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A few popular architectures

AlexNet
VGG
Networks In Networks (and GAP)
Inception
Resnet

G. Boracchi



LeNet

1998

The First CNN
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PROC. OF THE TEEE, NOVEMBER 1998

Gradient-Based Learning Applied to Document
Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haflner

Abstract
Multilayer Neural Networks trained with the backpropa-

gation algorithm constitute the best example of a successful
Gradient-Based Learning technique. Given an appropriate
network architecture, Gradient-Based Learning algorithms
can be used to synthesize a complex decision surface that can
classify high-dimensional patterns such as handwritten char-
acters, with minimal preprocessing. This paper reviews var-
ious methods applied to handwritten character recognition
and compares them on a standard handwritten digit recog-
nition task. Convolutional Neural Networks, that are specif-
ically designed to deal with the variability of 2D shapes, are
shown to outperform all other techniques.

I. INTRODUCTION

Over the last several years, machine learning techniques,
particularly when applied to neural networks, have played
an increasingly important role in the design of pattern
recognition systems. In fact, it could be argued that the
availability of learning techniques has been a crucial fac-
tor in the recent success of pattern recognition applica-
tions such as continuous speech recognition and handwrit-
ing recognition.

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998)
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LeNet-5 (1998)

Stack of Conva2D + RELU + AVG-POOLING A TRADITIONAL MLP
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Award Winning CNNs

AlexNet
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ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky [lya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilva@cs.utoronto.ca hintonf@cs.utoronto.ca

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012.
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University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilva@cs.utoronto.ca hintonf@cs.utoronto.ca

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012.



Awards Home ACM A.M. Turing Award £  Spotlight on Turing Laureates  ACM Prize in Computing

Home > Latest Awards News > 2018 Turing Award

Fathers of the Deep Learning Revolution Receive ACM A.M. Turing
Award

Bengio, Hinton and LeCun Ushered in Major Breakthroughs in Artificial
Intelligence

https://awards.acm.org/about/2018-turing
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AlexNet (2012)

Developed by Alex Krizhevsky et al. in 2012 and won Imagenet competition
Architecture is quite similar to LeNet-5:

« 5 convolutional layers (rather large filters, 11x11, 5x5),

e 3 MLP

Input size 224 x 224 x 3 (the paper says 227 X 227 X 3)

Parameters: 60 million [Conv: 3.7million (6%) FC: 58.6 million (94%)]
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Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012.
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To counteract overfitting, they introduce: | - ‘ -
* RELU (also faster than tanh)

« Dropout (0.5), weight decay and norm layers (not used anymore)
* Maxpooling

The first conv layer has 96 11x 11 filters, stride 4.

The output are two volumes of 55 X 55 X 48 separated over two GTX 580 GPUs
(1.5GB each GPU, 9o epochs, 5/6 days to train).

Most connections are among feature maps of the same GPU, which will be mixed at
the last layer.

Won the ImageNet challenge in 2012
At the end they also trained an ensemble of 7 models to drop error: 18.2%->15.4%

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012.




VGG: going deeper!

VGG
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Published as a conference paper at ICLR 2015

VERY DEEP CONVOLUTIONAL NETWORKS
FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan* & Andrew Zisserman™
Visual Geometry Group, Department of Engineering Science, University of Oxford
{karen,az}@robots.ox.ac.uk

ABSTRACT

In this work we investigate the effect of the convolutional network depth on 1its
accuracy 1n the large-scale image recognition setting. Our main contribution 1s
a thorough evaluation of networks of increasing depth using an architecture with
very small (3 x 3) convolution filters, which shows that a significant improvement
on the prior-art configurations can be achieved by pushing the depth to 16-19
weight layers. These findings were the basis of our ImageNet Challenge 2014
submission, where our team secured the first and the second places in the localisa-
tion and classification tracks respectively. We also show that our representations
generalise well to other datasets, where they achieve state-of-the-art results. We
have made our two best-performing ConvNet models publicly available to facili-
tate further research on the use of deep visual representations in computer vision.

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition."” ICLR (2015)



VGG16 (2014)

The VGG16, introduced in 2014 is a deeper variant of the AlexNet convolutional
structure. Smaller filters are used and the network is deeper

Parameters: 138 million [Conv: 11%, FC: 89%]

224 x224x3 224 x224x64

112x 128

28 X 28 x 512 TxT7Tx512
14 x14x 512
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Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." ICLR (2015)



VGG16 (2014)

The VGG16, introduced in 2014 is a deeper variant of the AlexNet convolutional
structure. Smaller filters are used and the network is deeper

Parameters: 138 million [Conv: 11%, FC: 89%]

224)(224)‘(3 224 x 224 x 64
These architecture won the
first place places
(localization) and the
second place (classification)
tracks in ImageNet
Challenge 2014

112 x 128

H56|x 56 x 256

28 X 28 x 512 TXTx512
14 x14x 512

= _ 1x1x4096 1x1x1000

@ convolution+ReLU
tﬂ max pooling
| fully connected+ReLLU

Input size 224 x 224 X 3

~] softmax

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition.” ICLR (2015)



VGG16 (2014): Smaller Filter, Deeper Network

The paper actually present a thorough study on the role of network depth.

[...[Fix other parameters of the architecture, and steadily increase the depth of the
network by adding more convolutional layers, which is feasible due to the use of
very small (3. x 3) convolution filters in all layers.

Idea: Multiple 3x3 convolution in a sequence achieve large receptive fields with:

e less parameters

 more nonlinearities

224x224x3 224x224x64

than larger filters in a single layer

112 x]112x 128

3 layers 3x3 1 layer 7x3
Receptive field 7X7 7X7
rof fiter weights — 3x3x3-27 4
Nr of nonlinearities 3 1

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." ICLR (2015)



VGG16

Layer (type) Output Shape Param # Layer (type) Output Shape Param #
input 1 (InputLayer) (None, 224, 224, 3) 0 [...]
blockl convl (Conv2D) (None, 224, 224, 64) 1792 block4 pool (MaxPooling2D) (None, 14, 14, 512) 0
blockl conv2 (Conv2D) (None, 224, 224, 64) 36928 block5 convl (Conv2D) (None, 14, 14, 512) 2359808
blockl pool (MaxPooling2D) (None, 112, 112, 64) 0 block5 conv2 (Conv2D) (None, 14, 14, 512) 2359808
block2 convl (Conv2D) (None, 112, 112, 128) 73856 block5 conv3 (Conv2D) (None, 14, 14, 512) 2359808
block2 conv2 (Conv2D) (None, 112, 112, 128) 147584 block5 pool (MaxPooling2D) (None, 7, 7, 512) 0
block2 pool (MaxPooling2D) (None, 56, 56, 128) 0 flatten (Flatten) (None, 25088) 0
block3 convl (Conv2D) (None, 56, 56, 256) 295168 fcl (Dense) (None, 4096) 102764544
block3 conv2 (Conv2D) (None, 56, 56, 256) 590080 fc2 (Dense) (None, 4096) 16781312
block3 conv3 (Conv2D) (None, 56, 56, 256) 590080 predictions (Dense) (None, 1000) 4097000
block3 pool (MaxPooling2D) (None, 28, 28, 256) 0 Total params: 138,357,544

Trainable params: 138,357,544
block4 convl (Conv2D) (None, 28, 28, 512) 1180160 Non-trainable params: 0
block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808
block4 conv3 (Conv2D) (None, 28, 28, 512) 2359808

[..]
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VGG16

Layer (type) Output Shape Param # Layer (type) Output Shape Param #
input 1 (InputLayer) (None, 224, 224, 3) 0 [...]
blockl convl (Conv2D) (None, 224, 224, 64) 1792 block4 pool (MaxPooling2D) (None, 14, 14, 512) 0
blockl conv2 (Conv2D) (None, 224, 224, 64) 36928 block5 convl (Conv2D) (None, 14, 14, 512) 2359808
blockl pool (MaxPooling2D) (None, 112, 112, 64) 0 block5 conv2 (Conv2D) (None, 14, 14, 512) 2359808
block2 convl (Conv2D) (None, 112, 112, 128) 73856 block5 conv3 (Conv2D) (None, 14, 14, 512) 2359808
block2 conv2 (Conv2D) (None, 112, 112, 128) 147584 block5 pool (MaxPooling2D) (None, 7, 7, 512) 0
block2 pool (MaxPooling2D) (None, 56, 56, 128) 0 flatten (Flatten) (None, 25088) 0
block3_convl (Conv2D)  (Nome, 56, 56, 256) 295168 | fcl (Dense) (None, 4096) 102764544
block3 conv2 (Conv2D) (None, 56, 56, 256) 590080 fc2 (Dense) (None, 4096) 16781312
block3 conv3 (Conv2D) (None, 56, 56, 256) 590080 predictions (Dense) (None, 1000) 4097000
block3 pool (MaxPooling2D) (None, 28, 28, 256) 0 Total params: 138,357,544
Trainable params: 138,357,544

block4 convl (Conv2D) (None, 28, 28, 512) 1180160 Non-trainable params: 0
block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808
blocka_conv3 (ConvD) (None, 28, 28, 512) 2359808 | Many convolutional blocks without maxpooling

L G. Boracchi




VGG16

Layer (type) Output Shape Param # Layer (type) Output Shape Param #

input 1 (InputLayer) (None, 224, 224, 3) 0 [...]

blockl convl (Conv2D) (None, 224, 224, 64) 1792 block4 pool (MaxPooling2D) (None, 14, 14, 512) 0

blockl conv2 (Conv2D) (None, 224, 224, 64) 36928 block5 convl (Conv2D) (None, 14, 14, 512) 2359808

blockl pool (MaxPooling2D) (None, 112, 112, 64) 0 block5 conv2 (Conv2D) (None, 14, 14, 512) 2359808

block2 convl (Conv2D) (None, 112, 112, 128) 73856 block5 conv3 (Conv2D) (None, 14, 14, 512) 2359808

block2 conv2 (Conv2D) (None, 112, 112, 128) 147584 block5 pool (MaxPooling2D) (None, 7, 7, 512) 0

block2 pool (MaxPooling2D) (None, 56, 56, 128) 0 flatten (Flatten) (None, 25088) 0

block3 convl (Conv2D) (None, 56, 56, 256) 295168 fcl (Dense) (None, 4096) //'10276454

block3 conv2 (Conv2D) (None, 56, 56, 256) 590080 fc2 (Dense) (None, 4096) \ 16781312

block3 conv3 (Conv2D) (None, 56, 56, 256) 590080 predictions (Dense) (None, 1000) w

block3_pool (MaxPooling2D)  (None, 28, 28, 256) 0 Total params: 138,357,544 N
Trainable params: 138,357,544

block4 convl (Conv2D) (None, 28, 28, 512) 1180160 Non-trainable params: 0

block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808 //

block4 conv3 (Conv2D) (None, 28, 28, 512) 2359808 Most parameters in FC layers : 123,642,856

[..]
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VGG16

Layer (type) Output Shape Param # Layer (type) Output Shape Param #

input 1 (InputLayer) (None, 224, 224, 3) 0 [...]

blockl convl (Conv2D) (None, 224, 224, 64) 1792 block4 pool (MaxPooling2D) (None, 14, 14, 512) 0

blockl conv2 (Conv2D) (None, 224, 224, 64) 36928 block5 convl (Conv2D) (None, 14, 14, 512) 2359808

blockl pool (MaxPooling2D) (None, 112, 112, 64) 0 block5 conv2 (Conv2D) (None, 14, 14, 512) 2359808

block2 1 2 1 , 14, 512 2359808
oek?_convl. (Conv2D) High memory request, about 100MB per ’

block2 conv2 (Conv2D) . o 7, 512) 0

e o IMage (224 X 224 x 3) to be stored in all :

block3_convl (Conv2D) the activation maps, Only for the forward ss 102764544

block3 2 2 1 1N 1 96 16781312
oeks_conv2 (Gonv2n) pass. During training, with the backward *

block3 conv3 (Conv2D) 00) 4097000

block3 pool (MaxPooling2D)

pass it’s about twice

Trainable params: 138,357,544

block4 convl (Conv2D) (None, 28, 28, 512) 1180160 Non-trainable params: 0
block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808
block4 conv3 (Conv2D) (None, 28, 28, 512) 2359808

[..]
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Networks in Networks

NiN
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Network In Network

Min Lin'2, Qiang Chen?, Shuicheng Yan?
'Graduate School for Integrative Sciences and Engineering
>Department of Electronic & Computer Engineering
National University of Singapore, Singapore
{linmin, chengiang, eleyans}@nus.edu.sqg

Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014



Network in Network

Mlpconv layers: instead of conv layers, use a sequence of FC + RELU

e Uses a stack of FC layers followed by RELU in a sliding manner on the
entire image. This corresponds to MLP networks used convolutionally

Each layer features a more powerful functional approximation than a
convolutional layer which is just linear + RELU
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(a) Linear convolution layer (b) Mlpconv layer
Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014




Network in Network

Mlpconv layers: instead of conv layers, use a sequence of FC + RELU

e Uses a stack of FC layers followed by RELU in a sliding manner on the
entire image. This corresponds to MLP networks used convolutionally

Each layer features a more powerful functional approximation than a
convolutional layer which is just linear + RELU
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Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014

35

BTN
[oFe
_




Network in Network

They also introduce Global Averaging Pooling Layers
Fully Connected Layer Global Averaging Pooling Layer
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Lin, Mih, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014 (x,y)



Network in Network

They also introduce Global Averaging Pooling Layers

Fully Connected Layer

224x224x3 224x224x64

fie )
q- g

Lin, Mih, Qiang Chen, and Shuicheng Yan

. "Network in network." ICLR 2014
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Network in Network: GAP

Global Averaging Pooling Layers: instead of a FC layer at the end of the
network, compute the average of each feature map.

* The transformation corresponding to GAP is a block diagonal, constant
matrix (consider the input unrolled layer-wise in a vector)

Fixed params.

Global Averagi
Pooling Layer
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Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014



Rationale behind GAP

Fully connected layers are prone to overfitting

 They have many parameters

* Dropout was proposed as a regularized that randomly sets to zero a
percentage of activations in the FC layers during training

The GAP was here used as follows:
1. Remove the fully connected layer at the end of the network!

2. Introduce a GAP layer.
3. Predict by a simple soft-max after the GAP.

Watch out: the number of feature maps has to correspond to the
number of output classes! In general, GAP can be used with more/fewer
classes than channels provided an hidden layer to adjust feature

dimension

G. Boracchi



The Advantages of GAP Layers:

 No parameters to optimize, lighter networks less prone to overfitting
e C(lassification is performed by a softMax layer at the end of the GAP

 More interpretability, creates a direct connection between layers and
classes output (we’ll see in localization)

e This makes GAP a structural regularizer
* Increases robustness to spatial transformation of the input images
* The network can be used to classify images of different sizes

Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014



Network in Network

The whole NiN stacks

« mlpconv layers (RELU) + dropout
, A few layers of these
* Maxpooling

e Global A ing Pooli AP) |
Global Averaging Pooling (GAP) layer } At the end of the network
e Softmax

simple NiNs achieve state-of-the-art performance on «small» datasets (CIFAR10,
CIFAR100, SVHN, MNIST) and that GAP effectively reduces overfitting w.r.t. FC
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The Global Averaging Pooling (GAP) Layer

We indeed see that GAP is acting as a

(structural) regularizer

Method

Testing Error

mlpconv + Fully Connected
mlpconv + Fully Connected + Dropout
mlpconv + Global Average Pooling

11.59%
10.88%
10.41%

Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400v3 (2014).
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GAP In Keras

gap = tfkl.GlobalAveragePooling2D (
name='gap'

) (x)

There are a couple of optional parameters but this are not relevant..
The output size of gap is (batch_size, channels)

G. Boracchi



GAP Increases Invariance to Shifts

Features extracted by the convolutional part of the network are
invariant to shift of the input image

The MLP after the flattening is not invariant to shifts (different input
neurons are connected by different weights) origingl (train) ~_ Shifted (test)

7

Therefore, a CNN trained on centered images ) 7
might not be able to correctly classify shifted ones

The GAP solves this problem, since there is no GAP and the two images
lead to the same or very similar features

Credits Eugenio Lomurno G. Boracchi



GAP Increases Invariance to Shifts

Example:

Dataset: a 64x64 (zero padded) MNIST

CNN-flattening: a traditional CNN with flattening, trained
CNN-GAP: the same architecture CNN but with GAP instead of MLP

Train both CNNs over the same training set without shift
Test both CNNs over both

Original test set

Sifted test set

Credits Eugenio Lomurno G. Boracchi



CNN-flattening Architecture

Layer (type) Output Shape Param #
Input (InputlLayer) [ (None, 064, 64)] 0
reshape 1 (Reshape) (None, 64, 064, 1) 0
convl (Conv2D) (None, 62, 062, 32) 320
pooll (MaxPooling2D) (None, 31, 31, 32) 0
conv?2 (Conv2D) (None, 29, 29, 064) 18496
pool2 (MaxPooling2D) (None, 14, 14, o64) 0
conv3 (Conv2D) (None, 12, 12, 128) 73856
pool3 (MaxPooling2D) (None, 6, 6, 128) 0
flatten (Flatten) (None, 4608) 0
dropoutl (Dropout) (None, 4608) 0
classifier (Dense) (None, 64) 294976
dropout? (Dropout) (None, 64) 0
Output (Dense) (None, 10) 050

Total params: 388,298
Trainable params: 388,298
Non-trainable params: O

Credits Eugenio Lomurno G. Boracchi



CNN-GAP Architecture

Layer (type) Output Shape Param #
Input (InputlLayer) [ (None, 064, 64)] 0
reshape 3 (Reshape) (None, 64, 064, 1) 0
convl (Conv2D) (None, 62, 062, 32) 320
pooll (MaxPooling2D) (None, 31, 31, 32) 0
conv?2 (Conv2D) (None, 29, 29, 064) 18496
pool2 (MaxPooling2D) (None, 14, 14, o64) 0
conv3 (Conv2D) (None, 12, 12, 128) 73856
gpooling (GlobalAveragePooli (None, 128) 0
dropoutl (Dropout) (None, 128) 0
classifier (Dense) (None, 0©64) 8256
dropoutZ (Dropout) (None, ©64) 0
Output (Dense) (None, 10) 050

Total params: 101,578
Trainable params: 101,578
Non-trainable params: O

Credits Eugenio Lomurno G. Boracchi



Accuracy over Original Test Set

CNN-flattening: CNN-GAP

Accuracy: 8.9936 ; Accuracy: ©.9934
Precision: ©.9935 Precision: ©.9934
Recall: 8.9936 Recall: 8.9%33
Fl: ©.9935 Fl: ©.9933
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Accuracy over Shifted Test Set

CNN-flattening: CNN-GAP

Accuracy: 8.1183 ® Accuracy: ©.9906
Precision: ©.0435 “  Precision: ©.9986
Recall: &.1151 Recall: ©.5985
Fl: 8.8537 Fl: ©.9985%
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https://colab.research.google.com/drive/15108-
oylignuFBNTscfj9ZgDymissUOX?usp=sharing

Credits Eugenio Lomurno G. Boracchi
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InceptionNet: Multiple Branches

InceptionNet

2015

G. Boracchi
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The authoritative version of this paper 1s available in IEEE Xplore.
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Inception Module

The most straightforward way of improving the performance of deep
neural networks is by increasing their size (either in depth or width)

Bigger size typically means

* a larger number of parameters, which makes the enlarged network
more prone to overfitting.

e dramatic increase in computational resources used.

Moreover image features might appear at different scale, and it is
difficult to define the right filter size



Features might appear at different scales

Difficult to set the right kernel size!

Photos from Unsplash



GooglLeNet and Inception v1 (2014)

Deep network, with high computational efficiency
Only 5 million parameters, 22 layers of Inception modules
Won 2014 ILSVR-classification challenge (6,7% top 5 classification error)

Szegedy et al. "Going deeper with convolutions." CVPR 2015



GooglLeNet and Inception v1 (2014)

It is based on inception modules, which are sort of «networks inside
the network» or «local modules»

Concatenation preserves spatial resolution

Filter
concatenation
e
_-:—"-_-_'_- -----_- =8 i - --__"‘—-_____ ST _____—‘——______‘___-
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling
\ ' / ___________..Fr
_——'—"_'_'_'_'_'_'_'_'_'_'_

Previous layer

(a) Inception module, naive version

Szegedy et al. "Going deeper with convolutions." CVPR 2015



GooglLeNet and Inception v1 (2014)

It is based on inception modules, which are sort of «networks inside

the network» or «local modules»
Concatenation preserves spatial resolution

g |

-'_'_'_'_,—'_'-'-

Filter
concatenation

!,
(7

— —_— |
\\_._\_;‘_\_‘-\‘_ —— .

49

1x1 convolutions

3x3 convolutions

5x5 convolutions 3x3 max pooling

Previous layer

3 —
/ff’”’f —
o

(7

(a) Inception module, naive version

Szegedy et al. "Going deeper with convolutions." CVPR 2015



Inception Module (2014)

The solution is to exploit multiple filter size at the same level (1x1, 3x3,
;x5) and then merge by concatenation the output activation maps
together

Stride=1 can be use

also in MP layers to

preserve the spatial
dimensions

Filter
concatenation

All the blocks preserve the e
spatial dimension by zero ___—TZero padding ——Zero padding______stride = 1

o —

pad d I n g <CO nVO l Utl O n al 1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling
filters) or by fractional - . .
stride (for Maxpooling) e { e

Previous layer

Thus, outputs can be
concatenated depth-wise

Szegedy et al. "Going deeper with convolutions." CVPR 2015



Inception Module (2014)

The solution is to exploit multiple filter size at the same level (1x1, 3x3,
5x5) and then merge by concatenation the output activation maps

together

e Zero padding to preserve spatial size

* The activation map grows
much in depth

Filter
concatenation

* A large number of l

— "‘r'-'.__-_ —

28 x 28 x 672

i E——

— o —

operations to be 1x1, 128f| 3x3, 192f

of each convolutional
block: 854M operations
in this example

Previous layer

5x5, 96f| |3x3, 256
:)erformed due 10 the | t""'xxl | I Iﬁﬁ_,! l} -
arge depth of the input ~_ { —
e

28 x 28 x 256

(a) Inception module, naive version

Szegedy et al. "Going deeper with convolutions." CVPR 2015




Inception Module (2014)

Tgeffrg The spatial extent is preserved, but the depth of the  3%3,
tsogethe activation map is much expanded.

7 This is very expensive to compute
° erc PV VI SV I VoUW VY UM WViLIVE wimw

* The activation map grows
much in depth

* A large number of l

Filter
concatenation

'F""h— —

28 x 28 x 672

operations to be 1x1, 128f| 3x3, 192f

5x5, 96f

of each convolutional
block: 854M operations
in this example

Previous layer

performed due to the — = |
arge depth of the input e B i

28 x 28 x 256

(a) Inception module, naive version

Szegedy et al. "Going deeper with convolutions." CVPR 2015




Inception Module (2014)

The)sorl] Computational problems will get significantly worst when 3X3
?ggetﬁe_ stacking multiple layers...

e Zero padding to preserve spatial size

* The activation map grows
much in depth

* A large number of l

Filter
concatenation

'r*ﬂ-e— = —

28 x 28 x 672

T —

operations to be 1x1, 128f| 3x3, 192f

5x5, 96f | 3x3, 256

of each convolutional
block: 854M operations
in this example

Previous layer

performed due to the | L____KHI | T = |
arge depth of the input . T e

28 x 28 x 256

(a) Inception module, naive version

Szegedy et al. "Going deeper with convolutions." CVPR 2015




Inception Module (2014)

ldea: To reduce the computational load of the network, the number
of input channels of each conv layer is reduced thanks to
1X1 convolution layers before the 3x3 and 5x5 convolutions

Filter
concatenation

Using these 1x1 conv

is referred to as T 0
o ” - 3x3 convolutions 5x5 convolutions 1x1 convolutions
bottleneck” layer
1x1 convolutions + 4 4
k\ 1x1 convolutions 1x1 convolutions 3x3 max pooling

—

Previous layer

(b) Inception module with dimension reductions

Szegedy et al. "Going deeper with convolutions." CVPR 2015



1x1 convolution layers as bottleneck

£

1x1 CONV
g [0 with[ 1 Jfilters

I >

i )

64

depth

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/



http://cs231n.stanford.edu/
http://cs231n.github.io/

1x1 convolution layers as bottleneck

£

s

56

1x1 CONV
with[ 1 filters

>

preserves spatial
dimensions, reduces depth!

Projects depth to lower
dimension (combination of
feature maps)

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/



http://cs231n.stanford.edu/
http://cs231n.github.io/

1x1 convolution layers as bottleneck

L

i

56

f )

f )
1x1 CONV
with[ 32]filters

>

preserves spatial
dimensions, reduces depth!

Projects depth to lower
dimension (combination of
feature maps)

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

56


http://cs231n.stanford.edu/
http://cs231n.github.io/

Inception Module (2014)

To reduce the computational load of the network, the number of input

channels is reduced by adding an 1x1 convolution layers before the 3x3
and 5xg convolutions

Here we have fewer channels

The output volume has similar _ in the input than before
size, but the number of ocoatiasion
operation required is i~
significantly reduced due T | : —
to the ‘|X‘| COnV: . : 3x3 convolutiong 5x5 convciutions 1x1 convolutions
358M operations now 1x1 convolutions ' : | ;
X | 1x1 convolutions 1x1 convolutions 3x3 max pooling

° ° M\“"-h-..__ - —— y —

Adding 1x1 convolution layers e

increases the number of
nonlinearities

Previous layer

(b) Inception module with dimension reductions

Szegedy et al. "Going deeper with convolutions." CVPR 2015



Inception Module (2014)

To reduce the computational load of the network, the number of input
channels is reduced by adding an 1x1 convolution layers before the 3x3

and 5xg convolutions

The output volume has similar
size, but the number of
operation required is
significantly reduced due ,

Filter
concatenation

28 x 28 x 480

3x3, 192f

to the 1x1 conv: 1x1, 128f

358M operations now w—

Previous layer

28 x 28 x 256

(b) Inception module with dimension reductions

Szegedy et al. "Going deeper with convolutions." CVPR 2015



Inception Module (2014)

Network are no longer sequential.
There are parallel processing

——

—

—_

1x1,

128f

Filter 28 x 28 x 480
concatenation
1 "Hdﬁ _ETH:::::‘___ T —
3x3, 192f || 5x5, 96f 1x1, 64f
| |
| * + ] | +
1x1, 64f 1x1, 64f 3x3, 256

Previous layer

28 x 28 x 256

(b) Inception module with dimension reductions

Szegedy et al. "Going deeper with convolutions." CVPR 2015



GooglLeNet (2014)

GoogleNet stacks 27 layers considering pooling ones.

At the beginning there are two blocks of conv + pool layers

Szegedy et al. "Going deeper with convolutions." CVPR 2015



GooglLeNet (2014)

GoogleNet stacks 27 layers considering pooling ones.
Then, there are a stack of 9 of inception modules

AN

A

Szegedy et al. "Going deeper with convolutions." CVPR 2015



GooglLeNet (2014)

GoogleNet stacks 27 layers considering pooling ones.

No Fully connected layer at the end, simple global averaging pooling
(GAP) + linear classifier + softmax.

Overall, it contains only 5 M parameters. \

Szegedy et al. "Going deeper with convolutions." CVPR 2015



GooglLeNet (2014)

It also suffers of the dying neuron problem, therefore the authors add
two extra auxiliary classifiers on the intermediate representation to
compute an intermediate loss that is used during training.

You expect intermediate layers to provide meaningful features for
classification as well.

Szegedy et al. "Going deeper with convolutions." CVPR 2015



GooglLeNet (2014)

It also suffers of the dying neuron problem, therefore the authors add
two extra auxiliary classifiers on the intermediate representation to
compute an intermediate loss that is used during training.

You expect intermediate layers to provide meaningful features for
classification as well.

Classification heads are then ignored / removed at inference time




3 Take home messages

1. 1x1 convolutions: enable bottlenecks that reduce the number of
operations and parameters of the network.

2. Blocks made of multiple connections instead of having a single
tread.

3. Additional losses: you might want to train your network on
additional tasks just for improving training convergence.



Inception Block in Kears

#

X

x1

x2

x4

y

input x

= tfkl.MaxPooling2D (name="mp') (x)

= tfkl.Conv2D (32,
kernel size=l,
padding="'same’,
activation='relu’,
name='conv_1 1') (x)

= tfkl.Conv2D (64,
kernel size=l,
padding="'same’,
activation='relu’,
name='conv_2 1') (x)

= tfkl.MaxPooling2D((3,3),
strides=(1,1),
padding="'same’ ,
name='mp 4 1',) (x)

= tfkl.Concatenate (
axis=-1,

name='concat') ([x1, x2, x4])

x1

x4

mp | MaxPooling2D

conv_1 1

2 |~

x3

ConvZD conv_2 1 | Conv2D

mp_4 1

MaxPooling2D

T

concat | Concatenate

l

G. Boracchi




Inception Block in Kears

# input x
x = tfkl.MaxPooling2D (name='mp') (x) x L

x]1 = tfkl.Conv2D (32,
kernel size=l,

padding='same’ , x1 x2 l \_ x3

mp | MaxPooling2D

activation='relu’, ,
— Y conv_1 1 | Conv2D conv_2 1 | Conv2D mp_4 1 | MaxPooling2D
name='conv_1 1') (x)

x2 = tfkl.Conv2D (64, \ l

kernel size=l,
padding="'same’,
activation='relu’, l
name='conv_2 1') (x)

concat | Concatenate

'
x4 = tfkl.MaxPooling2D((3,3),

strides=(1,1),

padding="'same’ , Concatenate layer to stack

name='mp_4_1',) (x) multiple activations along
y = tfkl.Concatenate ( the last axis (axis=-1)

axis=-1,
name='concat') ([x1, x2, x4])

G. Boracchi



Inception Block in Kears

# input x

tfkl .MaxPooling2D (name="mp"') (x)

tfkl.Conv2D (32,
kernel si
padding="'same’,
activation='relu’,
name='conv_1 1') (x)

tfkl.Conv2D (64,
kernel size=l,

| padding="'same’, I
activation= relu ,

name='conv_2 1') (x)

x1

x2

x4

tfkl.Concatenate (
axis=-1,
name='concat') ([x1, x2, x4])

Xy

mp | MaxPooling2D
x1 X2 l \ x3
conv_1 1 | Conv2D conv_2 1 | Conv2D mp_4 1 | MaxPooling2D

'

Concatenate

l

T

concat

Spatial dimension should be preserved
both by padding and stride in maxpooling

G. Boracchi



.. and more

input_layer

InputLayer

Y

conv

Conv2D

'

mp | MaxPooling2D

—

conv_2 1 | ConvZD conv_3 1 | ConvZD mp_4_1 | MaxPooling2D
l l
conv_2 2 | Conv2D conv_3 2 | Conv2D conv_4 1 | Conv2ZD conv_1 1 | Conv2ZD
\ /
\Foncat Concatenate
l
gap | GlobalAveragePooling2D

;

do | Dropout

;

output_layer

Dense

G. Boracchi



Model: "model™

m Od e l . S U m m ary<> Layer (type) Output Shape Param # Connected to
Cinput_layer (Inputlayer)  [(ome, 22,32, 3] o | 0 |

conv (Conv2D) (None, 32, 32, 32) 204 [ "input_layer[8][@]"]

mp (MaxPooling2D) (Mone, 16, 16, 32) @ [ 'conv[@][e]"]

conv_2_1 (Conwv2D) (None, 16, 16, 64) 2112 [‘'mp[e][e]’]

conv_3 1 (Conv2D) (None, 16, 16, 64) 2112 ['mp[e][e]"]

mp_4 1 (MaxPooling2D) (Mone, 16, 16, 32) @ [ 'mp[e][e]"]

conv_1_1 (Conv2D) (None, 16, 16, 32) 1856 [‘'mp[e][@]"]

conv_2_2 (Conv2D) (None, 16, 16, 32) 18464 [‘conv_2 1[@][@]"]

conv_3 2 {(Conv2D) {(Mone, 16, 16, 32) 51232 ["'conv_3 1[@][e] ]

conv_4 1 (Conv2D) (None, 16, 16, 32) 1856 ['mp_4 1[a@][8]"]

concat (Concatenate) (Mone, 15, 16, 128) @ ["'conv_ 1 1[@][e]",
conv_2 2[a][@]’,
conv_3 2[@][e]",
conv_4 1[a][e]"]

gap (GlobalAveragePooling2D) (None, 128) a [ 'concat[@][e]"]

do (Dropout) (None, 128) 2 [ ‘gap[@][@] "]

output_layer (Dense) (None, 18) 1296 ['do[e][e]"]




ResNet: Residual Learning

ResNet

2015

G. Boracchi



This CVPR paper 1s the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it 1s identical to the version available on IEEE Xplore.

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqging Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun } @microsoft.com



ResNet (2015)

Very Deep network: 152 layers for a deep network trained on Imagenet!
1202 layers on CIFAR!

2015 ILSVR winner both localization and classification (3.57% top 5
classification error). Better than human performance

3
Th«? main.investigatign was: weight layer
IS it possible to continuosly
. : .7:(}{) relu
improve accuracy by stacking 4 X
eight layer ; ;
more and more layers weight lay dentity
F(x) +x

Kaiming He, et al. "Deep Residual Learning for Image Recognition“ CVPR 2016



ResNet (2015): The rationale

Empirical observation: Increasing the network depth, by stacking an
increasingly number of layers, does not always improve performance

TESTING  ErROR

X;‘
I I - »

2 pochs

2/ NeL




A ~ 56 fbyern CNN A -
X_ZG o : X

ResNet (2015): The rationale

But this is not due to overfitting, since the same trend is shown in the
training error

TeAWING ERpIR TESTING  ErROR
56 fbyero CNN

i I - —P ” | ” .
éyhdh g%hﬁu




ResNet (2015): The rationale

But this is not due to overfitting, since the same trend is shown in the
training error, while for overfitting we have that training and test error

diverge

OVERFIT (NG
Y _ TRAINING ERRRC
§ _ TESTING ERRIE.
o 14
epochs

G. Boracchi



ResNet (2015): the intuition

Deeper model are harder to optimize than shallower models.
However, we might in principle copy the parameters of the shallow
network in the deeper one and then in the remaining part, set the
weights to yield an identity mapping.

Input O (@) ®) Té-ST”\f‘—/; é'"-(ﬁ(Q(
56 fbyero CNN

A \
N
O 3
ldentity
B »
O efochs

20Layers

Latent O
representation




ResNet (2015): the intuition

Deeper model are harder to optimize than shallower models.

However, we might in principle copy the parameters of the shallow
network in the deeper one and then in the remaining part, set the
weights to yield an identity mapping.

Therefore, deeper networks should TESTING  ERROR
be in principle as good as the 56 Goyera CNN

shallow ones - A \

Since the experimental evidence,
is different the identity function
is not easy to learn! ~ | »




ResNet: Very deep by residual connections

Adding an “identity shortcut connection” :

* helps in mitigating the vanishing gradient problem and enables deeper
architectures

* Does not add parameters

* In case the previous network was x|
optimal, the weights to be learned +
goes to zero and in.formgtion IS weight layer
propagated by the identity
. . .7:(}{) l relu
* The network can still be trained X
through back-propagation eieht laver _ _
iR identity

F(x) +x

Kaiming He, et al. "Deep Residual Learning for Image Recognition“ CVPR 2016



ResNet: Very deep by residual connections

Intuition: force the network to learn a different task in each block. If H (x) is the
ideal mapping to be learned from a plain network, by skip connections we force

the network to learn F(x) = H(X) — x, here the term residual.

*

weight layer

lrelu

weight layer

Plain block
(ideal mapping)

H(x) wrelu

Resnet block
(learns delta w.r.t. )

X |
v
weight layer
.7:(}{) lrelu
weight layer
F(x) +x

Kaiming He, et al. "Deep Residual Learning for Image Recognition“ CVPR 2016

3
identity



ResNet: Very deep by residual connections

« F(x) is called the residual (something to add on top of identity), which turns to
be easier to train in deep networks.

* Weights in between the skip connection can be used to learn a «delta», a
residual i.e., F(x) to improve over the solution that can be achieved by a
shallow network.

* Since x and F(x) must have the +
same size. Thus the weights T
(convolutional layers) are such that 6 ¥

to preserve dimension _F(x) l relu
depth-wise or are re-arranged
by 1x1 convolutions.

X

weight layer identity

F(x) +x

Kaiming He, et al. "Deep Residual Learning for Image Recognition“ CVPR 2016



ResNet (2015)

The rationale behind adding this identity mapping is that:
* |t is easier for the following layers to learn features on top of the input value

« In practice the layers between an identity mapping would otherwise fail at
learning the identity function to transfer the input to the output

* The performance achieved by resNet X |
suggests that probably most of +
the deep layers have to be close to weight layer
the identity! P |
X relu
() ] .
eight layer ; ;
b et b identity
F(x) +x

Kaiming He, et al. "Deep Residual Learning for Image Recognition“ CVPR 2016



Y

ResNet (2015) -

F(x) J relu = 3x3 conv, 64

The ResNet is a stack of e ‘de“““'\ { -

152 layers of this module Flx) +x 333 conv, 64

oo O

The network alternates 3,@.:1“,,54
« some spatial pooling by convolution with stride 2 3x3mn;£éf}£ """" -
* doubling the number of filters 33conv, 128 | .

3x3 conv, 128

Y

3x3 conv, 128

At the beginning there is a convolutional layer
At the end: no FC but just a GAP to be fed in the final softmax ey

3x3 conv, 128

3x3 conv, 128

Deeper networks are able to achieve lower errors as expected v

3x3 conv, 128

3x3 conv, 256, /2
v y
Kaiming He, et al. "Deep Residual Learning for Image Recognition“ CVPR 2016 OO0 | d




ResNet (2015)

Very deep architecture (say more than 5o layers) adopt a bottleneck layer to reduce
the depth within each block, thus the computational complexity of the network (as
in the inception module)

Few channels Many channels
| 64-d | 256-d
3x3, 64 bottleneck 1x1, 64
relu l relu
l 3x3, 64
3x3, 64 l relu
1x1, 256

relu : relu

Kaiming He, et al. "Deep Residual Learning for Image Recognition“ CVPR 2016



ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) winners s
st
30 282 /
152 layers| [152 layers| | 152 layers
25 L
My A O A
6 ’.4
20 N
16.4 > 4 B9 Vi 5 n
15
19 layers| |22 layers)
10
7.3 6.7
| 5.1
S 3.6
.. R
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez &  Krizhevsky et al  Zeiler & Simonyan &  Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus  Zisserman (VGG) (GoogleNet) (ResNet) (SENet)



Resnet Block in Kears

# input x input_layer | input: | [(None, 32, 32, 3)]
sl = tfkl.Conv2D (

filters=filters,

InputLayer | output: | [(None, 32, 32, 3)]

kernel size=3,

padding='same', conv( Input: (None, 32, 32, 3)
X
activation='relu', Conv2D | output: | (None, 32, 32, 64)
name='conv'+name+'-"+str (1) /
) (x)
s2 = tfkl.Conv2D ( s1 convl-1 | input: | (None, 32, 32, 64)
filters=filters, ConvZD | output: | (None, 32, 32, 64)
kernel size=3,
padding='same', .
) ) convl-2 | input: | (None, 32, 32, 64)
activation='relu', s2
Conv2D | output: | (None, 32, 32, 64)
name='conv'+name+'-"+str (c+2)
) (s1) \
s3 = tfkl.Add(name='add'+name) ([x,s2]) 3 [ 2dd1 [ input: [ [(None, 32, 32, 64), (None, 32, 32, 64)]
s4 = tfkl.RelU(name='relu'+name) (s3) S Add | output (None, 32, 32, 64)
s5 = tfkl.MaxPooling2D (name='pooling'+name) (s4) l

G. Boracchi



Resnet Block in Kears

# input x It is important that the spatial input_layer | input: | [(None, 32, 32, 3)]
s = okl Convab( extent does not change within a | InputLayer | output: | [(None, 32, 32, 3)]

filters=filters,
kernel size=3, resnet block
padding='same', I conv( Input: (None, 32, 32, 3)
X
activation='relu', Conv2D | output: | (None, 32, 32, 64)
name='conv'+name+'-"+str (1) ,///
) (x)
s2 = tfkl.Conv2D ( 1 convl-1 | input: | (None, 32, 32, 64)
: S

filters=filters, Conv2D | output: | (None, 32, 32, 64)

kernel size=3,

padding='same',

convl-2 | input: | (None, 32, 32, 64)

name='conv' +name+' - ' +str (c+2) Conv2D | output: | (None, 32, 32, 64)

) (s1) \

activation='relu', s2

s3 = tfkl.Add(name='add'+name) ([x,s2]) 3 [ 2dd1 [ input: [ [(None, 32, 32, 64), (None, 32, 32, 64)]
s4 = tfkl.RelLU(name='relu'+name) (s3) S Add | output (None, 32, 32, 64)
s5 = tfkl.MaxPooling2D (name='pooling'+name) (s4) l

G. Boracchi



Resnet Block in Kears

# input x Include a nonlinearity after the | input layer | input: | [(None, 32, 32, 3)]
s = okl Convab( add layer. You might need to use | InputLayer | output: | [(None, 32, 32, 3)]

filters=filters,

kernel size=3, a sepecific layer

padding='same', conv( Input: (None, 32, 32, 3)
activation='relu', x Conv2D | output: | (None, 32, 32, 64)
name='conv'+name+'-"+str (1) ,///
) (x)
s2 = tfkl.Conv2D ( s1 convl-1 | input: | (None, 32, 32, 64)
filters=filters, Conv2D | output: | (None, 32, 32, 64)

kernel size=3,

padding='same',
convl-2 | input: | (None, 32, 32, 64)

name='conv' +name+' - ' +str (c+2) Conv2D | output: | (None, 32, 32, 64)

) (s1) \

activation='relu', s2

s3 = tfkl.Add(name='add +name) ([x,s2]) 3 [ 2dd1 [ input: [ [(None, 32, 32, 64), (None, 32, 32, 64)]
s4 =|tfkl.RelLU(name='relu'+name) (s3) S Add | output (None, 32, 32, 64)
sb = tfkl.MaxPoolingZD(name='pooiing'+name) (s4) l

G. Boracchi



Resnet Block in Kears

# input x
tfkl.Conv2D (

filters=filters,

sl =

kernel size=3,
padding='same',
activation='relu',
name='conv'+name+'-"+str (1)
) (x)
tfkl.Conv2D (

filters=filters,

s2 =

kernel size=3,
padding='same',
activation='relu',
name='conv'+name+'-"+str (c+2)
) (s1)
tfkl.Add (name='add'+name) ([x,s2])
tfkl.RelLU (name="'relu'+name) (s3)

s3

s4d =

s5 =| tfkl.MaxPooling2D (name='pooling'+name) (s4)

sl

s2

Spatial size can be reduced only
outside the resnet block

mnput_layer | input: | [(None, 32, 32, 3)]
InputLayer | output: | [(None, 32, 32, 3)]
conv( Input: (None, 32, 32, 3)
X
Conv2D | output: | (None, 32, 32, 64)
convl-1 | input: | (None, 32, 32, 64)
Conv2D | output: | (None, 32, 32, 64)
convl-2 | input: | (None, 32, 32, 64)
Conv2D | output: | (None, 32, 32, 64)
s3 addl | input: | [(None, 32, 32, 64), (None, 32, 32, 64)]
Add | output: (None, 32, 32, 64)

l
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MobileNets: Efficient Convolutional Neural Networks for Mobile Vision

Applications
Andrew G. Howard Menglong Zhu Bo Chen Dmitry Kalenichenko
Weijun Wang Tobias Weyand Marco Andreetto Hartwig Adam

Google Inc.

{hmwarda,menglﬁﬂg,bcchen,dka;eni:henkc,weijunw,weyand,anm,hadam}@gﬁﬁg;e.cmm

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861.



Mobilenets

Designed to reduce the number of parameters and of operations, to embed
networks in mobile application.

Issues preventing use in mobile devices:
e conv2D layers have quite a few parameters
e conv2D layers are quite computationally demending

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861.



Mobilenets

Nr of operations: (D XDy X M X D X Dp) X N

Traditional Conv2D

A /D D LD LD LT
// |4 /nh’_/ 4 )hJA o |4

/ K k Dh Dh Dh
} N »

N=nr of filters

Each filter, mixes all the input channels o, | F

De

Separable Convolution, made of two steps

: : Nr of operations: (Dg X Dy X M X D X D
1) Depth-wise convolution e (Dk X Dy r X Dp)
/4 1 | 1 l a |

this does not mix channels, it S, Im — 7 . —N —N —
is like 2D convolution on each Dr 4 F % % ['J L M :
channel of input activation F. - o o e o e oK

Dy & M

2) Point-wise convolution:
Combines the output of dept-wise convolution Nr of operations: (M X D X Dg X N)

by N filters that are 1 X 1. 3
It does not perform spatial il i <
convolution anymore By = Lzw s Lgr= L 1grw L1, [ 1
L/ . : |
Dy N=nr of filters

Image Credits: https://medium.com/@godeep48/an-overview-on-mobilenet-an-efficient-mobile-vision-cnn-f301141dbg4d



Depth-wise Separable Convolutions

All in all, a layer of dept-wise separable convolution
using N filters costs
(D X M X DZ) + M X Dz X N
Which compared to convaD layers
(D X M X DZ) + M X Dz X N
Di X M X DZ X N
1 N 1
Di

Which denotes a substantial savings when N and Dy
are large

). L
e Ll L

I}f\ - .'_N'T -

(a) Standard Convolution Filters

-'Oh'

l'r.}j-\- - ﬂ J_r —

(b) Depthwise Convolutional Filters

vV /a4

-l—;\. e

(c) 1x1 Convolutional Filters called Pointwise Convolution in the con-
text of Depthwise Separable Convolution
Figure 2. The standard convolutional filters in (a) are replaced by
two layers: depthwise convolution in (b) and pointwise convolu-
tion in (c) to build a depthwise separable filter.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks

for mobile vision applications. arXiv preprint arXiv:1704.04861.
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Comparison

(el VGGs are the least
80 - ..
o3l ’ Xception efficient: very large
DenseNet-208088 ResNet-101 ResNet-152 .
DepseNet-16@0N S ¢ocnet-50 e veahe computational and
o e el £
e g e £21 memory usage
g ResNet-34
MobileNet=v2
- MobileNet-v1
R 707 oﬂ ResNet-18
% o GoogleNet
= ENet
S g5 fd-MobileNet
s
2 BN-NIN
= ShuffleNet
60 A 5M 35M 65M 95M 125M 155M
SqueezeNet
_ BN-AlexNet
33 1 AlexNet
50 : . , v :
0 10 20 30 40 50

Operations [G-Ops]

Canziani, A, Paszke A., Culurciello E.. "An analysis of deep neural network models for practical applications." arXiv preprint (2016).



Inception models are the most
efficient and best performing
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COm pariSOn Inception-va4:

Resnet + Inception
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Comparison
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This CVPR paper 1s the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Aggregated Residual Transformations for Deep Neural Networks

Saining Xie' Ross Girshick? Piotr Doll4r? Zhuowen Tu' Kaiming He?
'UC San Diego 2Facebook Al Research
{s9xie, ztu}Rucsd.edu {rbg,pdollar, kaiminghe}@fb.com



Wide Resnet

? 256 out

1X1 Cconv, 256

Y

3X3 conv, 64

T

1X1 conyv, 64

ResNet Module

256 in

Wide ResNet Module

? 256 out

1X1 conv, 256 X k

Y

3X3 conv, 64 X k

T

1X1 conv, 64 X k

256 in

Xie et al “Aggregated Residual Transformations for Deep Neural Networks”, CVPR 2017



Wide Resnet

Wide ResNet Module

« Use wider residual blocks (F x k filters
? 256 out

1X1 Cconv, 256 @

3X3 conv, 64 X k

T

1X1 conv, 64 X k

instead of F filters in each layer)

* 5o-layer wide ResNet outperforms 152-layer
original ResNet

* Increasing width instead of depth more
computationally efficient (parallelizable)

256 in

Xie et al “Aggregated Residual Transformations for Deep Neural Networks”, CVPR 2017



ResNexXt

ResNet Module

? 256 out

1X1 Cconv, 256

Y

3X3 conv, 64

T

1X1 conyv, 64

256 in

256 out

ResNeXt Module

N

1X1 conv, 256 1X1 conv, 256
‘ 32 paths ‘
3X3 conv, 4 3X3 conyv, 4
1X1 cony, 4 1X1 cony, 4
- 256 in

Xie et al “Aggregated Residual Transformations for Deep Neural Networks”, CVPR 2017



ResNeXt 256 out

ResNeXt Module

N

Widen the ResNet module by adding
multiple pathways in parallel
(previous wide Resnet was just
increasing the number of filters and
showing it achieves similar performance

, 1X1 conv, 256 1X1 conv, 256
with fewer blocks)

‘ 32 paths ‘

- : : X3 cony,
Similar to inception module where 3%3 Conv, 4 3*3 >
the activation maps are being 1 T
processed in parallel 1X1 conyv, 4 1X1 cony, 4
Different from inception module,
all the paths share the same topology A

256 in

Xie et al “Aggregated Residual Transformations for Deep Neural Networks”, CVPR 2017



This CVPR paper 1s the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it 1s identical to the version available on IEEE Xplore.

Densely Connected Convolutional Networks
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Cornell University Tsinghua University Facebook Al Research
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DenseNet

In each block of a DenseNet, each convolutional layer takes as input the output of

the previous layers

Short connections between convolutional
layers of the network

Each layer is connected to every other
layer in a feed-forward fashion

Huang G. et al, “Densely Connected Convolutional Network” CVPR 2017

Dense block




DenseNet

In each block a DenseNet, each convolutional
layer takes as input the output of the
previous layers

Each layer is connected to every other
layer in a feed-forward fashion

This alleviates vanishing gradient problem,
promotes feature re-use since each feature
is spread through the network

Huang G. et al, “Densely Connected Convolutional Network” CVPR 2017

Dense block

t

concat

[

1X1 conv, 256

|

concat

3X3 conv, 64

|

concat

1X1 conv, 64
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EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Mingxing Tan ' Quoc V. Le !

Abstract

Convolutional Meural Networks (ConvMets) are
commonly developed at a fixed resource budget,
and then scaled up for better accuracy if more
resources are available. In this paper, we sys-
tematically study model scaling and identify that
carefully balancing network depth, width, and res-
olution can lead to better perfformance. Based
on this observation, we propose a new scaling
method that uniformly scales all dimensions of
depth/width/resolution using a simple yet highly
effective compound coefficiens. We demonstrate
the effectiveness of this method on scaling up
MuobileNets and ResNet.
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Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks.” ICML, 2019.



Effi Ci e n t N et . . EfficientNet-B7
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Figure 1. Model Size vs. ImageNet Accuracy. All numbers are
for single-crop, single-model. Our EfficientNets significantly out-
perform other ConvNets. In particular, EfficientNet-B7 achieves
new state-of-the-art 84.4% top-1 accuracy but being 8.4x smaller
and 6.1x faster than GPipe. EfficientNet-B1 is 7.6x smaller and
5.7x faster than ResNet-152. Details are in Table 2 and 4.

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks.” ICML, 2019.
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