural networks for image denoising. IEEE Signal
Processing Letters, 25(8), 1216-1220.



NN3D PERFORMANCE

Ground truth Noisy 14.18dB BM3D [7] 29.83dB WDnCNN [15] 30.72dB NN3D(WDnCNN) 30.99dB

Cruz, C., Foi, A., Katkovnik, V., & Egiazarian, K. (2018). Nonlocality-reinforced convolutional neural networks for image denoising. IEEE Signal
Processing Letters, 25(8), 1216-1220. Boracchi, 2022



NN3D PERFORMANCE

Ground truth Noisy 14.15dB BM3D [7] 27.24dB WDnCNN [15] 27.14dB NN3D(WDnCNN) 27.65dB

Cruz, C., Foi, A., Katkovnik, V., & Egiazarian, K. (2018). Nonlocality-reinforced convolutional neural networks for image denoising. IEEE Signal
Processing Letters, 25(8), 1216-1220. Boracchi, 2022



CONCLUDING REMARKS



CNN FOR IMAGE RESTORATION

* The research activity in the field has become very vivid in the last few years.
* The performance improvement achived by deep CNN was not as clear as for visual
recognition problem
- Now these achieve the state of the art in terms of performance

- Still, traditional algorithms are more efficients. This is crucial given the large
image sizes (compared to visual recognition).
For this reason, our phones does not have CNN for image restoration, yet

* Architectures are becoming more and more complex

e Research directions include
- Efficient solutions
- Practical training options (without using a noise model or clean images)
- Robustness to noise models

Boracchi, 2022



CNN FOR IMAGE RESTORATION

Research is often inspired by traditional priors, designing neural architectures able to
promote these

 Self-similarity
e Sparsity

e Multiscale processing

CNN are now more recently used as powerful prior for natural images, inside iterative
denoising schemes (Residual Unfolding Networks)

Boracchi, 2022



