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Standard Programming

sum = ©
a = int(input("Insert a: "))

while a > 0O:
sum += a
a = int(input("Insert a: "))

print(f"Sum = {sum}")
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Standard Programming

sum = ©
a = int(input("Insert a: "))

Can you write a program that
while a > 0: takes as input an image and
> = @ tells whether it contains a car

a = int(input("Insert a: ")) .
or a motorbike?
print(f"Sum = {sum}")
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Machine Learning Paradigms

ML is the solution! Here the C program is replaced by a very big
parameteric function fg, whose paramters 6 are learned from datal
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Machine Learning Paradigms

ML is the solution! Here the C program is replaced by a very big
parameteric function fy, whose paramters 6 are learned from data!

Learning consists is (automatically) defining
the parameters 0 of the model f.

Parameters 8 are learned from data, following consolidated pipelines

Different settings applies, which give rise to the supervised or
unsupervised settings

This course deals with a particular type of models: Neural Networks, which
are very powerful in handling data like signals, images, videos, text..
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Machine Learning Paradigms

ML is the solution! Here the C program is replaced by a very big
parameteric function fg, whose paramters 6 are learned from datal

Supervised Learning
* (lassification
* Regression
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Supervised Learning

In Supervised Learning we are given a training in the form:
TR = {(x1,¥1), -, (n, Yn)}
where
« x; € R% is the input
* y; € Alis the target, the expected output of the model to x;
The set A can be

« A discrete set, as in classification A = {"brown", "green", "blue"} (e.g.,
possible eye colors)

« An ordinal set (often continuous set, R) in case of regression.

A can also be multivariate (e.g., regressing weight and height of an
individual or estimating their eye colors and hair color)
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Training Set for (binary) Image Classification

cars Motorcycles
TR = {(x11 yl); e (xn: yn)}

e x; € RFR*CX3 s the input image

 vy; € {"car”, "motorcycle"}

An element in TR

' R h .. , "Car" J
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Training Set for (binary) Image Classification

Thanks to the training set, it is possible to

train the model f and identify the best set of
parameters to get accurate predictions.

In this case, thee ML model is referred to as a

classifier!
e x; € RR*C~> s the input image

 vy; € {"car”, "motorcycle"}

entin TR

A, car }
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Inference Using the Trained Classifier

Motorcycles

=) Motorcycle
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Training Set for Regression

28000 $

TR = {(xll yl)l veny (xn; Yn)} An elementin TR
e x; € RRXCX3 is the input image
* Vi e R
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Training Set for Regression

15000 $

00 $

In this case, thee ML model is referred to as a
regressor!
e x; € RRXCX3 s the input image
 y;ER

sment in TR

- " ’ "28000$"}
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Supervised learning: Regression

4000 $ 28000 $ 6000 $ 35000 $

Regressor

)} POLITECNICO MILANO 1863



Remarks on both Classification and Regression

« Number of classes can be larger than two: multiclass classification, (e.g.,

"car", "motorcycle","truck"} ).
* The input size needs to be fixed (in deep learning exception applies).

« Regression models can have more than 2 outputs (multivariate
regression, e.g., estimating cost and weight of the vehicle).

* Training a Classifier or a Regressor requires different loss functions.

« Difference between classification or regression is not only on the fact
that A discrete, but whether it is ordinal and on how we assess errors
* A categorical (no ordinal) -> classification
* A ordinal (either discrete or continuous) -> regression
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Give a few examples of

Regression problems on images Classification problems on images
[ ] [
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Machine Learning (Tom Mitchell - 1997)

" = Regression/Classificationy...
E = Training Data

P = Errors/Loss

“A computer program is said to learn from G
experience E with respect to some class of task [ MEECHI
T and a performance measure P, if its il
performance at tasks in T, as measured by P,
improves because of experience E.”
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Machine Learning Paradigms

ML is the solution! Here the C program is replaced by a very big
parameteric function fg, whose paramters 6 are learned from datal

fo

ML |:> prediction
Model

y

Supervised Learning
* (lassification

 Regression R
Unsupervised Learning

* C(lustering
« Anomaly Detection X I:> fo(x) =y
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Unupervised Learning

In Unsupervised Learning, the training set contains only inputs,
TR = {xq4, ..., X}

and the goal is to find structure in the data, like

* grouping or clustering of data according to their similarity
e estimating probability density distribution

e detecting outliers
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Unsupervised learning: Clustering
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Unsupervised learning: Clustering
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Unsupervised learning: Clustering

POLITECNICO MILANO 1863



Unsupervised learning: Clustering
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Unsupervised learning: Clustering
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Unsupervised learning: Anomaly Detection
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To Summarize: Machine Learning Paradigms

Immagine you have a certain experience E, i.e., data, and let’s name it
D = X1, XZ,XB, vy XN

* Supervised learning: given a training set of pairs (input, desired output)
{(x1,y1), -, (xn, Yn)}, learn to produce the correct output for new inputs

° Unsupervised learning: exploit regularities in D to build a meaningful/compact
representation, to group, estimate densities, detect outliers...

° Reinforcement learning: a different context where an agent is producing actions
a,, a,, as, ..., ay, Which affect the environment, and receiving rewards

1,72, 73, ..., Ty - Learning how the agent should act in order to maximize rewards
in the long term.
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To Summarize: Machine Learning Paradigms

Immagine you have a certain experience E, i.e., data, and let’s name it

D = X1, xZ,xg, vy XN

* Supervised learning: given a training set of pairs (input, desired output)
{(x1,y1), -, (xn, Yn)}, learn to produce the correct output for new inputs

° Unsupervised learning: exploit regularities in D to build a meaningful/compact
\ representation, to group, estimate densities, detect outliers...

° Reinforcement learning: a different context Wr “This course focuses most on
a,,a,, as, ..., ay, which affect the environme Supervised Learning (with

r, 19,13, ...,y . Learning how the agent shout some unsupervised spots)
in the long term.
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Machine Learning

gmputing

_— Machine learning is a category of
~~~~~~ B ----» research and algorithms focused on
finding patterns in data and using those
patterns to make predictions. Machine
learning falls within the artificial
Intelligence (Al) umbrella, which in turn
Intersects with the broader field of
knowledge discovery and data mining.

Source: SAS, 2014 and PwC, 2016
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Hand-Crafted Features

How images / signals were classified before deep learning



Assume you need to automatize this process

=4
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An lllustrative Example: Parcel Classification

ENVELOPE

Images acquired from a RGB-D sensor:

10.2

* No color information provided

* A few pixels report depth
measurements

5 0.15

* Images of 3 classes
°* ENVELOPE
* PARCEL
* DOUBLE

0.1

0.05

Envelop height at that
pixel
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An lllustrative Example: Parcel Classification

DOUBLE

Images acquired from a RGB-D sensor:
. . . 10.08
* No color information provided

* A few pixels report depth
measurements

- 0.06

* Images of 3 classes 0.04

* ENVELOPE
* PARCEL
* DOUBLE

0.02

-0.02
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An lllustrative Example: Parcel Classification

Images acquired from a RGB-D sensor:

PARCEL
* No color information provided | e
5 - 10.25
* A few pixels report depth o |
measurements 5 o2
* Images of 3 classes 20
° ENVELOPE 25 "
* PARCEL %0
| B 0.1
° DOUBLE *

40

45 0.05
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An lllustrative Example: Parcel Classification

Images acquired from an RGB-D sensor:
No color information provided

Images of 3 classes
* ENVELOPE
* PARCEL
* DOUBLE

ENVELOPE

-1 10.25

-170.2

0.15

0.1

0.05

DOUBLE

10 20

10.08

- 0.06

0.04

0.02



Hand Crafted Featues

Engineers:

« know what’s meaningful in an
image (e.g. a specific color/shape,
the area, the size)

e can implement algorithms to map

this information in a set of
measurements, a feature vector
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Feature Extraction | =D




Hand Crafted Featues

c h average
O
5 /area
| S h
: $ X $ MaX h min
q_) .
= _ \perlmeter
; — ratio
Qv
10 20 30 40 50 60 70 Ig__) d
X €ER

Here you get to «tabular data»
which can be traditionally handled
by Machine Learning models.
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This is exactly what a doctor would to to classify ECG tracings

QRS

| Complex |
Heartbeats morphology has been widely investigated R

Doctors know which patterns are
meaningful for classifying each beat

Features are extracted from
landmarks indicated by doctors:

e.g. QT distance, RR distance...

PR Interval

‘ QT Interval




The Training Set

The training set is a set of annotated examples
TR ={(x,y);,i=1,..,N}

Each couple (x,y); corresponds to:
* an image x;
* the corresponding label y;

This is meant for a Supervised Learning Problem!
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The Training Set: images + labels




The Training Set: images + labels

1000

900 —

800 —

700 —

600 —

500 —

drea

400 —

300 —

200 —

100 —

avg. height



The Training Set: features + labels

1000 |
X envelope

QO parcel

900 - D ] double

800 — .

700 - B

600 — O :

500 — .

drea

400 — .

300 — 7

200 — B

100 - B

0 \ \ \ \ | | \ \ \

avg. height



The Training Set

X envelope

O parcel

[] double

1000

900 —

800 —
700 —
600 —
400 —

10

avg. height



Training Set
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1000

Training Set
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Training Set
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Classifier Output
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A tree classifying image features

X € R?

Input image

if (h < 2.5cm)

X E RZ false true

h if (h > 6.2cm)o O
If;> If‘> false \ true «envelope»
a
[

f (a < 200px)

0.08

0.06

0.04 $

0.02

«Parcel»
false true

-0.02
«envelopes» «Double»

‘ Feature Extraction Algorithm ‘

(5% POLITECNICO MILANO 1863




Limitations of Rule Based Classifier

It is difficult to grasp what are meaningful dependencies over multiple
variables (it is also impossible to visualize these)

Let’s resort to a data-driven model for the only task of separating feature
vectors in different classes.

How can a classifier achieve better performance’
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A tree classifying image features

The classifier has a few patameters 6: f x € R?
* The splitting criteria _

* The splitting thresholds T; if (h < 2.5cm)

;z i -'1‘-& | x € R2 false true

0.06

0.04 [::>

0.02

30
40

50

h if (h > 6.2cm)O O
If;> If‘> false \ true «envelope»
a
[

fla< ZOOpx)
60 «Parcel»

70 false true

80

90 «envelopes» «Double»

10 20 30 40

11 E ]:er XCq

‘Feature Extraction Algo
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A tree classifying image features

The classifier has a few patameters 6:
The splitting criteria
The splitting thresholds T;

Summarizing:
The model: the (decision)
tree with its own parameters 6

T
T
T

ne task: multi-class classification
ne experience: the training set

ne performance: the classification

accuracy
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X € R?
a

if (h < 2.5cm)
false true
if (h > 6.2cm)o O
false \ true «envelope»
if (a < 200px) .
«Parcel»

false true

«envelopes» «Double»




This is our first solution
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There are a few errors
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Can | do better?
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Let’s try different parameters
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Data Driven Models

Data Driven Models are defined from a training set of (supervised) pairs
TR ={(x,y);,i=1,..,N}

The model parameters 6 (e.g. Neural Network weights) are set to minimize a loss
function (e.g., the classification error in case of discrete output or the reconstruction
error in case of continuous output)

0* = argmin L(8,TR)
0

Network training is an optimization process to find params minimizing the loss function.

Can definitvely boost the image classification performance

* Annotated training set is always needed
* C(lassification performance also depends on the training set
* Generalization is not guaranteed
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Hand Crafted Feature Extraction, data-driven Classification

b2 _

Input image
10 i mean
20 .. area
10.06
30 : :i;
4 0.04|$ |i> max min Ii> = Ii> “double”
50 wm
0.02 w
60 PeEr. S
" 0 ratio o teA

80

x € R?

90
10 20 30 40

11 E ]:er XCq

‘ Feature Extraction Algorithm ‘

(d KrXc) —
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Are there better classifiers?
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Are there better classifiers?
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And Neural Networks are not the only..

1000 \
o [ /7

[
.. | % envelope| ‘

Nearest Neighbors Linear SVM RBF SVM Decision Tree Random Forest AdaBoost

o '3:0‘-. °
R
° 0, '.“‘S

..",D %

Naive Bayes

Naive Bayes

Nearest Neighbors

AdaBoost

° .82

Nearest Neighbors

AdaBoost

Naive Bayes

avg. height



Neural Networks

Input image

0.08

10.06

004[$>

0.02

\ s

‘l‘“ W4

LAY Xy’ eoe eoe 1Y
1 FAY

-0.02

X € R4

‘ Feature Extraction Algorithm ‘

input layer Hidden layer(s) Output Layer



Image Classification by Hand Crafted Features

@ © < N

S S S S

o o o o
:

Input image

11 E ]:er XCq

Data Driven

Hand Crafted



Hand Crafted Featues, pros:

* Exploit a priori / expert information
 Features are interpretable (you might understand why they are not
working)

* You can adjust features to improve your performance
* Limited amount of training data needed
* You can give more relevance to some features
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Hand Crafted Featues, cons:

* Requires a lot of design/programming efforts

* Not viable in many visual recognition tasks that are easily performed by
humans (e.g. when dealing with natural images)

* Risk of overfitting the training set used in the feature design
* Not very general and "portable”

(277 POLITECNICO MILANO 1863



What is Deep Learning after all?

Machine learns how: to
take samples from
different classes apart

| 10.06

oot Hand-crafted
0.02 Features

double

(, !f\ Learned
y& Classifier

10 20 30 40

|} POLITECNICO MILANO 1863



What is Deep Learning after all?

Machine learns how. to
take samples from
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What is Deep Learning after all?
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Data Driven Features

.. the advent of Deep Learning



Data-Driven Features
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What is Deep Learning after all? =
Optimized for the
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Learned
features

Learned
features

Learned
features

Hierarchical representation

optimized for the task!
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Deep Learning is about learning
data representation from data!

And everything is
possible by Neural

NetworRs!
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