Convolutional Neural Networks for

Object Detection

Giacomo Boracchi
giacomo.boracchi@polimi.it

November 15th, 2023

Artificial Neural Networks and Deep Learning
Politecnico di Milano
https://boracchi.faculty.polimi.it/

G. Boracchi



mailto:giacomo.boracchi@polimi.it
https://boracchi.faculty.polimi.it/

Object Detection Networks

G. Boracchi



G. Boracchi



Object Detection, the problem

Assign to an input image I € RR*¢ X3,

* multiple labels {l;} from a fixed set of categories A = {"wheel",
"cars”, ..., "castle", "baboon"}, each corresponding to an instance

of that object
* the coordinates {(x,y, h,w);} of the bounding box enclosing each
object

[ - {(x;}’; h; W, l)l) ee (xly’ h’ w, Z)N}
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Object Detection Task T o {fix fx R x Rz R)}

Given a fixed set of categories and an input image which contains an
unknown and varying number of instances

Draw a bounding box on each object instance

A training set of annotated images
with labels and bounding boxes
for each object is required

Each image requires a varying
number of outputs

MAN: (x,y,h,w)
KID: (x,y,h,w)
GLOVE: (x,y,h,w)




Annotated Dataset for Object Detection
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The Straightforward Solution: Sliding Window

1000 X 2000 pixels

« Similar to the sliding window for semantic
segmentation

e A pretrained model is meant to process a
fixed input size (e.g. 224 X 224 X 3)

« Slide on the image a window of that size and
classify each region.

Adopt the whole machinery seen so far to each
crop of the image
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The Straightforward Solution: Sliding Window

1000 X 2000 pixels

« Similar to the sliding window for semantic
segmentation

e A pretrained model is meant to process a
fixed input size (e.g. 224 X 224 X 3)

« Slide on the image a window of that size and
classify each region.

Adopt the whole machinery seen so far to each
crop of the image
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The Straightforward Solution: Sliding Window

1000 X 2000 pixels

« Similar to the sliding window for semantic
segmentation

e A pretrained model is meant to process a
fixed input size (e.g. 224 X 224 X 3)

« Slide on the image a window of that size and
classify each region.

Adopt the whole machinery seen so far to each
crop of the image
The background class has to be included!
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Many drawbacks...

cons:

* Very inefficient! Does not re-use features that are «shared» among
overlapping crops

 How to choose the crop size?
« Difficult to detect objects at different scales!

* A huge number of crops of different sizes
should be considered....

Plus:
* No need of retraining the CNN




Region Proposal

Region proposal algorithms (and networks) are meant to identify
bounding boxes that correspond to a candidate object in the image.

Algorithms with very high recall (but low precision) were there before
the deep learning advent

The idea is to:
 Apply a region proposal algorithm

* C(lassify by a CNN the image inside
each proposal regions




This CVPR2014 paper is the Open Access version, provided by the Computer Vision Foundation.
The authoritative version of this paper is available in IEEE Xplore.

Rich feature hierarchies for accurate object detection and semantic segmentation

Ross Girshick!  Jeff Donahue!? Trevor Darrell'? Jitendra Malik!
1'UC Berkeley and *ICSI

{rbg, jdonahue, trevor,malik}@eecs.berkeley.edu
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R-CNN

Object detection by means of region proposal (R stands for regions)

SVM +

«external» Region BB regressor
Proposal Algorithm

Warped regi on Latent features from

aeroplane? no.

4 AlexNet Pretrained

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
1mage proposals (~2k) CNN features regions

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation.”" CVPR 2014



R-CNN

Object detection by means of region proposal

Warping to a predefined SVM +
Size is necessary since the BB regressor
CNN has a FC layer

warped region Y aeroplane? no.
e ; -

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
1mage proposals (~2k) CNN features regions

There is no learning in the region proposal
algorithm, very high recall (e.g. Selective Search)

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation.”" CVPR 2014



R-CNN

SVM +
This is AlexNet as a pre-trained network BB regressor

aeroplane? no.
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person? yes.
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1. Input 2. Extract region 3. Compute 4. Classity
image  proposals (~2k) CNN features regions

tvmonitor? no.

SVM trained to minimize the classification
error over the extracted ROI

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation.”" CVPR 2014



R-CNN (x4, ki)

The regions are refined by a regression network to correct the SVM +
bounding box estimate from ROl algorithm BB regressor

warped region Latent representation | geroplane? no.

N

person? yes.

tvmonitor? no.

2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation.”" CVPR 2014



R-CNN

The pretrained CNN is fine-tuned over the classes
to be detected (21 vs 1000 of Alextnet) by
placing a FC layer after feature extraction.

No end-to-end training of the SVM SVM +

BB regressor

. FEN provides
warped region oK features Y aeroplane? no.

y. . prsscosenssonmmemns ;

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
1mage proposals (~2k) CNN features regions

Include a background class to get rid of those
regions not corresponding to an object

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation.”" CVPR 2014



The Loss Function (over bounding boxes)

We need to quantitatively assess the network performance over each and

' . ' -.*2 ..'
PredlctTon

every image in the test set

“Annotation ‘



The Loss Function (over bounding boxes)

We need to quantitatively assess the network performance over each and
every image in the test set
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Adrian Rosebrock, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons



A number quantitatively assessing detection preformance

loU: 0.4054 loU: 0.7330 lolU: 0.9264

L

Poor Good Excellent

By Adrian Rosebrock - http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/



The Loss Function

The loss function compares the detection
results for an image x: NN (x) against the
annotations y and gives you a number

L(y,y)

That is indicating «how happy we are with
the predictions», the lower the better. This
considers:

- how many missed items
- how many false positives

- how close correct detections are to the
annotation (loU)




R-CNN Limitations

Ad-hoc training objectives and not an end-to-end training
* Fine-tuning network with softmax classifier (log loss) before training SVM
« Train post-hoc linear SVMs (hinge loss)
« Train post-hoc bounding-box regressions (least squares)

e Region proposals are from a different algorithm and that part has not
been optimized for the detection by CNN

« Training is slow (84h), takes a lot of disk space to store features

* Inference (detection) is slow since the CNN has to be executed on each
region proposal (no feature re-use)
* 47s / image with VGG16

Rmk: efficiency in object detection network is key! Otherwise you might
want to train a segmentation network instead!



This ICCV paper i1s the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the version available on IEEE Xplore.

Fast R-CNN

Ross Girshick
Microsoft Research

rbg@microsoft.com
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Fast R-CNN

1. The whole image is fed to a CNN that extracts feature maps.

2. Region proposals are identified from the image and projected into the feature

maps. Regions are directly cropped form the feature maps, instead from the

image: —re-use convolutional computation.
Classification head

Outputs: bb OX
softmax FEBIESSOF
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Fast R-CNN

3. Fixed size is still required to feed data to a fully connected layer.
ROI pooling layers: extract a fixed size H X W activation from each region
proposal. Each ROl in the feature maps is divided in a H X W grid and then
maxpooling over the grid provides a fixed size input (vectorized) to the next step.

Size depends

on ROI x

f-ConvNet 5*

Outputs: bb OX
softmax FEEFESSOF

fixed-size

Rol
pooling

~ | Rol [ [k
—l=lprojection

' TN
Cofv ™

feature ma
«CONV5>»

Girshick, Ross. "Fast r-cnn." ICCV 2015
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Fast R-CNN

4. The FC layers estimate both classes and BB location (bb regressor)
A convex combination of the two is used as a multitask loss to be optimized (as in R-
CNN, but no SVM here).

5. Training performed in an end-to-end manner, convolutional part executed only once

Outputs: bb OX
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Fast R-CNN

In this new architecture it is possible to back-propagate through the whole
network, thus train the whole network in an end-to-end manner

It becomes incredibly faster than R-CNN during testing.

Now that convolutions are not repeated on overlapping areas, the vast
majority of test time is spent on ROl extraction (e.g. selective search)

Girshick, Ross. "Fast r-cnn." ICCV 2015



Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks

Shaoging Ren® Kaiming He Ross Girshick Jian Sun

Microsoft Research
{v-shren, kahe, rbg, jiansun } @microsoft.com
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Faster R-CNN |
Dkw

* |nstead of the ROI extraction 12/ ( y}
" (" w
e (M

algorithm, train a region proposal . RPN
network (RPN), which is a F-CNN rmlvr  anchorbones
(3x3 filter size) iy b reg layer Al ‘

* RPN operates on the same feature ‘ , A |
maps used for classification, thus at ““m,mm aver
the last conv layers A

* RPN can be seen as an additional \ \
(learnable) module that improves | '
efficiency and focus Fast R-CNN over Clifieg wipdow :
the most promising regions for cony feature map A?

object detection

Ren, Shaoging, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015



RPN, Region Proposal Network

Goal: Associate to each spatial location k anchor boxes, i.e. ROl having
different scales and ratios (e.g. k = 3 x 3, 3 sizes of the anchor side,
3 height/width ratios). Assume the feature maps are H X W.

The network outputs H X W X k candidates anchor and estimate
objectiveness scores for each anchor |

2k scores | 4k coordinates <mm  fanchor boxes

Objectiveness cis layer \ I reg layer
score

256-d
t intermediate layer

\

shding window

W Cony Ieature map

Ren, Shaoging, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015




RPN: Intermediate Layer

Intermediate layer: is a standard CNN layer that takes as input the last
layer of the feature-extraction network and uses 256 filters of size 3 X 3.

It reduces the dimensionality of the feature map and maps each region to
a lower dimensional vector of size (output size H X W X 256)

| 2k scores | 4k coordinates <mm  fanchor boxes

cls layer \ I reg layer
256-d HXW x 256
t intermediate layer

\

shding window

W Cony Ieature map

Ren, Shaoging, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015




RPN Estimating k Anchors

* The cls (classification) network is trained to predict the object

A-Fr
probability, i.e. the probability for an anchor to contain and object _
[contains / does not contain] — 2k probability estimates

« Made of a stack of 1 X 1 convolutional layers mm
¢ EaCh Of these k proability paiI'S | 2k scores | 4k coordinates <mm  kanchor boxes

corresponds to a specific anchor | I reg layer A1: . ‘

(having a specific dimension)

and expresses the probability =
for that anchor in that spatial "‘ T L
location to contain any object —
\ -
H
sliding window .
W conv feature map :

Ren, Shaoging, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015



RPN Estimating k anchors )
*: Yy e
* The reg (regression) network is trained to adjust each of the k
predicted anchor to better match object ground truth — 4k es mates
for the 4 bounding box cooridnates

» Each of these k 4 —tuples |1
expresseSthe reflnements | 2k scores | 4k coordinates —“_ k anchor boxes
for a specific anchor " mﬂ\ | , reg layer

256-d

t intermediate layer

\

shding window

W COny Ieatura map

Ren, Shaoging, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015




RPN Estimating k Anchors

. If you want to train the network to predict different anchors,
there is no need to design different RPN, bust just to define different
labels when training the RPN, associated to different anchors
 Each of these k 4 —tuples

expresses the refinements |
for a specific anchor

2k scores 4k coordinates <mm  fanchor boxes
cls layer \ I reg layer _ ‘

256-d ]
t intermediate layer

Bl

shding window

W Cony Ieature map

Ren, Shaoging, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015




RPN Estimating k Anchors

« You can in principle adopt anchors having non-rectangular shapes
(e.g. ellipses, or simply rotated BBS)....
However it can be difficult to compute loU, which is instead
. extremely easy and fast in case of BBs... there are shapes that cannot

be easily interesected (no closed form expressmn) to define the loss
for a specific anchor

k anchor boxes
.:e'u layer \ t reg ]a_hr _ ‘

256-d | _
t intermediate layer

shding window

W COIY TEaturs map

Ren, Shaoging, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015



Faster R-CNN

RPN returns H X W X k region
proposals, thus replaces the region
proposal algorithms (selective
search)

After RPN there is a non-maximum
suppression based on the
objectiveness score

Remaining proposals are then fed to
the ROl pooling and then classified
by the standard Fast-RCNN
architecture

RPN

2k scores 4k coordinates <mm  anchorboxes

cls layer \ t reg layer . \

256-d

intermediate layer

= [

sliding window

conv feature map

Outputs:

bbox\

softmax regressog

® W

feature map vector

For each Rol

Ren, Shaoging, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015



Faster R-CNN Training

_—g 4k coordinates

* Training now involves 4 losses: / “iov g 4

e RPN classify object/non object
RPN regression coordinates

« [Final classification score
* |Final BB coordinates

« During training, object/non object
ground truth is defined by
measuring the overlap with
annotated BB

 The loss include a term of final
BB coordinates, as these are
defined over the image, RPN in
the latent domain.

Ren, Shaoging, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015

256-d
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intermediate layer

t
NG
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conv feature map 7: : )

N
Outp(ts: b b OX

softmax Fegressorn

A\

Rol
pooling

|
feature map

N
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Rol feature
vector

For each Rol



Faster R-CNN Training

Training procedure

1. Train RPN keeping backbone network frozen
and training only RPN layers. This ignores
object classes but just bounding box locations
(Multi-task loss cls + reg)

RPN

Multitask Loss

2k scores

4k coordinates

<mm  anchorboxes

2. |Train Fast-RCNN using proposals from RPN
trained before. Fine tune the whole Fast-RCNN

cls layer ‘
)

‘ reg layer
¥

256-d

intermediate layer

1
NG

sliding window

conv feature map

|including the backbone |

backbone

4. [Freeze backbone and RPN and fine
tune only the last layers of the
Faster R-CNN

Ren, Shaoging, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015

P\

Rol
pooling

|
feature map

N

Multitask Loss

Outputs: beX
softmax Fegressorn

Rol feature
vector

For each Rol



Faster R-CNN

At test time,

e Take the top ~ 300 anchors according to their object scores
e Consider the refined bounding box location of these 300 anchors
 These are the ROI to be fed to a Fast R-CNN

* (lassify each ROl and provide the non-background ones as output

Faster R-CNN provides as output to each image a set of BB with their
classifier posterior

The network becomes much faster (0.2s test time per image)

Ren, Shaoging, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015



Faster R-CNN

It’s still a two stage detector

First stage:
* run a backbone network (e.g. VGG16) to extract featues
* run the Region Proposal Network to estimate ~ 300 ROI

Second stage (the same as in Fast R-CNN):

« Crop Features through ROI pooling (with alignment)

* Predict object class using FC + softmax

* Predict bounding box offset to improve localization using FC + softmax

Ren, Shaoging, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015



Faster R-CNN

R-CNN Test-Time Speed
R-CNN
SPP-Net
Fast R-CNN 2.3

Faster R-CNN| 0.2

0 15 30 45

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015
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An industrial application

Credits Davide Rutigliano G. Boracchi



In collaboration with

Event Detection in Optical Signals vl
CISCO

Launch Cable Cable Under Test Receive Cable
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A. M. Rizzo, L. Magri, D. Rutigliano, P. Invernizzi, E. Sozio, C. Alippi, S. Binetti, G. Boracchi, "known and Unknown Event Detection in OTDR Traces by
Deep Learning NetworRs", NCAA, Springer 2021



In collaboration with

Event Detection in Optical Signals aliafr,
CISCO

—

“ELELEJ ' |

i

Fig. 1 (b): OTDR events examples: face-
OTDR trace: events indicate problems plate, pass-through, fiber-cut, fiber-end

over a span of optical fiber

A. M. Rizzo, L. Magri, D. Rutigliano, P. Invernizzi, E. Sozio, C. Alippi, S. Binetti, G. Boracchi, "known and Unknown Event Detection in OTDR Traces by
Deep Learning NetworRks", NCAA, Springer 2021



In collaboration with

Event Detection in Optical Signals aliaf,

CISCO
Train a classification network over fixed windows (300 samples)

OTDR Trace T . |
o . ( Face — Plate
: Lﬁ____%__%__ | | N .
:D T | |:> | ” : ~ E> CNN + Softmax |:> \ . [

13 l | /o Pass — Through
—20 | | ' \ - k\ Fiber - End 7

A. M. Rizzo, L. Magri, D. Rutigliano, P. Invernizzi, E. Sozio, C. Alippi, S. Binetti, G. Boracchi, "known and Unknown Event Detection in OTDR Traces by
Deep Learning NetworRs", NCAA, Springer 2021



Event Detection in Optical Signals

* Requires an additional step to
split OTDR traces into windows

e Limited to single-scale events
resolution

 Works under the assumption
that each window includes at
most one event

 Does not consider events
position

 Does not share computations

In collaboration with

NInlir
CISCO
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A. M. Rizzo, L. Magri, D. Rutigliano, P. Invernizzi, E. Sozio, C. Alippi, S. Binetti, G. Boracchi, "known and Unknown Event Detection in OTDR Traces by

Deep Learning NetworRs", NCAA, Springer 2021



In collaboration with

Event Detection in Optical Signals aliafr,
CISCO

Faster-Like Object Detection Network
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A.M. Rizzo, L. Magri1, D. Rutigliano, P. Invernizzi, E. Sozio, C. Alippi, S. Binetti, G. Boracchi "Known and Unknown Event Detection in OTDR Traces by
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Able to detect both known and unknown events

FACE-PLATE (0.990)

1019 UNKNOWN (1.000)
01 |
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A.M. Rizzo, L. Magri1, D. Rutigliano, P. Invernizzi, E. Sozio, C. Alippi, S. Binetti, G. Boracchi "Known and Unknown Event Detection in
OTDR Traces by Deep Learning Networks" NCAA, Springer



This CVPR paper 1s the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it 1s 1dentical to the version available on IEEE Xplore.

You Only Look Once:
Unified, Real-Time Object Detection

Joseph Redmon*, Santosh Divvala*', Ross Girshick¥, Ali Farhadi*!

University of Washington®, Allen Institute for AI', Facebook Al Research”
http://pjreddie.com/yolo/

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." CVPR 2016. G. Boracchi



YOLO/SSD

R-CNN methods are based on region proposals
There are also region-free methods, like:

YOLO: You Only Look Once
SSD: Single Shot Detectors

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." CVPR 2016.



The rationale

Detection networks are indeed a pipeline of multiple steps.

In particular, region-based methods make it necessary to have two steps
during inference

This can be slow to run and hard to optimize, because each individual
component must be trained separately.

In Yolo "we reframe the object detection as a single regression problem,
straight from image pixels to bounding box coordinates and class

probabilities”
And solve these regression problems all at once, with a large CNN

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." CVPR 2016.
Liu, Wei, et al. "SSD: Single shot multibox detector." European conference on computer vision. Springer, Cham, 2016.



YOLO

1. divide the image in a coarse grid (e.g. 7x7)

4 o
3

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection.”" CVPR 2016.



YOLO

1. divide the image in a coarse grid (e.g. 7x7)
2. each grid cell contains B anchors (base bounding box) associated




YOLO

3. For each cell and anchor we predict:

* The offset of the base bounding box, to better match the object:
(dx,dy,dh,dw, objectness_score)

* The classification score of the base-bounding box over the C
considered categories (including background)

So, the output of the network has dimension
7X7XBX(5+ C)

e
.
£

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection.”" CVPR 2016.



YOLO

The whole prediction is performed in a single forward pass over the
image, by a single convolutional network

Training this network is sort of tricky to assess the loss (matched / not
matched)

YOLO/SSD shares a similar ground of the
RPN used in Faster R-CCN

Typically, networks based on region-proposals
are more accurate, single shot detectors are
faster but less accurate




Object Detection

-
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Redmon, )., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.



Do it yourself!
https://colab.research.google.com/drive/1ch

]IXM6ckE1s-x0ZZjGG Q0dmICeBPzPR
Perform inference using a pre-trained
object detection network

G. Boracchi


https://colab.research.google.com/drive/1chjXM6ckE1s-x0ZZjGG_QOdmlCeBPzPR
https://colab.research.google.com/drive/1chjXM6ckE1s-x0ZZjGG_QOdmlCeBPzPR

Instance Segmentation

G. Boracchi



Object Detection vs Instance Segmentation

Object Instance
Detection ASegmentation

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/



http://cs231n.stanford.edu/
http://cs231n.github.io/

Instance Segmentation, the problem

Assign to an input image I:
* multiple labels {l;} from a fixed set of categories A = {"wheel",

"cars’, ..., "castle”, "baboon"}, each corresponding to an instance
of that object

« the coordinates {(x,y, h,w);} of the bounding box enclosing each
object

* the set of pixels S in each bounding box corresponding to that
label
I - {(x,y,h,w,[,S), .., (x,y,h, w,[,S)n}

G. Boracchi



This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Mask R-CNN

Kaiming He Georgia Gkioxari  Piotr Dollar  Ross Girshick
Facebook AI Research (FAIR)

He, K., Gkioxari, G., Dollar, P., & Girshick, R. “Mask R-CNN”. ICCV 2017



Instance Segmentation

It combines the challenges of:
Object detection (multiple instances present in the image)

Semantic segmentation (associate a label to each pixel) separating
each object instance



Mask R-CNN

As in Faster R-CNN, each ROl is classified and
the bounding boxes are estimated

Classification Scores: C

a0

RolAlign

conv

He, K., Gkioxari, G., Dollar, P., & Girshick, R. “Mask R-CNN”. ICCV 2017

Box coordinates (per class): 4*C

conv

256 x14x 14 256x 14x 14

Semantic segmentation
inside each ROI

Predict a mask for
each of C classes




Mask R-CNN

Mask is estimated for each ROl and each class

Extends Faster R-CNN by adding a branch for predicting an object

masR in parallel with the existing branch for bounding box recognition
mask

estimation
Outputs: bbox loss

softmax FEEIESSOF

”—\* Rol feature
vector

For each Rol

He, K., Gkioxari, G., Dollar, P., & Girshick, R. “Mask R-CNN”. ICCV 2017
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He, K., Gkioxari, G., Dollar, P., & Girshick, R. “Mask R-CNN”. ICCV 2017




Mask R-CNN

Mask is estimated for each ROl and each class

Extends Faster R-CNN by adding a branch for predicting an object
masR in parallel with the existing branch for bounding box recognition

Segmentation
loss Pose loss

Outputs: beX

softmax regressor

“'—\_ Rol feature
feature map vector

For each Rol

He, K., Gkioxari, G., Dollar, P., & Girshick, R. “Mask R-CNN”. ICCV 2017
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He, K., Gkioxari, G., Dollar, P., & Girshick, R. “Mask R-CNN”. ICCV 2017



Instance Segmentation / Human Pose Estimation
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He, K., Gkioxari, G., Dollar, P., & Girshick, R. “Mask R-CNN”. ICCV 2017



Instance Segmentation / Human Pose Estimation

T W

h|s can be also trained from segmentatlon dataset (like COCO s

dataset), from where you can infer bounding boxes }.‘,I.:
Microsoft COCO dataset contains 200.000 images segmented over | =
80 categories. Persons are provided with joints annotated z
Since there are many instances per image, this provides a lot of
trammg data

He, K., Gkioxari, G., Dollar, P., & Girshick, R. “Mask R-CNN”. ICCV 2017



In collaboration with

ik¢ nisys

Instance Segmentation

Research Project with Ikonisys

Credits Roberto Basla

G. Boracchi



In collaboration with

Instance Segmentation Network il nisys

The instance segmentation network is able to identify nuclei in fluoroscopy images.

Prediction ove

Base image

rlay with the base image
0.93

mage Prediction
The network provides, for each identified nucleus, its segmentation mask,

bounding box, and prediction confidence.

Credits Roberto Basla G. Boracchi



Model Performance, 4« | /

The model achieves great

results even when trained 0o
with very few images from
the target domain, by .00 [
making use of transfer
learning from these
datasets:

I SF: 1)
L 0.96

DSB2018
DSB2019 =
BBBC039 -7 Ti'
NSDE .{}?”

] "_ﬂ. 96

Credits Roberto Basla




Overlapping segmenta i, ‘

0.7
0 %
Overlapping cells can be = -
identified and masked N
independently.
7 ’ . Y 1- 92
L BN "D 21
e e NN
— ’ b —matlt o s
,,f..;!»"'3
|
9. 82

Credits Roberto Basla



In collaboration with

Robustness ik nisys

The model can identify even the faintest of nuclei in the image, further
proving the performance of the system.

Credits Roberto Basla G. Boracchi



Ongoing Research Activities

.. good for thesis projects

G.

Boracchi



Multi-view object detection CNN

Detection systems usually take only a
single input image. In some applications,
such as

* Baggage inspection in airports
 Tumor detection in X-ray images

you have multiple views of the same
objects.

Exploiting multiple-views can increase
detection power.

[1] Steitz et al., "Multi-view x-ray r-cnn." (2018)
[2] Wimmer et al. "Multi-task fusion for improving mammography screening data classification” (2021) G. Boracchi



Multimodal object detection CNN

Object detection can leverage multiple streams:
- RGB images (possibly stereo pairs)

- Point Clouds from lasers scanners

- event cameras..

To infer 3D coordinates f ndin boxes

il

https://www.cvlibs.net

1.60 m

In collaboration with Prof.
Savaresi, MOVE Research Group

=
0.60 mI
N B
: 1m 1
; 1m 1
Camz B»
0.60 mI ““““““““ O ........................................
e
Perspective 0.8 m
: 2.71m 1
G. Boracchi



Velodyne Stereo

1.60 m 0.60 mI VelodyncO

Camil P

Perspective ;

cameras P-—‘
(j =
-

2.71m
1.60 m
) 2.71m
ne Bw
1.60 m 0.60 m]
1 B
Perspective
! cameras

https://www.cvlibs.net/datasets/kitti-360/index.php



Metric Learning

G. Boracchi



Say you are asked to implement a face
identification system
to open Polimi door!




Classification? Detection? Segmentation?
Let’s start fresh from a Convolutional Neural Network for classification

224 x224x3 224 x224x64

112 x 128

56]x 56 x 256
28 x 28 x 512 TXT X512 1 person
14x 14 % 512

1x1x4096 1x1x1000 =

1 class

@ convolution4+RelLU

@ max pooling
| fully connected+ReLLU

- l‘ softmax

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." ICLR 2015



Face identification by Classification
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CNN

G. Boracchi



Face identification by Classification
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G. Boracchi



Face identification by Classification
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G. Boracchi



Face identification by Classification

i ®
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G. Boracchi



What do we need!?

A training set
« A few images per class / person

« Possibly Images in different conditions (position, light, facial
expression, clothes ...)

A few Py snippets and a GPU...

That’s easy...

G. Boracchi



What do we need!?

A training set
« A few images per class / person

« Possibly Images in different conditions (position, light, facial
expression, clothes ...)

A few Py snippets and a GPU...

That’s easy.. Are we happy with this solution?

G. Boracchi



.. Not quite

What happens when you need to enroll a new employee/

i

Ly'

S

-—

i

O000O0

O Giacomo
O Luca

O Diego

CNN

G. Boracchi



.. Not quite

What happens when you need to enroll a new employee/
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G. Boracchi



.. Not quite

What happens when you need to enroll a new employee/

@
e
[ O O Luc
h A C O Die%)
o 9. O Filippo
\ /
CNN

The whole network has to be retrained for each new person to be identified

G. Boracchi



A Different Approach is Needed!

G. Boracchi



What about image comparison?

Why don’t we store a picture for each employee (template), and then
perform identification by pairing the input to its closest template’

G. Boracchi



What about image comparison?

So, identification becomes:

G. Boracchi



What about image comparison?

Enrolling a new individual would be straightforward

G. Boracchi



What about image comparison?

Enrolling a new individual would be straightforward... it is enough to
add a template to the database!

G. Boracchi



Bad News...

The three images are at the same
distance from the reference at the center

-
~ -

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/



http://cs231n.stanford.edu/
http://cs231n.github.io/

What about image comparison?

.. but how to perform identification?

Is it possible to move to a learned distance,
and to train tihs relying only on these examples?

G. Boracchi



..we need a better distance measure for
face identification!

G. Boracchi



Distance among latent representations

f feature extraction

What about using?

L »
' | | t=angmin|lf() - fT,

-

G. Boracchi



Distance among latent representations

f feature extraction

[ - fAd)

O\
/

| - f(T)

1F (D) = F(TDl2

-—

CNN

G. Boracchi



Distance among latent representations

| f feature extraction

[ 1 )

O\
/

| L f(T)

1) = f(T)2

-—

CNN

G. Boracchi



Distance among latent representations

f feature extraction

! )

And hopefully now
IF (D) — F(TII

£ (D) = fF(TDllz < If ) —f(Tz)Ilz/

| - f(T)

-—

CNN

G. Boracchi



In practice

f feature extraction
1. Extract features from

the first image f (1)
l ) f) 5. perform identification as

Jj=1,.4

CNN No need to compute f(T;) Vj,

these can be directly stored

This is equivalent to perform image retrival in the latent space... we
know this can work!

G. Boracchi
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However... can we do any better?
... After all, the network f(-) was not
trained for this purpose...

G. Boracchi



Metric Learning

We are still comparing latent representations trained for classification
(over a few persons?), while not for comparing images.

A more appealing perspective would be to train the network to
measure distances between images.

We would like to train the weights W of our CNN such that
lfw (D = fw (Tlz < [|fwD = fw (TH||, Vvj #i

When I belongs to class i

T

CNN



Siamese Networks

! 1 fw ()
C.NN The «two» networks
have to perform the
= same operations, using
the same weights /.
) ! Hence the term Siamese
' fw (T2)
\
CNN —

G. Boracchi



How to Train the Siamese Network?

During training, the siamese network is fed with pairs of
images ([;, [;) that might refer or not to the same individual

-

| L fw()

How to learn the
parameters W
provided
a training set
of many images each
l ' (T one annotated to the
respective template?

CNN

-

C.NN _

G. Boracchi



Contrastive Loss

The contrastive loss function is defined as follow:
W = argmin E Lw(li,lj,yi,j)
w —
l,]

Where:

Lol hyy) =2 _y”)llfw(l) fulp, + 2L max (0,m = £, () - £uGpI,)

* ¥;j €10,1} is the label associate with the input pair (1;, I;):
- 0 when (I}, I;) refers to the same person
- 1 otherwise

« m is a hyperparameter indicating the margin we want (like in Hinge Loss)
£ (1) — fw(lj)||2is the distance in the latent space.

G. Boracchi



Triplet Loss

A loss function such that a training sample I is compared against
* P a positive input, referring to the same person
* N a negative input, referring to a different person

We train the network to minimize the distance from the positive
samples and maximize the distance from the negative ones

Lw(I,P,N) — maX(Orm + (“fa)(l) _fa)(N)HZ R “fw(l) _fw(P)HZ))

Triplet loss forces that a pair of samples from the same individual are
smaller in distance than those with different ones.

m always play the role of the margin.
The selection of triplets for training is a matter of study

G. Boracchi



Just to Recap

G. Boracchi



When a new image has to be verified

1. We feed the image I to the trained network, thus compute fy, (1)

= — 2 fu

T

CNN

2. Identify the person having average minimum distance from templates (in
case there are many associated to the same individual)

. _ ZTu,j wa(l) - fW(Tu,j)Hz Other decision
L = algmil #{T,,) rules can
u u
3. Assess whether be adopted (e.g.
Yo HfW(]) — fW(Ti,j)H searching for the
< Z<y person giving the a
#{T; j} template with a
is sufficiently small, otherwise no identification minimum distance)

G. Boracchi
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