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Machine Learning

gmputing

;e Machine learning is a category of
""""""" S ----» research and algorithms focused on
gl finding patterns in data and using those
patterns to make predictions. Machine
learning falls within the artificial
Intelligence (Al) umbrella, which in turn
Intersects with the broader field of
knowledge discovery and data mining.

Source: SAS, 2014 and PwC, 2016 and Matfewcee, 2017
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Machine Learning (Tom Mitchell —1997)

' = Regression/Classificationy...
£ = Data

P = Errors/Loss

0..
"A computer program (s said to learn from experience E gl
with respect to some class of task T and a performance B i viTond

measure P, if its performance at tasks in T, as measured by

P, improves because of experience E.”
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Machine Learning Paradigms

Imagine you have a certain experience D, i.e., data, and let's name it

D = X1, X2, x3, vy XN

* Supervised learning: given the desired outputs ty, tp, ts,...,ty learn to
produce the correct output given a new set of input

* Unsupervised learning: exploit regularities in D to build a representation
to be used for reasoning or prediction

* Reinforcement learning: producing actions ay,as, as, ...,ay which affect
the environment, and receiving rewards 14,713,713, ..., Ty learn to act in order
to maximize rewards in the long term
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Supervised learning: Classification

Learning (s about
moaeling ...

Hand-crafted q
Features
I

Motorcycle

/ '4\ Learned
(I&& Classifier
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Supervised learning: Regression
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Unsupervised learning: Clustering
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Unsupervised learning: Clustering
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Unsupervised learning: Clustering
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Unsupervised learning: Clustering
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Unsupervised learning: Clustering
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Unsupervised learning: Clustering
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Unsupervised learning: Clustering
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Machine Learning Paradigms

Imagine you have a certain experience D, i.e., data, and let's name it

D = X1, X2, X3, vy XN

a )

* Supervised learning: given the desired outputs ty, tp, ts,...,ty learn to
produce the correct output given a new set of input

* Unsupervised learning: exploit regularities in D to build a representation
. to be used for reasoning or prediction

: : : , This course focuses most on
* Reinforcement learning: producing actions Supervised Learning (with

the environment, and receiving rewards 7y, % some unsupervised spots)
to maximize rewards in the long term
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What about Deep Learning?
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]D BREAKTHRUUGH Introduction The 10 Technologies Past Years
o
==ad TECHNOLOGIES 2013
Temporary Social Prenatal DNA Additive Baxter: The Blue-
Media Sequencing Manufacturing Collar Robot
With massive Reading the DNA of
amounts of fetuses will be the Rodney Brooks's
computational power, Messages that quickly next frontier of the Skeptical about 3-D newest creation is
machines can now self-destruct could genomic revolution. printing? GE, the easy to interact with,

recognize objects and enhance the privacy But do you really want world's largest but the complex
translate speech in of online to know about the manufacturer, is on innovations behind the
real time. Artificial communications and genetic problems or the verge of using the robot show just how
intelligence is finally make people freer to musical aptitude of technology to make hard it is to get along
getting smart. be spontaneous. 5 your unborn child? et parts. 5 with people. -
Memory Implants Smart Watches Ultra-Efficient Solar Big Data from Cheap Supergrids

Power Phones
A maverick
neuroscientist Collecting and
believes he has Doubling the analyzing information
deciphered the code efficiency of a solar from simple cell
by which the brain cell would completely phones can provide
forms long-term The designers of the change the surprising insights into
memories. Next: Pebble watch realized economics of how people move A new high-power

testing a prosthetic
implant for people
suffering from long-
term memory loss.

that a mobile phone is
more useful if you

don't have to take it

out of your pocket.

renewable energy.
MNanotechnology just
might make it

possible. s

about and behave —
and even help us
understand the

spread of diseases. _,

circuit breaker could
finally make highly
efficient DG power
grids practical. s




What is Deep Learning after all?

_let's say it with flowers!

The Iris Dataset

Collected by Ronald
Fisher in 1936

Iris Virginica Iris Versicolor




What is Deep Learning after all?

Machine learns how to
take the Iris apart

Hand-crafted
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What is Deep Learning after all?

Machine learns how to
take the Iris apart
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What is Deep Learning after all?

Machine learns how to

take the Iris apart

Linear SVM RBF SVM

Nearest Neighbors Decision Tree Random Forest AdaBoost Naive Bayes

Nearest Neighbors

Decision Tree Naive Bayes

Nearest Neighbors RBF SVM Decision Tree Naive Bayes

SepaI'Lenght
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What is Deep Learning after all?

Machine learns how to
take the Iris apart

Hand-crafted
Features

Learned
Classifier

4

Sometimes the decision
might be Impossible!
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What is Deep Learning after all?

This happens if you do
not know which features
to extract!!!
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Modern Pattern Recogniton

Is this the best
Speech recognition (early 90's — 201, thing to do?
®

I, Mixture of Learned
J -k th >
*M{W\wt ‘ Gaussian Classifier Horn
Unsupervised Supervised

Low level
features

Features

Learning Learning

And what about

Object recognition (2006 — 201 these features?
o ’ ( .0 xﬂ

K-means

Learned ‘ Car

SIFT/HoG Sparse Coding Pooling Classifier
Unsupervised Supervised
Low level Features Learning Learning

features
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What is Deep Learning after all?

Optimized for
the task!

Learned
Classifier

Machine Learned
Features

Easier to learn!

Learned feature

">

Learned feature
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Hierarchical representation

optimized for the task!

Learned Learned Learned
features features features

, ';V“~~,~ Learned
¢

% Classifier m) setosa

Deep Learning is about learning
data representation from data!
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What's behind Deep Learning?
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machines can now

translate speech in

computational power,

nize objects and

Messages that quickly
self-destruct could
enhance the privacy
of online

next frontier of the
genomic revolution.
But do you really want
to know about the

Skeptical about 3-D
printing? GE, the
world's largest
manufacturer, is on

newest creation is
easy to interact with,
but the complex
innovations behind the

real time. Artificial communications and genetic problems or the verge of using the robot show just how
intelligence is finally make people freer to musical aptitude of technology to make hard it is to get along
getting smart. be spontaneous. 5 your unborn child? et parts. 5 with people. -
Memory Implants Smart Watches Ultra-Efficient Solar Big Data from Cheap Supergrids
Power Phones
A maverick
neuroscientist Collecting and
believes he has Doubling the analyzing information
deciphered the code efficiency of a solar from simple cell
by which the brain cell would completely phones can provide
N, forms long-term The designers of the change the surprising insights into )
memories. Next: Pebble watch realized economics of how people move A new high-power
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What's behind Deep Learning?

]D BREAKTH RUUGH Introduction The 10 Technologies Past Years
MIT
iz =2 TECHNOLOGIES 2013
Review
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"alllable resource computat/onal power
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amounts of fetuses will be the Rodney Brooks's
computational power, Messages that quickly next frontier of the Skeptical about 3-D newest creation is
machines can now self-destruct could genomic revolution. printing? GE, the easy to interact with,
nize objects and enhance the privacy But do you really want world's largest but the complex

translate speech in of online to know about the manufacturer, is on innovations behind the
real time. Artificial communications and genetic problems or the verge of using the robot show just how

; ’% o intelligence is finally make people freer to musical aptitude of technology to make hard it is to get along
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Memory Implants Smart Watches Ultra-Efficient Solar Big Data from Cheap Supergrids

Power Phones
A maverick
neuroscientist e Colllec!:ing. afnd .
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of competltlon efficiency of a solar from simple cell
cell would completely phones can provide
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The Economist got it right!

change the
economics of

possible.

surprising insights into
how people move

spread of diseases. _,

A new high-power

enewable energy. about and behave — circuit breaker could
. . anoctechnology just and even help us finally make highly
It IS all about (Blg) Data might make it understand the efficient DC power

grids practical.
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n fire salamander,

African crocodile

Norwegian elkhound tiger cat spotted salamander | Gila monster
wild boar jaguar common newt loggerhead

wallaby lynx long-horned beetle mud turtle

koala box turtle Ieatherback turtle

You will learn to read this!
(required to pass the exam)

-

sliding door

|
seat belt television
seat belt television
ice lolly microwave
hotdog monitor
=N burrito screen
- Band Aid car mirror

sliding door
shoji
window shade

window screen
four-poster

wallaby

wood rabbit
Lakeland terrier
kit fox
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https://github.com/jcjohnson/neural-style
https://github.com/jcjohnson/fast-neural-style
https://ml4a.qgithub.io/ml4a/style transfer/
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https://github.com/luanfujun/deep-photo-styletransfer
https://github.com/luanfujun/deep-photo-styletransfer
https://github.com/luanfujun/deep-photo-styletransfer
https://github.com/luanfujun/deep-photo-styletransfer
https://github.com/luanfujun/deep-photo-styletransfer
https://github.com/luanfujun/deep-photo-styletransfer
https://github.com/jcjohnson/neural-style
https://github.com/jcjohnson/neural-style
https://github.com/jcjohnson/neural-style
https://github.com/jcjohnson/fast-neural-style
https://github.com/jcjohnson/fast-neural-style
https://github.com/jcjohnson/fast-neural-style
https://github.com/jcjohnson/fast-neural-style
https://github.com/jcjohnson/fast-neural-style
https://ml4a.github.io/ml4a/style_transfer/
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https://github.com/alexjc/neural-enhance
https://github.com/alexjc/neural-enhance
https://github.com/alexjc/neural-enhance

This flower has  This flower is This flower is This flower has  This flower has

This flower has  long thin pink, white, white and upturned petals  petals that are
Text This flower has  a lot of small yellow petals and yellow in yellow in color, which are thin dark pink with
description petals that are purple petals in  and a lot of color, and has with petals that and orange white edges
white and has a dome-like yellow anthers petals that are are wavy and with rounded and pink
pink shading configuration in the center striped smooth edges stamen
256x256
StackGAN
A small bird A small yellow  This small bird
The bird is A bird with a This small with varying bird with a has a white
Text This bird is'red short and' rqediun_‘n orange  black bircl' has shades of_‘ black crown breast, light
description and brov_vn n stubby wntl_1 bill wh_lte body a short, s_l1ghtly brom with and a shqrt grey hea:cl, and
color, with a yellow on its gray wings and  curved bill and  white under the  black pointed black wings
stubby beak body webbed feet long legs eyes beak and tail
256x256
StackGAN
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It's all about features ...

Learn from data!

Learned - Deep Learning
— Classifier CAR (- (2012 -...)

Features

Features
Learned
Features

That’ what you'll - 4 Deep Learning is about learning
learn in this course! T data representation from data!

nv,
=3
-

But which data?
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