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Autoencoders



Autoencoders using MLP

Autoencoders are neural networks used for data reconstruction (unsupervised
learning)

The typical structure of an autoencoder is:

Encoder € Decoder D
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Input layer, S3 Output layer,
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n Neurons n Neurons
Sy Sy
Hidden layer,
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Autoencoders using MLP

Autoencoders can be trained to reconstruct all the data in a training set.
The reconstruction loss over a batch S is

£ =) |Is - p(e®)I,

SES

and training of D(é‘(-)) is performed through standard backpropagation algorithms
(e.g. SGD).

The autoencoder thus learns the identity mapping.

Rmk there are no external labels involved in training the autoencoder, as it
performs reconstruction of the input

Bengio, Y., Courville, A., Vincent, P. "Representation learning: A review and new perspectives”. IEEE TPAMI 2013 G. Boracchi



Autoencoders

Remark:

* Features z = E(s) are typically referred to as latent representation

* AE typically do not provide exact reconstruction since n «< d, by doing so we

expect the latent representation to be a meaningful and compact representation
of the input

* It is possible to add a regularization term +AR(s) to steer latent representation
E(s) to satisfy desired properties (e.g. sparsity, or to follow a Gaussian

distribution) or the reconstruction D(E(s)) (e.g. smoothness, sharp edges in
case of images)

 More powerful and nonlinear representations can be learned by stacking
multiple hidden layers (deep autoencoders)
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Convolutional AutoEncoders

And of course it is possible to use convolutional layers and transpose convolution
to implement a deep convolutional autoencoder

Latent representation

ReLU CNN ReLU CNN (upconv)




Training Autoencoders



@ InputLajrexr ' ZexroPaddingZD ' oy 21 ' BatchMormalization ' BeLlr @ Flatten ' Dense
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Code for the encoder function

input layer = tfkl.Input (shape=enc input shape, name='input layer')

# block of conv+batchnorm+relu

x = tfkl.Conv2D (64, 3, padding='same', strides=2) (input layer)

x = tfkl.BatchNormalization () (x)

x = tfkl.RelLU() (x)

# Another block of convtbatchnorm+relu

# Another block of conv+batchnorm+relu

# flattening and a dense layer to the latent dim

x = tfkl.Flatten () (x)

output layer = tfkl.Dense(enc output shape, name='output layer') (x)

# the value returned by the output layer is the latent representation
# Connect input and output through the Model class

model = tfk.Model (inputs=input layer, outputs=output layer, name='encoder')

G. Boracchi



@ InputLayer ' Dense ' BatchNoxrmalization ' ReLU ' Reshape @ UpsampLling2D ' Cony 2D ' Activation ' Cropping2D
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Code for the decoder function

input layer = tfkl.Input (shape=dec input shape, name='input layer')

adda a dense layer from the latent representation to a larger vector
= tfkl.Dense(n rows*n cols*n channels) (input layer)

= tfkl.BatchNormalization () (x)

= tfkl.RelU() (x)

XX X =

+=

invert the flattening by reshaping

X

= tfkl.Reshape((n rows, n cols, n channels)) (x)

upsampling block: upsampling + convolution + batchnorm + relu
= tfkl.UpSampling2D () (x)

tfkl.Conv2D (128, 3, padding='same') (x)

= tfkl.BatchNormalization () (x)

= tfkl.RelLU() (x)

XXX X F#E
I
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Code for the decoder function

# Another upsampling block: upsampling + convolution + batchnorm + relu

# Another upsampling block: upsampling + convolution + batchnorm + relu

# the last block is a convolution returning to the image domain

x = tfkl.Conv2D(dec output shape[-1], 3, padding='same') (x)

x = tfkl.Activation('sigmoid') (x) #’ by doing so we clip values,
linear is also fine

# Connect input and output through the Model class

model = tfk.Model (inputs=input layer, outputs=output layer, name='decoder')

G. Boracchi



Code for the autoencoder

def get autoencoder (ae input shape=input shape, ae output shape=input shape) :
tf.random.set seed(seed)

# invoke functions to instantiate models
encoder = get encoder ()
decoder = get decoder ()

# assemble the network

input layer = tfkl.Input (shape=ae input shape)
z = encoder (input layer)

output layer = decoder (z)

model = tfk.Model (inputs=input layer, outputs=output layer, name='autoencoder')
return model

# instantiate the autoencoder
autoencoder = get autoencoder ()
autoencoder.summary ()

tfk.utils.plot model (autoencoder, show shapes=True, expand nested=True, to file='au
toencoder.png') o - N
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Training the autoencoder

# define training options
learning rate = le-3

optimizer = tf.optimizers.Adam(learning rate)

# the autoencoder needs to be trained by minimizing a
reconstruction loss

autoencoder.compile (optimizer=optimizer, loss=tfk.losses
.MeanSquaredError (), metrics=['mse', 'mae'])

G. Boracchi



Training the autoencoder

# define training options
learning rate = le-3

optimizer = tf.optimizers.Adam(learning rate)

# the autoencoder needs to be trained by minimizing a
reconstruction loss

autoencoder.compile (optimizer=optimizer, loss=tfk.losses
.MeanSquaredError (), metrics=['mse', 'mae'])
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Training the autoencoder

# train the autoencoder
autoencoder.fit (
X train, # the 1nput
X train, # the target for the autoencoder i1s the input itself
batch size=batch size,
epochs=epochs,

validation data=(X val,X val),
# the target for the autoencoder is the input itself

callbacks=[tfk.callbacks.EarlyStopping (monitor="'val loss’,
patience=10, restore best weights=True),

tfk.callbacks.ReduceLROnPlateau (monitor="'val loss’
patience=5, factor=0.5, min lr=le-5),
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Training the autoencoder

# train the autoencoder
autoencoder.fit (
X train, # the input
X train, # the target for the autoencoder is the input itself
batch size=batch size,
epochs=epochs,

validation data=(X val,X val),
# the target for the autoencoder is the input itself
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The Latent Representation



The size of the latent representation

The larger the latent representation, the better images are reconstructed.

Reconstructions from D(E(-)) trained on latent space having dimension d = 2

Real data

mzizl/1oldl r17]als

Reconstructions

gg7]21/10141/]1914]5
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The size of the latent representation

The larger the latent representation, the better images are reconstructed.

Reconstructions from D(E(-)) trained on latent space having dimension d = 32

Real data

Bizl/1old]l r17]als

Reconstructions
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The size of the latent representation

The larger the latent representation, the better images are reconstructed.

Reconstructions from D(E(-)) trained on latent space having dimension d = 32

Real data

Bzizl/1old]l r17]als

Reconstructions

= 712] /1o]lq] /l«]a]ls

and, as a limit, when the latent dimension is as big as the
input you can perfectly reconstruct it (learning the identity
mapping from network input to network output)

G. Boracchi



Autoencoders for Classifier
Initialization



Using Autoencoders for classifier initialization

Autoencoders can be used to inizialize the classifier when the training set includes
« few annotated data (large set S = {s;} of unlabeled human faces)
* many unlabeled ones (small set L = {(s;, y;)} of faces labelled as Male, Female)

Encoder € Decoder D
A A

Output layer,
7n neurons

Input layer
P y'SB
7N Neurons

Latent repr.
d<n

QO+ OOOO
QOO



Using Autoencoders for classifier initialization

1) Train the autoencoder in a fully unsupervised way, using the unlabeled data S

Encoder € Decoder D
A A

Output layer,
7n neurons

Input layer
P y'SB
7N Neurons

Latent repr.
d<n

QO+ OOOO
QOO



Using Autoencoders for classifier initialization

2) Get rid of the decoder and keep the encoder weights

Encoder &€
A

Input layer
P yer, S3
7N Neurons

Latent repr.
d<n

QO+ OOOO
OO0



Using Autoencoders for classifier initialization

3) Plug in a FC layer for classifying samples from the latent representation

Encoder € Classifier KX
] l

Input layer
P yer, S3
7N Neurons

Q Output layer,
Q k classes/neurons

Latent repr.
d<n

QO+ OOOO
QOO



Using Autoencoders for classifier initialization

4) Fine tune the autoencoder using the few supervised samples provided L. This is
perfectly in line with «Transfer Learning» and holds for whatever model.

If L is large enough, the encoder weights £ can also be fine-tuned

Encoder € Classifier KX
] l

Input layer
P yer, S3
7N Neurons

Q Output layer,
Q k classes/neurons

Latent repr.
d<n

QO+ OOOO
QOO



Using Autoencoders for classifier initialization

Autoencoders provide a good initialization (and reduce the risk of overfitting)
because their latent vector is actually a good (latent) representation of the inputs
used for training.

Encoder € Classifier KX
] l

Input layer
P yer, S3
7N Neurons

Q Output layer,
Q k classes/neurons

Latent repr.
d<n

QO+ OOOO
QOO



Autoencoders using MLP

Autoencoders are neural networks used for data reconstruction (unsupervised
learning)

The typical structure of an autoencoder is:

Encoder € Decoder D
A A

Input layer, S3 Output layer,

QO+ OOOO
QOO

n Neurons n Neurons
Sy Sy
Hidden layer,
n Neurons



Sampling the Latent Space



What about using Autoencoders as Generative Models?

One option would be to
1) train an autoencoder on S

Encoder € Decoder D
A A
| \

s ()

v O
Input layer, S3 <:::>
d neurons (:::)

O O

- Hidden layer,
7n neurons
Sd Q n<d

Output layer,
d neurons



What about using Autoencoders as Generative Models?

2) Discard the encoder

Decoder D
A

Output layer,
d neurons

QOO

Hidden layer,
neurons
n<«d Sd



What about using Autoencoders as Generative Models?

3) Draw random vectors z ~ ¢,, to mimic «a new latent representation» and feed
this to the decoder input

Decoder D
A

Output layer,
d neurons

z~¢,,z€R? :i}

QOO

Hidden layer,
N Neurons
n<«d Sd



What about using Autoencoders as Generative Models?

This approach does not work since we do not know the distribution of proper
latent representation (or it is very difficult to estimate).

Decoder D
A

Output layer,
d neurons

z~¢,,z€R? :i}

QOO

Hidden layer,
N Neurons
n<«d Sd



The latent representation of MNIST autoencoder (d = 2)

15 A

10 T

Z1]

Easy to visualize, classes are
somehow separated in the
latent space



The latent representation of MNIST autoencoder (d = 2)

Define sampling locations as
a grid in the latent space.

The grid need to cover a
«populated» region of the
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The latent representation of MNIST autoencoder (d
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Sampling the Latent Space

This is a viable image generation approach only in a low dimensional latent space.

When d increases, high density regions are rare, distributions ¢, is difficult to
estimate.

Variational autoencoders forces z to follow a Gaussian distribuiton (on top of
enabling accurate reconstruction). These are considered generative models.



Generative Models:
Networks able to generate realistic images



Which image is real and which one generated?
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Sometimes there models are not perfect...

Karras, Tero, et al. "Analyzing and improving the image quality of stylegan." CVPR 2020



Sometimes there models are not perfect...
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even with cats (lower resolution 512 x 512) ...
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even with horses (lower resolution 256 x 256) ...
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Karras, Tero, et al. "Analyzing and improving the image quality of stylegan." CVPR 2020
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This sneaker does not exist

Karras, Tero, et al. "Analyzing and improving the image quality of stylegan." CVPR 2020
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Generative Models
Goal:

generate, given a training set of images TR = {x;}, generate
other images that are similar to those in TR

TR = <

G. Boracchi



The “holy grail” of image processing

Images live in a very «difficult to describe» manifold in a huge
dimensional space

G. Boracchi



What for generative models?

« Generative models can be used for data augmentation,
simulation and planning

* Inverse problems like super-resolution, inpainting,
colorization.

» Realistic samples for artwork.

* Training generative models can also enable inference of
latent representations that can be useful as general
features.

* You are getting close to the “holy grail” of modeling the
distribution of natural images

* This can be a very useful regularization prior in other
problems or to perform anomaly detection

« 0On top of specific application of image generation, the fist
effective generative model (i.e. GANs) give rise to new
training paradigm and practices (adversarial training)

Images randomly generated by a GAN

Radford, et al “Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



What for generative models?

« Generative models can be used for data augmentation,
simulation and planning

* Inverse problems like super-resolution, inpainting,
colorization.

» Realistic samples for artwork.

* Training generative models can also enable inference of
latent representations that can be useful as general
features.

* You are getting close to the “holy grail” of modeling the
distribution of natural images

* This can be a very useful regularization prior in other

Outdated! These were the major arguments in favour of generative
models for images before the advent of fundation models like Dall-E,
Midjourney,.. Now we all know how realistic these models are, and
their use in everyday life.

Images randomly generated by a GAN

Radford, et al “Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



Generative Adversarial Networks

A very effective way to generate images



Generative Adversarial Networks (GAN)

The GAN approach:

* Do not look for an explicit density model ¢¢ describing the manifold of natural
images.

* Just find out a model able to generate samples that «looks like» training
samples S ¢ R".

Instead of sampling from ¢, just:

« Sample a seed from a known distribution ¢, . This is defined a priori and also
referred to as noise.

* Feed this seed to a learned transformation that generates realistic samples, as if
they were drawn from ¢s.

Use a neural network to learn this transformation. The neural network is going to
be trained in an unsupervised manner, no label needed

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



Generative Adversarial Networks (GAN)

The GAN approach:

Draw a sample from the
noise distribution

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



Generative Adversarial Networks (GAN)

The GAN approach:

Q

O
“ O
O

! GAN

zZ ~ ¢z
Draw a sample from the
noise distribution

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014
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Generative Adversarial Networks (GAN)

The GAN approach:

Draw a sample from the
noise distribution

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



Generative Adversarial Networks (GAN)

The GAN approach:

5 GAN
zZ ~ ¢z

Draw a sample from the
noise distribution

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014
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The GAN Approach
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The GAN Approach

The biggest challenge is to define a suitable loss for assessing
whether the output is a realistic image or not

/
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What a loss function?

To train a neural network we need a loss function.
What would be a good loss function here?

G. Boracchi



What a loss function?

To train a neural network we need a loss function.

What would be a good loss function here?
It is difficult to assess whether an image is real or not

GAN solution: resort to a neural network to define the loss!

G. Boracchi



Generative Adversarial Networks (GAN)

The GAN solution: Train a pair of neural networks addressing two different tasks that
compete in a sort of two player (adversarial) game.

These models are:

* Generator G that produces realistic samples e.g. taking as input some random
noise. G tries to fool the discriminator

* Discriminator D that takes as input an image and assess whether it is real or
generated by G

Train the two and at the end, keep only G

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



GAN Training

Random /O
Number G, the Generator Oy
Generator ~ N\ f‘> Real/Fake

\
%
o a
o % .
_I% d ’
y,

Generated image

v~

, f‘> ‘D, the Discriminator

Real image from

the training set TR
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GAN Training

O <
O
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Z~¢z

O

Random G, the Generator

Number
Generator

(
\\§
TR =<
o/ ;
) - e
\

N
. :
J

Generated image

Real image from

the training set TR

The goal of D is to recognize all the

images generated by G.

‘D, the Discriminator
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GAN Training

O

s

Z~¢z

Random
Number

Generator

TR =<

(
{ / ,7“&" —"
\

N>

:r““"" H‘“ ';Q

G, the Generator

Generated image

N
) l
J

Real image from

the training set TR

G is trained to generate images that
can fool D, namely can be classified
as «real» by D. The loss of G is
therefore given by D.

f‘> Real/Fake

‘D, the Discriminator
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GAN Training

O <
O

s

Z~¢z

O

Random G, the Generator

Number
Generator

(
\\§
TR =<
A ;
) - e
\

N
. :
J

Generated image

Real image from

the training set TR

D and G play opposite games: they

are Adversarial Networks!

‘D, the Discriminator

G. Boracchi



GAN Inference At the end of training, we hope G to

Q succeed in fooling D consistently.

Gene image We discard D and keep G as

f‘> A Q generator
O N | . o
) QO D is expected effective to distinguish
zZ ~ ¢, O Q real and fake images... if G can fool
Random G, the Generator D, this means that G is a generator.
Number
Generator
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GAN Inference At the end of training, we hope G to

succeed in fooling D consistently.

We discard D and keep G as

f‘> Q °°°° O generator
Q O Q — D is expected effective to distinguish
zZ ~ ¢, O O real and fake images... if G can fool
Random G, the Generator D, this means that G is a generator.
Number
Generator

e Discriminator D is completely useless and as such dropped.
« After a successful GAN training, D is not able to distinguish fake images.
* The generative network G has never seen a single image from S

G. Boracchi



GAN: Setting up the stage

Both D and G are conveniently chosen as MLP or CNN

Our networks take as input:
e D :| D(S, Qd)' |
° g = g(Z; Hg)'

This notation is meant to visualize what
are the NN parameters (64 or 6,).

Networks take a single input s or z

0, and 84 are network parameters, s € R" is an input image (either real or
generated by G) and z € R? is some random noise to be fed to the generator.

Our networks give as output:

 D(-,0,):R™ - [0,1] gives as output the posterior for the input be a true image

« G(-,0,): R > R" gives as output the generated image

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014




GAN Training

A good discriminator is such:
* D(s,0;) is maximum when s € S (true image from the training set)
« 1—D(s,0,) is maximum when s was generated from G

¢« 1— D(g(z, Hg), Hd) IS maximum when z ~ ¢,

Training D consists in maximizing the binary cross-entroy
r%iX(E%cPs [logD(s,04)] + E;, [log(l — D(Q(z, 6{9), Hd))])

Written using mathematical expectation rather than sum on minibatches

G. Boracchi



GAN Training

A good discriminator is such:
* D(s,0;) is maximum when s € S (true image from the training set)
« 1—D(s,0,) is maximum when s was generated from G

¢« 1— ])(g(z, Hg), Hd) IS maximum when z ~ ¢,

Training D consists in maximizing the binary cross-entroy
r%iX(E%cPs [logD(s,04)] + E;, [log(l — D(Q(z, 6{9), Hd))])

| !

This has to be 1 This has to be 0 since
since s ~ g, thus G(z 6,) is a generated
images are real (fake) image

G. Boracchi



GAN Training

A good discriminator is such:
* D(s,0;) is maximum when s € S (true image from the training set)
« 1—D(s,0,) is maximum when s was generated from G

¢« 1— D(g(z, Hg), Hd) IS maximum when z ~ ¢,

Training D consists in maximizing the binary cross-entroy
r%iX(E%cPs [logD(s,04)] + E;, [log(l — D(Q(z, 6{9), Hd))])

A good generator G makes D to fail, thus minimizes the above

min max(Es¢[10g D(5, 60)] + Ex-g,[l08(1 = D(§(265), 6a))])

G. Boracchi



GAN Training

Solve by an iterative numerical approach
min max Es.p.[logD(s,04)] + Ezvgp, [log(l — D(Q(z, Qg), Qd))])

G. Boracchi



GAN Training

Solve by an iterative numerical approach
min max Es.p.[logD(s,04)] + Ezvgp, [log(l — D(Q(z, Qg), Qd))])

04 d
Alternate:

* k-steps of Stochastic Gradient Ascent w.r.t. 8, keep 6, fixed and solve
rréix (Es~¢5 [logD(s,04)] + E,, [log (1 — D(Q(z, Hg), Hd))])
* 1-step of Stochastic Grandient Descent w.r.t. 8, being 8, fixed
myin (Eg~gpsllogD(s, 0] + E,g, [log (1 - D(6(2.6,).64) )|)
and since the first term does not depend on 8,, this consists in minimizing

i (oo s (1 ~2(5(200).00)

G. Boracchi



GAN Training

fori = 1.. #number of epochs

for k —times # gradient ascent steps for 6,
* Draw a minibatch {z4, ..., Zz,;,} of noise realization
* Sample a minibatch of images {sq, ..., $;}
* Update 9[ by stochastic gradient ascend:

Z log D(s;,64) + log (1 —-D(G(z;,6,), Hd))]

Draw a minibatch {z, ..., Zz,,} of noise realizations # gradient descent steps for 6,

Vo,

Update G by stochastic gradient descent:

Vo, [Z log (1 — D(G(z;, 6,), 9d))]

G. Boracchi



Algorithm outline

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, £, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.

for number of training iterations do
for i steps do

e Sample minibatch of m noise samples {z(l} ..... z(")} from noise prior Pq(2).
e Sample minibatch of m examples {z(V). .. .. (”’)} from data generating distribution
Pdata ().

e Update the discriminator by ascending its stochastic gradient:

Vo, -3 [loe D () + 1og (1- D (6 (=0)))]

i—

end for
e Sample minibatch of m noise samples {z(), ..., z(")} from noise prior py(2).
e Update the generator by descending its stochastic 0rad1ent

T

Vo EZM (1-0(c (=)

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
Goodfellow, I. et al “Generative adversarial nets” NIPS 2014



GAN Training This was presented as a best practice, later
GANSs such as Wasserstein GANS do not use.

fori = 1.. #number of epochs

for|k —times |# gradient ascent steps for 6,
* Draw a minibatch {z4, ..., Zz,;,} of noise realization
* Sample a minibatch of images {sq, ..., $;}
* Update 9[ by stochastic gradient ascend:

Z log D(s;,64) + log (1 —-D(G(z;,6,), Hd))]

Draw a minibatch {z, ..., Zz,,} of noise realizations # gradient descent steps for 6,

Vo,

Update G by stochastic gradient descent:

Vo, [Z log (1 — D(G(z;, 6,), 9d))]

G. Boracchi



| | Gradient signal
During early learning stages, when G ] .
is poor, D can reject samples with d0m|nated by reg|0n
: d _
high confidence because they are Where Sample is

clearly different from the training
data (thus D(G(2)) ~ 0) . In this
case, log(1 — D(G(2))) is flat, thus already gOOd

has very low gradient. ¢

3+

When sample is likely:|
fake, wantto learn |
from it to improve

generator. But 2l log(1 = D(G(2)))

gradient in this region-{

|S relat|ve|y ﬂat' ~0.0 0.2 0.4 0.6 0.8 1.0
D(G(2))

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/



http://cs231n.stanford.edu/
http://cs231n.github.io/

One of the many GAN Training «trick»

When optimizing for 6,, instead of minimizing the following
r%;n (Ez~¢z llog (1 — D(Q(z, Hg), Hd))])

we maximize this
(e [o8(20602.4).0))

Which is equivalent in therms of loss function.. provides a stronger gradient during
the early learning stages

G. Boracchi



| | | |

Rather than training G to minimize
log(1 — D(G(z))) we can train G to 3l
maximize log(D(G(z))) [or as in this
figure, minimize —log(D(G(z2)))] This
objective function results in the same
fixed point of the dynamics of G and
D, but provides much stronger
gradients early in learning.

High gradignt signal

4| log(1 —D(G(2)))

—  log(l —D(G(2)))
— —logD(G(z))

—log(D(G(2)))

—

Cow gradient signal

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/ D(G(Z))

_4 |
0.0 0.2



http://cs231n.stanford.edu/
http://cs231n.github.io/

GAN Training

fori = 1.. #number of epochs

for k —times # gradient ascent steps for 6,
* Draw a minibatch {z4, ..., Zz,;,} of noise realization
* Sample a minibatch of images {sq, ..., $;}
* Update 9[ by stochastic gradient ascend:

Z log D(s;,64) + log (1 —-D(G(z;,6,), Hd))]

Draw a minibatch {z, ..., Zz,,} of noise realizations # gradient descent steps for 6,

Vo,

Update G by stochastic gradient ascent:

Vs, [Z log (D(G(z:, 6,), Qd))]

G. Boracchi



lllustration of the GAN Training Process

In this illustration R4 and R™ are collapsed into 1d points ... b s real
this allows also the visualization of their distribution S (z) fak
Smm— ¢g(z) g Z) 1aKe

......... D(-) D posterior

. . " .
. [ X [ L

L
EE LT b

.
\
roy
8 e
[ Vo
., Ve

T 7 T

Goodfellow, I. et al “Generative adversarial nets” NIPS 2014



At the end of the day...

The discriminator D is discarded
The generator G and ¢, are preserved as generative model
Remarks:

* The training is rather unstable, need to carefully synchronize the two steps
(many later works in this direction, e.g. Wasserstein GAN)

* Training by standard tools: backpropagation and dropout
* Theoretical analysis provided in the paper

* Generator does not use S directly during training

* Generator performance is difficult to assess quantitatively

* There is no explicit expression for the generator, it is provided in an implicit
form -> you cannot compute the likelihood of a sample w.r.t. the learned GAN

G. Boracchi



MNIST

Goodfellow, I., Pouget-Abadie, )., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



MNIST nearest training
sample to the

GeneratedA samples second-last column

This GAN
generates realistic
training samples

without

memorizing the
training set

Goodfellow, I., Pouget-Abadie, )., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



Toronto Face Database (TFD)

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



CIFAR-10

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



Interpolation experiment: the manifold was learned!

G(21)

r\\/ F

¢ 4
‘ S
2 NS

-

R4 | 5 \b
:

Goodfellow, I., Pouget-Abadie, )., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014 G Beoacchi



Interpolation experiment: the manifold was learned!

G(21)

/‘\\/ A
| ////

:
) - G(22) \b

Z, ﬁkd

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014

G. B%?acchi



Interpolation experiment: the manifold was learned!

G(21)

/‘\\/ A
| ////

/
© _,.+*+ 9(z2.> T~

Zy —0 ﬁkd

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014

100
G. Boracchi



Interpolation experiment: the manifold was learned!

) WAVANANARARAVAVANARA (=)

L —
Zy —0 d
N

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014 101

G. Boracchi



Outputs of interpolated trajectories

Select two noise realization z; and z, yielding reasonable outputs, and interpolate
among the two. Generate the images of intermediate values

G(21) G(22)

l FIEISISISISIS

G(z3) G(24)

VAVAYAVARARAVAVAYA N

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



GANs have much improved over the years
RGB Image

DC-GAN: Deep Convolutional GANs
3
”\

128

16

Stride 2

Project and reshape CONV 1
CONV 2

Radford, A., Metz, L., & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



GANs have much improved in the last few years

Images generated after 1 training epochs

Radford, A., Metz, L., & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



GANs have much improved in the last few years

Images generated after 5 training epochs
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Radford, A., Metz, L., & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



Interpolation between a series of 9 random points

Radford, A., Metz, L., & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



Vector Arithmetic

Take randomly
generated samples of
smiling women,
neutral women, and
neutral men

Radford, A., Metz, L., & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



Vector Arithmetic

Take randomly
generated samples of
smiling women,
neutral women, and
neutral men

Radford, A., Metz, L., & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



Vector Arithmetic

smiling neutral
woman woman

Average the corresponding noise seeds
Radford, A., Metz, L., & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



Vector Arithmetic

smiling
woman woman man

Perform some arithmetic
Radford, A., Metz, L., & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



Vector Arithmetic

G(Z4)

smiling
woman woman man

Perform some arithmetic z; —Z, + Z3 = Z,

Radford, A., Metz, L., & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



Vector Arithmetic

G(zy + 1)

smiling neutral neutral

smiling man
woman woman man g

Add some noise to the input vector and that’s pretty robust
Radford, A., Metz, L., & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



Vector Arithmetic

man man woman
with glasses without glasses without glasses

Similar example as word embedding
Radford, A., Metz, L., & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016

woman with glasses



Vector Arithmetic

Interpolation of view changes

— — — — — — — — — — — —>

Radford, A., Metz, L., & Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



GAN has been a very active research field

LSGAN, Zhu 2017. Wasserstein GAN,
Arjovsky 2017.
Improved Wasserstein

GAN, Gulrajani 2017.

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/



http://cs231n.stanford.edu/
http://cs231n.github.io/

GAN has been a very active research field

Karras, Tero, et al. "Progressive growing of gans for improved quality, stability, and variation." ICLR 2018



GANs for source-target domain transfer

Input

This can also be
used for photo
enhancement and
data augmentation

apple — orange
= summer Yosemite

v bA
- winter Yosemite

CycleGAN. Zhu et al. 2017.




.. «The GAN Z00» and https://github.com/soumith/ganhacks

this small bird has a pink this magnificent fellow is "
breast and crown, and black almost all black with a red | |
primaries and secondaries. crest, and white cheek patch. -, |

Pix2pix. Isola 2017. examples at
https://phillipi.github.io/pix2pix/

G. Boracchi


https://github.com/soumith/ganhacks

Generative Adversarial Networks (these people do not exist)

Tero Karras, Samuli Laine, Timo Aila «A Style-Based Generator Architecture for Generative Adversarial NetworRks” CVPR 2019



This sneaker does not exist

Karras, Tero, et al. "Analyzing and improving the image quality of stylegan." CVPR 2020

G. Boracchi



B thissneakerdoesnotexist.com/edi 4 I : ] o=

ThIS Sneaker doeS not eXiSt The Grid 3D demo (new) Info Contact

Sneaker Editor

Use the sliders below the image to edit the sneaker

Normal Futuristic
Low creativity High creativity
Lighter color Darker color

Return to grid

5. Boracchi




A t thissneakerdoesnotexist.com

This sneaker does not exist

3D demo (new)

Sneaker Editor

Use the sliders below the image to edit the sneaker

Normal Futuristic
Low creativity High creativity
_
Lighter color Darker color
_J

Return to grid

5. Boracchi




Intuition behind Conditional GANs



Deep Convolutional Conditional GAN

Suppose each images in S are connected with any auxiliary information y, such as
class labels (e.g. digits images + the digit number)

Where should this information be inserted for steering image generation?

........................................................................................

11



Deep Convolutional Conditional GAN

We can concatenate this one-hot-encoded at the end of input noise.
Hopefully, the Generator G will learn to generate an image of the same class....

A

.|
f \ Generator,’/
L]

........................................................................................

y

11



Deep Convolutional Conditional GAN

We can concatenate this one-hot-encoded at the end of input noise.
Hopefully, the Generator G will learn to generate an image of the same class....

How to make sure about this?

A

.|
f \ Generator,’/
L]

........................................................................................

y

11



Deep Convolutional Conditional GAN

We also append the label information in a one-hot-encoded channels at the end of
real images and generated images as well.

Generated images will also have this additional column.

This will allow the discriminator to easily classify as “fake” generated images
whose content is not consistent with the encoded class label. Indeed, such
consistency is guaranteed on real images.

Real
Samples

= —

Noise y N

| D IsD ;
f . Correct?
— @ Discriminato R '

G Y
T— Generator ’
L]

— >

y




GAN for Anomaly Detection

Thanks to Stefano Pecchia, former AN2DL student!

G. Boracchi



The intuition

GANs can successfully establish a mapping
between random variables and the manifold
of images

We might have a wonderful anomaly
detection model if:

e we train a GAN G to generate normal
images (an in particular texture images)

* we invert the GAN mapping and get G 1

G. Boracchi



Anomaly Detection in images

Let s be an image defined over the pixel domain X < Z?, let ¢ € X be a pixel and
s(c) the corresponding intensity.

We want to locate any anomalous region in s, i.e. estimating the anomaly mask €

0 if c falls in a normal region
Qc) = ) . .
1 if ¢ falls in an anomalous region
We assume that a training set TR containing only normal images is given.

Y.

S ’v ,v‘l'-,g r i
B
Ak &&,/l |

7. -
/ > g ';&

G. Boracchi



Anomaly Detection in images

Let s be an image defined over the pixel domain X < Z?, let ¢ € X be a pixel and
s(c) the corresponding intensity.

We want to locate any anomalous region in s, i.e. estimating the anomaly mask
0 if c falls in a normal region

Q(c) = . : :
() {1 if ¢ falls in an anomalous region
We assume that a training set TR containing only normal images is given.

AL L7 L D ' 4
‘~ s A

G. Boracchi
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GANs and Anomaly Detection

A Generator G trained exclusively on normal images in TR, already provides a
mapping

* From the space of random vectors z ~ ¢,

* To the manifold where images live s ~ ¢,

Thus, if we could invert the GAN, we would have already an AD model

An anomaly score for a test image s would be

5= G = $,(G7H()

Unfortunately, it is not possible to invert G... some neural network need to be
trained for this purpose!

G. Boracchi



BidirectionalGANs (BiGANS)

The BiGAN adds an encoder £ to the adversarial game which

* Brings an image back to the space of “noise vectors”

« (Can be used to reconstruct an input image s (as in autoencoders) g(S(s))

« The discriminator D takes as input (image, latent repr.) as in conditional GAN

rgiEn max V(D,E,G)
V(D,E,G) = Es_pllogD(s,E(s))| + E;p, [1 — 1ogD(G(2),2))]
features data

feaures dwa
O+
|

| ’ ( ) —I—’-
@q_{ E .1__@

Donahue, J., Krihenbiihl, P., & Darrell, T. (2016). Adversarial feature learning. arXiv preprint arXiv:1605.09782.




BidirectionalGANs (BiGANs) and Anomaly Detection

In principle, the encoder £(-) can be used for anomaly detection by computing the
likelihood of ¢Z(8(s)) and consider as anomalous all the images s corresponding
to a low likelihood (provided that ¢, was not a uniform distribution) %S’

b.(E(S)) ) .

Another option is to use the posterior of the discriminator as anomaly score &

D(s, E(s)) ¢
7

since the discriminator will consider the anomalous sample as fake.

In principle, the encoder £(-) can be used for anomaly detection by computing the
likelihood of d)z(&‘(s)) and consider as anomalous all the images s corresponding
to a low likelihood (provided that ¢, was not a uniform distribution)

¢z(8(5))
Another option is to use the posterior of the discriminator as anomaly score

D(s, E(s))

since the discriminator will consider the anomalous sample as fake.

s, E(s)

E(s) S

Donahue, J., Krihenbiihl, P., & Darrell, T. (2016). Adversarial feature learning. arXiv preprint arXiv:1605.09782.



Anomaly detection with BidirectionalGANs (BiGANS)

However, there are more effective anomaly scores
As) = 1 - ||§(e®) - 5|+ ||f (2(s.66)) - £(D(5(e)).£6))
2

Distance among latent representations of D.
f is a CNN extracting a latent representation

Reconstruction Loss

o LL£C5)

()
= *L}H
»( 5,60 )

Q¢
%‘5)/@?_61_/@; S

Zenati, H., Foo, C. S., Lecouat, B., Manek, G., & Chandrasekhar, V. R. (2018). Efficient gan-based anomaly detection. ICLR Workshop 2018




Anomaly detection with BidirectionalGANs (BiGANS)

Limitations
* Image-wise / patch-wise training and testing
 Little stability during training

 No way to promote better quality of reconstructed images

features
oy

data

(G,

()<

E——
|

e A

O)

> 5,E(s) g

Zenati, H., Foo, C. S., Lecouat, B., Manek, G., & Chandrasekhar, V. R. (2018). Efficient gan-based anomaly detection. ICLR Workshop 2018




Fully Convolutional Anomaly Detection by GANs

Training Adversarial Loss Training

e All the layers are made
fully convolutional (much

more efficient processing) | 5 G G(z)
e LS-losses used to train the )
model (this improves

stability) ;_;;.E}_,.

[ E(x) 1— E} X
Reconstruction Penalty

Credits Stefano Pecchia



Fully Convolutional Anomaly Detection by GANs

Inference Adversarial Loss
* Anomaly score: combines

|.  image reconstruction error f
15(E@) s, 2 > G — Gla)
Il.  discriminator loss |

»(Gla), 2
(D(s,£(s)) — 1)° P
> ()

(since normal images are E(x) E} X
assumed to return 1) L

e Possibly also likelihood w.r.t Reconstruction Penalty
estimated distribution of E(s) N/
x —»[E: :-::j: E'—)C[E{x} )

Credits Stefano Pecchia




Input Image

Credits Stefano Pecchia



Reconstruction G(E(s))

RN/

"
N IE

e

/ p

Credits Stefano Pecchia



Reconstruction Loss ||g(£(s)) — 5]l

Credits Stefano Pecchia



Discriminator Score (D(s, £(s)) — 1)

Credits Stefano Pecchia



Anomaly Score a(D(s, £(s)) — 1)° + (1 — a)[IG(£(s)) - sl

Credits Stefano Pecchia



Normal Image Generation By Our GAN (2
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It is a Genertive modell

= R80X120><128

¥

|

Local regions are well
connected, but the GAN
do not enforce a global

image structure

Credits Stefano Pecchia



DALL-E2:
generate images from text description

G. Boracchi



Dall-e 2 overview
O Text embedding

a skateboard in
times square

/Q
Noisy image as \ O O .

an random seed

Noise embedding

conditioned on text
G. Boracchi



A photo of a white
fur monster
standing in a
purple room

A van Gogh style
painting of an -
American football P
player

A handpalm with
a tree growing on
top of it

A hand drawn sketch of a Porsche 911

https://openai.com/dall-e-2/



https://openai.com/dall-e-2/

Generative Foundation Models

“‘” L\ \

Midjourney Bot (¥BOT Today at 2:32 PM
Pope Francis wearing a long
white puffer coat --v 5 - @a2jess

“Salmon in River”




Very poweful generators of never-seen contents

lide Credits: Matteo Matteucci



Sora, 2024 Video Generator

nighttime footage of a hermit crab using an
incandescent lightbulb as its shell

_b“

- -. - /fﬂ'\‘“’\

- — "’—
-

i -

"“\ e:‘)( ’

Photorealistic closeup video of two pirate ships battling each other as
they sail inside a cup of coffee.

Several giant wooly mammoths approach treading - e
through a snowy meadow, their long wooly fur lightly
blows in the wind as they walk, [..] -

https://openai.com/index/sora/ T S e © TG, Boracchi




Video generation

Generation of complex and consistent
motion among different entities

. . [...] The octopus is unaware of a king crab that is crawling towards [...]
https://openai.com/index/sora/ G. Boracchi



Concluding Remarks on Image Generation

* |Image generation was considered the «holy grail» of imaging
research up to less than 10 years ago

* Different architectures of neural networks made this possible.

* Still, the practical impact of the first generative models was kind of
limited.

 Text embedding and superior quality in image generation has lead to
astonishing performance, opening new perspective applications

* Behind these models there is no black magic or «human-like
feelings», but rather expert training from a huge amount of data... it
is important to know how these work!

G. Boracchi



A Few Opportunities...

G. Boracchi



Option 1: Join the Team for a Thesis

G. Boracchi



The Team

We are 3 faculties, 10 PhD students, 1 Research Assistant... and 20+ MSc students!

\ o
Nl P e

Giacomo Boracchi Luca Magri

Federica Arrigoni Filippo Leveni Loris Giulivi Antonino Rizzo Michele Craighero

—

g

Edoardo Peretti Roberto Basla Andrea Porfiri Andrea Diecidue  Olmo Notarianni Rakshith
Dal Cin Madhavan



Research Collaborations

Major research collaborations:

C : . AN National Research
J Tampere University » Los Alamos m CI Council of Italy
q ISTITUTO DI RICERCHE @ FO“dﬂllone NS O
FARMACOLOGICHE
MARIO NEGRI ' IRCCS >, Don cal'lo GIIOCCI‘I

Major research projects:

GILARDONI Cleafy alial, Ly7 TEIS

C I S C O life.augmented

[-] digitec ik nisys

DIGITAL INNOVATION



Thesis Information

e We typically illustrate thesis opportunities in February and September, typically
during the first week of lectures.

e Thesis topics primarily concern Computer Vision, including both Deep Learning,
Image processing and Geometric Computer Vision.

* Thesis are primarily research thesis, or thesis on industrial projects.
e Sometimes we open internship with companies we are collaborating with.

* We are always interested in brilliant candidates and perspective PhD students

G. Boracchi



Thesis Information

in Information Technology

« We have sent a proposal for Honours Program in Research (for those of you
interested in research perspectives).

http://www.honours-programme.deib.polimi.it/ (2025 call will probably open in
January)

Proposers from our team: Giacomo Boracchi, Luca Magri, Federica Arrigoni

G. Boracchi


http://www.honours-programme.deib.polimi.it/

Probably next proposal will be on DL for TR-SPAD Imaging

Conventional Imaging Sensor

Passive Free-Running SPAD (PF-SPAD)

Photon Detection

Timelines

O Incident photons & Missed photons ¢ Detected photons

Fa
Ly

o

o

< o

< o

< Q
© 0
© 0O

time —»

‘\ Full well capacity
(Newc) reached here

Exposure time (T)

O Incident photons & Missed photons €© Detected photons

Low flux

¢ 0
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Lo o]

High flux

1
SO ——OHRHR
5 5

(o]
| 8
o
<&
<&
&
<&

T

. V_)‘I' -~ ;
Dead time (74)

Exposure time (T)

A new imaging modality, requiring new image processing algorithms and probably....

new deep learning models!

Ingle, Atul, Andreas Velten, and Mohit Gupta. "High flux passive imaging with single-photon sensors" CVPR 2019



Our TR-SPAD Imaging Simulator

Input illumination Pixel-wise SPAD model
Image _, Poisson
to flux process
>
T Time
| : :
Quantum : :
éﬂél efficiency X X :
L 1 . ’ |.,|__
Time <<
Afterpulsing (AP) & S
AP DC AP =
Dark counts (DC) s
—> ®©
Time =
: =
Dead ; : n
time ;
: >
Time
Missed photons Detected v
counts
— >
Additional counts Time

A. Suonsivu, L. Salmela, E. Peretti, L. Uosukainen, R. Ciprian Bilcu, and G. Boracchi, "Time-Resolved MNIST Dataset for Single-Photon Recognition", ECCV 2024 Workshop



Research Directions

Design of new:
- Image restoration algorithms for extremely low-light environments

- Deep learning models able to process streams of photons arrivals and address
visual recognition while the image is being acquired!

- Parsimonious image acquisition procedures for high-flux conditoins....

..if you want to know more on this, please drop us an email!



Option 2: Mathematical Models and
Methods for Image Processing

Spring 2022, for Mathematical Engineering and Computer Science
Engineering



What is this course about?



What is this course about?

It is about algorithms for processing
images and solving image-related

problems.

e

)

tive

o

/]

Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K. “Image denoising by sparse 3-D transform-domain collabora



What is this course about?

It is about algorithms for processing
images and solving image-related
problems.

..like denoising
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K. “Image denoising by sparse 3-D transform-domain collaborative filtering” TIP 2007




Example of problems we will address here



Denoising

We will see algorithms solving problems customarily addressed in our phones,

Denoising is a regression problem: given the noisy z, estimate y close to the unknown y

G. Boracchi



Quality Inspection

‘ |
G. Boracchi



Quality Inspection

Here regression is also crucial
Z = R(y) + n G. Boracchi
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Robust Fitting

Robust Fit
o o o . (RANSAC)
® Least squares o
et __« = This is a (robust) fitting problem
6 = argminz p(dist(x;, My))
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Robust Fitting

(a) Input point cloud (b) Recovered structures

This is a (robust) fitting problem

Magri, Leveni, Boracchi “MultiLink: Multi-class Structure Recovery via Agglomerative Clustering and Model Selection”, CVPR 2021



Robust Fitting
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Robust Fitting
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Is this interesting for a (perspective) Mathematical /
Computer Science Engineer?



Is this interesting? Sure!

All the algorithms build upon:
e a clear problem formulation

« a simple mathematical model (..often linear combinations!)
« Sound mathematical solutions (linear algebra, least squares, convex optimization)

..and the result is not just a number... it's an image!



Ok, to recap



Mathematical Models and Methods for Image Processing (5 CFU)

The primary goal of this laboratory course is to let the students design,
implement and practice algorithms based on

simple mathematical models from linear algebra and convex optimization,

and solve challenging inverse problems in image processing (denoising,
deblurring, inpainting, anomaly detection)

G. Boracchi



Mathematical Models and Methods for Image Processing (5 CFU)

The course topics include:

Image models based on orthonormal bases (Fourier, wavelets), data-driven basis
(PCA, Gram-Schmidt) and local polynomial approximation.

Sparsity and redundancy.
Away from Orthonormal Basis, redundant set of generators
Sparse coding with €2 (OMP) or ! norm (convex optimization ISTA, IRLS, LASSO)
Dictionaries yielding sparse representations and dictionary learning (KSVD)

Applications of sparse models to image denoising, inpainting, anomaly detection
and classification.

- Robust fitting methods (RANSAC, LMEDS, HOUGH) and their sequential counterparts
for object detection in images.

G. Boracchi



Course Organization

Lectures: 20 hours
Laboratory: 30 hours

There will be short theory recap and then you will be invited to develop and practice
presented algorithms. Some demo code to fill in will be provided.

Simple assignment provided during lectures, oral exam.

G. Boracchi



Frequently Asked Questions

Q: Any specific background?
A: linear algebra, statistics and calculus

Q: Any programming skill required?
A: Proficiency in Matlab or Python

Q: Plenty of neural networks then?

A: No way. No neural networks allowed here* ©
Only expert-driven algorithms designed upon a clear mathematical modeling that
admits closed-form solutions / sound optimization schemes.

* Interested in neural networks? Refer to «Artificial Neural Network and Deep Learning» in the first semester



Questions/?

LASIP ¢/o Tampere University of Technology http://www.cs.tut.fi/~lasip/

G. Boracchi



http://www.cs.tut.fi/~lasip/

Option 3: Advanced Deep Learning PhD
Courses

Every year we offer a PhD course



ADVANCED DEEP LEARNING

A PhD course from Prof. Boracchi, Matteucci, Mentasti, Papini

Advanced Deep Learning course aims at exploring two major directions in deep
learning to provide an advanced ground to engineers aiming at up-to-date deep
learning expertise that goes beyond a master-level course in deep learning:

* Advanced Deep Learning Architectures, such as Graph Neural NetworRs, Point
Convolutional Networks, and Transformers, have recently introduced a
breakthrough in DL research

 Learning non-conventional tasks (image generation with and without text
conditioning) and from limited supervision (e.g., unsupervised / self-supervised /
zero-shot learning). In particular, we will describe the mainstream models for
generating images with d Diffusion models.

More info here: link

G. Boracchi


https://www11.ceda.polimi.it/schedaincarico/schedaincarico/controller/scheda_pubblica/SchedaPublic.do?&evn_default=evento&c_classe=843373&lang=IT&__pj0=0&__pj1=e9823fd32063bc52b958c65284b9b50b

ADVANCED DEEP LEARNING

The following program will be covered via the six half days of in-presence lectures

Course Introduction: a historical perspective on Deep Learning with Rey steps in the
evolution of learning techniques, deep learning models, and deep models investigation
techniques.

Deep learning in non-supervised settings: Unsupervised DL models (AutoEncoders), self-
supervised learning practices for pre-training, metric-based and zero-shot learning,

knowledge distillation. Deep Learning Models for Anomaly Detection and Image Restoration.

The Transformers: The Attention Mechanism and the Transformers (in natural language
processing). The Attention mechanism in images and Vision Transformers, Self-supervised
Learning for Images, Contrastive Learning / Multimodal Learning (e.g., DINO, CLIP. etc).

Generative Al: Advanced models for Image generation, Normalizing Flows, Diffusion Models,
DALL-E and text-conditional image generation.

Graph Neural NetworRs: Learning on Graphs, Node Embedding, Network Embedding, Graph
Convolutional NetworRs, etc.

Lectures are accompanied by practical lab sessions where students can practice on Colab
the materials seen during lectures and implement models for specific applications.

G. Boracchi



Course Calendar

Day 1 (Ven 28/2 -- 14:00-19:00) - Matteucci / Boracchi / Mentasti

- Course Introduction

- Deep learning in non-supervised settings

- Unsupervised Deep Learning / Self-supervised / Metric Learning

- Deep Learning for Image Restoration (Denoising/Inpainting)

- Anomaly Detection (Restoration-based, Student Teacher, Self-supervised)
- Coding labs

- Day 1 evaluation

Day 2 (Ven 7/3 -- 14:00-19:00) and Day 3 (Ven 14/3 -- 14:00-19:00) - Matteucci / Mentasti
- Transformers and multimodal learning

- Attention and Transformers

- Vision Transformers

- CLIP, DINO + Zero / Few Shot Learning

- Coding labs

- Day 2/ Day3 evaluation

G. Boracchi



Course Calendar

Day 4 (Ven 21/3 / 14:00 - 19:00) - Boracchi / Papini
- Generative Al (4h+4h)
- Generative Models: VAE Normalizing flows, and Diffusion Models, DALL-E, etc.
- Coding labs
- Day 4 evaluation

Days 5 (Ven 28/3 / 14:00 - 19:00) and Day 6 (Ven 4/4 -- 14:00-19:00) - Matteucci / Papini
- Deep Learning beyond images

- Graph Neural Networks (mesh and graphs, node embedding)

- Coding labs

- Day 5 / Day 6 evaluation

G. Boracchi
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