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Data Pre-processing
and Batch Normalization



Preprocessing

In general, normalization is useful in gradient-based optimizers.

Normalization is meant to bring training data “around the origin” and
possibly further rescale the data

In practice, optimization on pre-processed data is made easier and
results are less sensitive to perturbations in the parameters

There are several options
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There are different form of preprocessing

original data zero-centered data normalized data
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PCA - based preprocessing

This is performed after having «zero-centered» the data
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Preprocessing for CNNs: mean subtraction

PCA/Whitening preprocessing are not commonly used with CNN

The most frequent option is to zero-center the data, and it is common
to normalize every pixel as well

Consider CIFAR-10 example with [32,32,3] images
« AlexNet: Subtract the mean image (mean image = [32,32,3] array)

* VGG: Subtract per-channel mean (mean along each channel = 3
numbers)

* ResNet: Subtract per-channel mean and Divide by per-channel std
(mean and std along each channel = 3 + 3 numbers)
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Preprocessing for CNN

Preprocessing and Training:

- Normalization statistics are parameters of your ML model: Any
preprocessing statistics (e.g. the data mean) must be computed on

training data, and applied to the validation / test data.
Do not normalize first and then split in training, validation, test

- When using pretrained model, remember to import (and usel!) their
pre-processing function.
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Batch Normalization

Consider a batch of activations {x;}, the following transformation bring

these to unit variance and zero mean
, X% —E[x;]

- \/V3F[Xi]

Where E[x;] and /var[x;] are computed from each batch and
separately for each channel!

Wu and He, “Group Normalization”, ECCV 2018

Can we get more flexibility than zero-mean, unit variance?

loffe, S. and Szegedy, C., 2015, June. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International
conference on machine learning (pp. 448-456). PMLR.



Batch Normalization

Batch normalization adds after standard normalization
, X% — E[x;]

X; =
Jvar[xl]
a further a parametric transformation
Yij = ViXi + B;
Where parameters y and f are learnable scale and shift parameters.
 We have y and f for each channel of the input activation.

 The expected value and variance are non trainable parameters.

Rmk: estimates E[x;] and \/var[x;] are computed on each minibatch,

need to be fixed after training. After training, these are replaced by
(running) averages of values seen during training.
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Batch Normalization

Input: Values of x over a mini-batch: B = {z; _,,};
Parameters to be learned: ~, /3
Output: {y; = BN, s(z;)}
l m
BB — — T // mini-batch mean
m <
T
2 1 2 . .
op — — ) (vi—pB) // mini-batch variance
m =
~ i — :
T; ¢ ——— oL // normalize
\/ J% + €
Yi < Yvx; + B = BN, g(x;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

loffe, S. and Szegedy, C., 2015, June. Batch normalization: Accelerating deep network training by reducing internal covariate shift.
In International conference on machine learning (pp. 448-456). PMLR.



Batch Normalization

During testing batch normalization becomes a linear operator! Can be
fused with the previous fully-connected or conv layer.

In practice networks that use Batch Normalization are significantly more
robust to bad initialization.

Typically Batch Normalization is used in between FC layers of deep CNN,
but sometimes also between Conv Layers.

loffe, S. and Szegedy, C., 2015, June. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International
conference on machine learning (pp. 448-456). PMLR.



Batch Normalization

Pros:

 Makes deep networks much easier to train!

* Improves gradient flow

* Allows higher learning rates, faster convergence
 Networks become more robust to initialization

e Acts as regularization during training

e Zero overhead at test-time: can be fused with conv!
Watch out:

* Behaves differently during training and testing: this is a very
common source of bugs!
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A bit more of background

Performance measures
and an overview of successful architectures
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Confusion Matrix

The element C(i,j) i.e. at the i-th row and j-th column corresponds to
the percentage of elements belonging to class i classified as elements
of class j
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.. S0, the ideal confusion matrix

Which rarely happens
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Two-Class Classification

Background:

In a two-class classification problem (binary classification), the CNN
output is equivalent to a scalar, since
CNN(I) = [p,1—p]

being p the probability of I to belong to the first class.

Thus we can write
CNN(I) =p

Then, we can decide that I belongs to the first class when
CNN(I) >T

and use T different from 0.5, which is the standard.
We require stronger evidence before claiming I belongs to class 1.
Changing I' establishes a trade off between FPR and TPR.
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Two-Class Classification

Classification performance in case of binary classifiers can be also
measured in terms of the ROC (receiver operating characteristic) curve,
which does not depend on the threshold you set for each class

(FPR,TPR) for a

This is useful in case you plan to modify this and not ujey specific parameter

1_
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The Classification Task

The input image contains a single relevant object to be classified in a
fixed set of categories

The task is to:
1) assign the object class to the image




The Classification and Localization Tasks

The input image contains a single relevant object to be classified in a
fixed set of categories

The tasks are:
1) assign the object class to the image hawk
2) locate the object in the image by its bounding box =

A training set of annotated images with label and
a bounding box around each object is required

Extended localization problems involve regression over
more complicated geometries (e.g. human skeleton)



The Classification and Localization Tasks  ¢&»-

The input image contains a single relevant object to be classified in a Xf

fixed set of categories mcm‘yu

The tasks are: i/ 0|
(xv.j/ "JI ) ,' h k

1) assign the object class to the image /zﬂrzllﬁ aw

2) locate the object in the image by its bounding box e —

A training set of annotated images with label and
a bounding box around each object is required

Extended localization problems involve regression over
more complicated geometries (e.g. human skeleton)

Hawk (ywh)



Bounding Box Estimation, the problem

Assign to an input image I € RR*¢*3.
* the coordinates (x,y, h,w) of the bounding box enclosing
the object

I - (x,y,h,w)

AN2DL G. Boracchi



The Simplest Solution

Train a regression network to predict the bounding box

224 x224x3 224 x224x64

112 %112 x 128

i v o TV (O Bounding Box Coordinates
I (x,y,w, h)
5 convolution-+ReLU Regression loss R, e.g. the
max pooling .
=, fully I:?0nne(j:-jted-l—]"leLU ’32, 'Bl, . boundlng bOX-

| softmax

(2.9, @, 4] - [x, y, w, k]|
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How to?

# Prepare the output layer, 4 real numbers (bounding box
coordinates) and linear activations

output = tfkl.Dense (4, activation='linear',6K name='regressor') (x)

# Connect input and output through the Model class

regressor model = tfk.Model (inputs=inputs, outputs=output, name='re
gressor model')

# Compile the model using Mean Squared Error (MSE) as loss

regressor model.compile (loss=tfk.losses.MeanSquaredError (), optimiz
er=tfk.optimizers.Adam())

AN2DL G. Boracchi



Classification and Localization, the problem

Assign to an input image I € RR*¢*3.

 alabel [ from a fixed set of categories
A = {"wheel", "cars’, ..., "castle"”, "baboon"}

* the coordinates (x,y, h,w) of the bounding box enclosing
that object

I - (x,y,h,w,l)

This is a multi-task learning problem, as the two outputs have
different nature

AN2DL G. Boracchi



Multitask Learning

Train a network to predict both the class label and the bounding box
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Multitask Learning

The training loss has to be a single scalar since we compute gradient of
a scalar function with respect to network parameters.

Minimize a multitask loss to merge two losses:
LxX)=aSx)+ (1 —a)R(x)

and a € |0,1] is an hyper parameter of the network.

Watch out that a directly influences the loss definition, tuning might be
difficult. Better to do cross-validation looking at some other loss (loss
value for different values of @ might be meaningless).

It is also possible to adopt a pre-trained model and then train the two
FC separately... however it is always better to perform at least some
fine tuning to train the two jointly.

AN2DL G. Boracchi



“Quick and Dirty” Solution

# Add the classifier layer to the MobileNet
tfk.Input (shape=(img size,img size,3))

inputs
x = mobile (inputs)
x = tfkl.Dropout(0.5) (x)

# The network has two heads, one for classification using sigmoid (when it
is binary classification)

class output = tfkl.Dense(l, activation='sigmoid', name='classifier') (x)

# The other head has 4 sigmoid activation to predict the bounding box, each
number to be considered in [0,1] as its location is normalized w.r.t. the
image sizes. The bounding boxes then cannot be predicted outside the image

box output = tfkl.Dense (4, activation='sigmoid', name='localizer') (x)

AN2DL G. Boracchi



“Quick and Dirty” Solution

# Connect input and output through the Model class. Here the output is the
concatenation of the outputs of the two heads

object localization model = tfk.Model (inputs=inputs, outputs=[class output,
box output], name—'object localization model')

# Compile the model using binary cross entropy over the «stacked» outputs.
The labels for training need to stacked accordingly

object localization model.compile (loss=tfk.losses.BinaryCrossentropy(), opt
imizer=tfk. optlmlzers Adam () )

object localization model.summary ()

However, this solution is not:

- Able to handle multi-class classification

- Predict bounding boxes outside the image

To implement a multi-task loss it is necessary to modify the training loop

AN2DL G. Boracchi



Human Pose Estimation

Pose estimation is formulated as a CNN-regression problem towards body
joints. This is a localization task!

Represent pose as a
set of 14 joint
positions:

Left / right foot ~
Left / right knee

Left / right hip éX Z
Left / right shoulder
Left / right elbow
Left/ right hand __J
Neck

Head top 2

14 locations to estimate

28 output neurons
Alexander Toshev and Christian Szegedy, “DeepPose: Human Pose Estimation via Deep Neural Networks”, CVPR 2014



Extension to Human Pose Estimation

Pose estimation is formulated as a CNN-regression problem towards body

joints.

* The network receives as input the whole image, capturing the full-
context of each body joints.

* The approach is very simple to design and train. Training problems can
be alleviated by transfer learning of existing classification networks

Pose is defined as a vector of k joints location for the human body,
possibly normalized w.r.t. the bounding box enclosing the human.

Train a CNN to predict a 2k vector as output by using an Alexnet-like
architecture.

Alexander Toshev and Christian Szegedy, “DeepPose: Human Pose Estimation via Deep Neural Networks”, CVPR 2014



Training Human Pose Estimation Networks

Adopt a €2 regression loss of the estimated pose parameters over the
annotations.

* The network always provide a fixed when a few joints are not visible.

|2
\

Reduce overfitting by augmentation (translation and flips).

Multiple networks have been trained to improve localization by refining
joint position in a crop around the initial detection.

Alexander Toshev and Christian Szegedy, “DeepPose: Human Pose Estimation via Deep Neural Networks”, CVPR 2014



Open Pose

Cao, Z et al.. OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields. CVPR 2017



Pose Estimation

Real-time Multi-Person 2D Pose Estimation
Using Part Affinity Fields

Zhe Cao, Tomas Simon, Shih-En Wel, Yaser Sheikh
Carnegie Mellon University

Cao, Z., Simon, T., Wei, S. E., & Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields. In CVPR2017



Pose Estimation




Weakly-Supervised
Localization

.. Global Averaging Pooling Revisited
.. visualizing what matters most for CNN predicitons

AN2DL G. Boracchi



Weakly supervised localization

Perform localization over an image without images with annotated
bounding box

Training set provided as for classification with image-label pairs
{(I,£)} where no localization information is provided

AN2DL G. Boracchi



This CVPR paper 1s the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it 1s identical to the version available on IEEE Xplore.

220l6

Learning Deep Features for Discriminative Localization

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba
Computer Science and Artificial Intelligence Laboratory, MIT
{bzhou,khosla,agata,oliva,torralba}@csail.mit.edu
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The GAP revisited

The advantages of GAP layer extend beyond simply acting as a structural
regularizer that prevents overfitting

In fact, CNNs can retain a remarkable localization ability until the final
layer. By a simple tweak it is possible to easily identify the discriminative
image regions leading to a prediction.

A CNN trained on object categorization is successfully able to localize the
discriminative regions for action classification as the objects that the
humans are interacting with rather than the humans themselves

Zhou, Bolei, et al. "Learning deep features for discriminative localization.” CVPR 2016.



Class Activation Mapping
Brushing teeth Cutting trees

Zhou, Bolei, et al. "Learning deep features for discriminative localization.” CVPR 2016. an.pL c. oracchi



Class Activation Mapping (CAM)

Identifying exactly which regions of an image are being used for
discrimination.

Brushing teeth

CAM are very easy to compute. It just requires:
* FC layer after the GAP
e a minor tweak

Zhou, Bolei, et al. "Learning deep features for discriminative localization.” CVPR 2016. .01 c. Boracchi



The Global Averaging Pooling (GAP) Layer

A very simple architecture made only of
convolutions and activation functions
leads to a final layer having:

« n feature maps f; (+,-) having i)
resolution “similar” to the input

A
image //

e a vector after GAP made of n
averages Fj, /

GAP

F5T00 0] =

Fy = z fr(x,y)
(x,y)

Zhou, Bolei, et al. "Learning deep features for discriminative localization.” CVPR 2016. AN2DL G. Boracchi



The Global Averaging Pooling (GAP) Layer

Add (and train) a single FC layer after the GAP.

The FC computes S, for each class c as the
weighted sum of {F;}, where weights are defined
during training Fo(59)

Then, the class probability P, via y F
soft-max (class c) / / O
Remark: when computing g
S, = Z wy F / @
wy encodes the importance of F, for the ' | '
class c, CAP

{Wy k. are all the parameters of the last FC layer

Zhou, Bolei, et al. "Learning deep features for discriminative localization.” CVPR 2016.

wi Fe
S
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The Global Averaging Pooling (GAP) Layer

Perspective change in score interpretation

SCZZWEka(x;Y):%zwﬁfk(x;Y) Z wy, F,
k X,y X, k k
And CAM is defined as fi () S
g o F
Me(y) = ) Wi fi(x,y) VN
where M.(x,y) directly indicates the 5| Q ()| P = 5 oS
importance of the activations at (x,y) for / / A2 O
. . Wy,
predicting the class ¢ Az
| Y J |_'_l
Rmk: unlike NiN, thanks to the softmax, the
depth of the last convolutional activations GAP FC
can differ from the number of classes Fie = (Z)fk(x'ﬁ
X,y

Zhou, Bolei, et al. "Learning deep features for discriminative localization.” CVPR 2016.



The Global Averaging Pooling (GAP) Layer

Pal
@LZWREW y}%rwkfm | o
k

CAM is defined as

Mefx,y) = Z sy

where M.(x,y) directly indicates the
importance of the activations at (x,y) for
predicting the class ¢

Rmk: unlike NiN, thanks to the softmax, the
depth of the last convolutional activations
can differ from the number of classes

Zhou, Bolei, et al. "Learning deep features for discriminative localization.” CVPR 2016.



Class Activation Mapping

Now, the weights represents the importance of each feature map to yield
the final prediction. Upsampling might be necessary to match the input

image n
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Zhou, Bolei, et al. "Learning deep features for discriminative localization.” CVPR 2016.




Class Activation Mapping
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Class Activation Mapping

Zhou, Bolei, et al. "Learning deep features for discriminative localization.” CVPR 2016.



Remarks

 CAM can be included in any pre-trained network, as long as all the FC
layers at the end are removed

 The FC used for CAM is simple, few neurons and no hidden layers

 Classification performance might drop (in VGG removing FC means
loosing 90% of parameters)

« CAM resolution (localization accuracy) can improve by «anticipating»
GAP to larger convolutional feature maps (but this reduces the
semantic information within these layers)

* GAP: encourages the identification of the whole object, as all the parts
of the values in the activation map concurs to the classification

« GMP (Global Max Pooling): it is enough to have a high maximum, thus
promotes specific discriminative features

Zhou, Bolei, et al. "Learning deep features for discriminative localization.” CVPR 2016.



Weakly Supervised Localization

Use thresholding CAM values: > 20% max(CAM), then take the largest
componet of the thresholded map (green GT, red estimated location)

el abhn i daa
She"aShetland sheepdog

N By

Zhou, Bolel et al.’ Learnlng deep features for discriminative localization.” CVPR 2016




CAM In Keras

def compute CAM(model, img) :
# Expand image dimensions to fit the model input shape

img = np.expand dims (img, axis=0)

# Predict to get the winning class
predictions = model.predict (img, verbose=0)

label index = np.argmax (predictions)

# Get the 1028 input weights to the softmax of the winning class
# These are the weights of the fully connected after the GAP before the output
class weights = model.layers[-1].get weights () [O]
# These are the weights related to the winning class
class weights winner = class weights[:, label index]
# Take the MobileNetV2 until the final convolutional layer
final conv layer = tfk.Model (
model.get layer ('mobilenetv2 1.00 224").input,

model .get layer ('mobilenetv2 1.00 224"').get layer('Conv 1'").output)
o - o o o AN2DL G. Boracchi



CAM In Keras

# Compute the convolutional outputs and squeeze the dimensions

conv_outputs = final conv layer (img)

conv_outputs = np.squeeze (conv_outputs)

# Upsample the convolutional outputs
mat for mult = scipy.ndimage.zoom(conv_ outputs, (32, 32,
# Flatten the spatial dimension

mat for mult = mat for mult.reshape ((256*256, 1280))

1)

order=1)

# Compute the CAM as the weighted sum of channels, using the weights of dense 1la
yver as weights of the combination. This 1s the matrix variant of the formulas seen

before, it is possible to replace this by for loops

final output = np.dot (mat for mult, class weights winner)

# reshape the CAM
final output = final output.reshape (256,256)

return final output, label index, predictions

AN2DL G. Boracchi



Check The Lab Session on:
Localization, MultiTask Learning, CAM

https://drive.google.com/drive/folders/1AiEwpWhdéUru08Yerlc8

3875PZkzbNgW?usp=drive_link

AN2DL G. Boracchi
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Explaining CNN Outputs



CNN Visualization

AN2DL G. Boracchi



Visualizing CNN Filters

%

We want to see this



11x11x3 filters (visualized in RGB) extracted from
the first convolutional layer




Do you remember’

The template matching interpretation of Linear classifiers...

airplane automobile bird cat deer




11x11x3 filters (visualized in RGB) extracted from
the first convolutional layer

- ' { =
Recall the relation between convolution and template matching:
The first layer seems to match low-level features such as edges |

and simple patterns that

are discriminative to describe the data
o }




First layer’s filters are often like these
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Krizhevsky, “One weird trick for parallelizing convolutional neural networks", arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks", CVPR 2017

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Difficult to interpret deeper layers
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Difficult to interpret deeper layers

Weights: 2
CET T PR W T layer 1 weights
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Another way to determine «what the deepest layer see» is
required
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CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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What if we look at the activations’

Class posterior



https://www.cs.ryerson.ca/~aharley/vis/conv/

What if we look at the activations’



https://www.cs.ryerson.ca/~aharley/vis/conv/

Visualizing Maximally Activating Patches

convé

1. Select a neuron in a deep layer of a pre-
trained CNN on ImageNet

e

8

2. Perform inference and store the activations
for each input image.

1
IS;

3. Select the image yielding the maximum
activation.

4. Show the regions (patches) corresponding to
the receptive field of the neuron.

5. lterate for many neurons.

Each row in these images corresponds to
different outputs of the same filter

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Worksh 21



Computing Input maximally activating a neuron

| want to compute which
input maximizes the
value of this specific
activation

We want to compute (and see) the input that maximally activates this guy

1



Step 1

We can always compute gradient
between values in a CNN, not
only for the minimizing the loss.
All the operations are known

Compute the gradient of this with respect to the input



Step 2

Nudge the input accordingly: our guy will increase its activation



Step 2 Now we perform gradient
ascent, we modify the input in

the direction of the gradient, to
increase our function that is
the value of the selected pixel
in the activation map

Nudge the input accordingly: our guy will increase its activation



Back to step 1 and iterate

lterate the procedure to modify the input.
Some form of regularization can be added
to the selected pixel value to steer the
input to look more like a natural image
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Computing Images maximally activating softmax input

Adopt gradient descent to maximally activate a neuron before the
softmax (thus the network «score», which indicates the prediction)

[ = argmaxS,.(I) + A ||I|5
I

Being A > 0 regularization parameter, ¢ is a given output class
We add the regularization term A ||I||5 to obtain smoother images

Optimize this through gradient ascent from the network for different
classes ¢

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.



Images maximally activating softmax input

Hartebeest Billiard Table Flamingo Pelican

Station Wagon Black Swan Ground Beetle Indian Cobra

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.



Why CNNs work

Convnets learn a hierarchy
of translation-invariant
spatial pattern detectors

0)

)




Explaining Neural Network Predictions

AN2DL G. Boracchi



Understanding Deep Neural Networks

Deep Neural Networks have
Million parameters: their inner
functioning is totally obscure.

Healthy scepticism to resort to NN
decision in critical tasks (e.g.
medical domain) or even services
(e.g., blocking credit cards).

Vivid research activity around
gaining an understanding of
Neural Network decision.

Mispredicted as “buckle”



Saliency Maps to Understand Model Mistakes

Make sense of model mistakes

I :
£
| “A'!}'

Mispredicted as “buckle” Saliency shows why



Saliency Maps to Discover Systematic Errors

Highlight clever Hans phenomena

Correctly classified as “horse” But for the wrong reason



Grad-CAM and CAM-based techniques
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Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. ICCV2017



Grad-CAM and CAM-based techniques
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Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. ICCV2017



Grad-CAM and CAM-based techniques
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Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. ICCV2017



Heatmaps Desiderata

Should be class discriminative

Should capture fine-grained details (high-resolution)
* This is critical in many applications (e.g. medical/industrial imaging)

first layers depth last layers

less informative more informative



Augmented Grad-CAM

We consider the augmentation operator
A RVM - RNXM “including random
rotations and translations of the input .
image X x1 = A(x) x3 = Ay(x) x3=Az(x) x4 = Ayu(x)

H
91 93 94

Augmented Grad-CAM: increase heat-maps
resolution through image augmentation

All the responses that the CNN generates
to the multiple augmented versions of the
same input image are very informative for

reconstructing the high-resolution heat-
map h

Morbidelli, P., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2020, May). Augmented Grad-CAM: Heat-Maps Super Resolution Through Augmentation. In ICASSP 2020



Augmented Grad-CAM
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Augmented Grad-CAM
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Morbidelli, P., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2020, May). Augmented Grad-CAM: Heat-Maps Super Resolution Through Augmentation. In ICASSP 2020



The Super-Resolution Approach

We perform heat-map Super-Resolution (SR) by taking advantage of the
information shared in multiple low-resolution heat-maps computed from
the same input under different - but known - transformations

CNNs are in general invariant to roto-translations, in terms of predictions,
but each g, actually contains different information

91 9> 93 9a

General approach, our SR framework can be combined with any
visualization tool (not only Grad-CAM)

Morbidelli, P., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G “Augmented Grad-CAM: Heat-Maps Super Resolution Through Augmentation”. ICASSP 2020



The Super-Resolution Formulation

We model heat-maps computed by Grad-CAM as the result of linear

downsampling operator D : RV*M — R™™ applied to an unknown high
resolution heat-map h

Then, heat-map suEerresolution consists in solving an inverse problem
1 2 Loz
argminz > [IDAh = ge lI3 + ATV, () +Z1IRIE (1)
=1

TV, : Anistropic Total Variation regularization is used to preserve the
edges in the target heat-map (high-resolution)

TVy, (h) = 2 jll0.h (@ DI+ [0, RGN (2)

This is solved through Subgradient Descent since the function is convex
and non-smooth

Morbidelli, P., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G “Augmented Grad-CAM: Heat-Maps Super Resolution Through Augmentation”. ICASSP 2020



Augmented images

Original
cropped image /< B

e

Augmented
Grad-CAM

High-resolution Grad-CAMs superimposed to the original cropped image

Morbidelli, P., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G “Augmented Grad-CAM: Heat-Maps Super Resolution Through Augmentation”. ICASSP 2020



Augmented Grad-CAM («Mastiff» class)

(a) Grad-CAM. (b) Augmented Grad-CAM.

Morbidelli, P., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2020, May). Augmented Grad-CAM: Heat-Maps Super Resolution
Through Augmentation. In ICASSP 2020
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Other Gradient-based Saliency Maps

Grad-CAM++ : Same formulation of Grad-CAM, but weights are computed
by higher-order derivatives of the class score with respect to the feature
maps. Increases the localization accuracy of the heat-maps in presence of
multiple occurrence of the same object in the image.

Sharpen Focus: highlights only the pixels where the gradients are positive.

wy = — zz RELU (aak(l ]))

Smooth Grad-CAM++: it averages multlple heat-maps corresponding to
noisy versions of the same input image.

A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks,”
WACV, 2018.

D. Omeiza, S. Speakman, C. Cintas, and K. Weldermariam, “Smoothgrad-CAM++: An enhanced inference level visualization technique for deep convolutional neural
network models”



Other Perturbation-based Saliency Maps

Idea: Perturb the input image and assess how the class score changes.

RISE: use random perturbations to identify the most influential regions for a
selected class

M; I © M,

N Posterior on the
selected class {p;}

0.09

Black Box 0.74

0.56

N Random masks

Y

Weighted sum

{

Petsiuk, Vitali, Abir Das, and Kate Saenko. "Rise: Randomized input sampling for explanation of black-box models.”" BMVC (2018).



Limitations of Saliency Maps

Original image | Grad-CAM for class: Grad-CAM for class:
Egyptian cat Egyptian cat Laundry basket

Figure 1: Based on saliency maps it 1s unclear why this image is labelled as a cat rather than
a laundry basket. Grad-CAM [[IA] explanations are essentially the same for both classes.

L. Giulivi M.). Carman G. Boracchi “Perception Visualization: Seeing Through the Eyes of a DNN” BMVC 2021



Perception Visualization

Perception Visualization:
provides explanations by
exploiting a neural network ;.4

to invert latent
representations

«what»

Reconstruction PV

w,h,3

Grad-CAM

w, h, 1 «wherex»

Figure 3: An overview of our method and interactions between the models involved. En-
coder & is a truncation of the model M which we want to explain, decoder D is trained
to reconstruct the encoder’s latent representations. From these, we compute Grad-CAM
saliency maps and reconstructions, which are then combined to obtain PV.

L. Giulivi M.). Carman G. Boracchi “Perception Visualization: Seeing Through the Eyes of a DNN” BMVC 2021



Perception Visualization

«where» «where and what»

Misclassified as “boat” Saliency doesn’t say much PV shows why

L. Giulivi M.). Carman G. Boracchi “Perception Visualization: Seeing Through the Eyes of a DNN” BMVC 2021



Perception Visualization

Give better insight on the
model’s functioning than
what was previously
achievable using only
saliency maps.

A study on circa 100
subjects shows that PV is
able to help respondents
better determine the
predicted class in cases
where the model had
made an error

L. Giulivi M.). Carman G. Boracchi “Perception Visualization: Seeing Through the Eyes of a DNN” BMVC 2021
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