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Parameters in a CNN
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Convolutional Layers
Convolutional layers "mix" all the input components 

The output is a linear combination of all the values in a region of the 
input, considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑤𝑤1(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑖𝑖, 𝑐𝑐 + 𝑗𝑗, 𝑘𝑘) + 𝑏𝑏1

The parameters of this layer are called filters.

The same filter is used through the
whole spatial extent of the input

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236
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Convolutions as MLP
Convolution is a linear operation!

Therefore, if you unroll the input image to a vector, you can consider 
convolution weights as the weights of a Multilayer Perceptron Network!

𝑎𝑎 𝑥𝑥,𝑦𝑦, 𝑘𝑘 = �
𝑢𝑢,𝑣𝑣,𝑧𝑧

𝑤𝑤𝑘𝑘 𝑢𝑢, 𝑣𝑣, 𝑧𝑧  𝐼𝐼(𝑥𝑥 − 𝑢𝑢,𝑦𝑦 − 𝑣𝑣, 𝑧𝑧)  + 𝑏𝑏𝑘𝑘

What are the differences between MLP and CNNs then?

parameters

inputs
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CNNs has Sparse Connectivity

MLP, Fully connected

3x1 convolutional

Input neurons 
(unrolled image) 

Output neurons
(unrolled 

activations at the 
first layer)

Input neurons

Output neurons
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Weight Sharing / Spatial Invariance
In a CNN, all the neurons in the same slice of a feature map use the 
same weights and bias: this reduces the nr. of parameters in the CNN.

Underlying assumption: if one feature is useful to compute at some 
spatial position (𝑥𝑥,𝑦𝑦), then it should also be useful to compute at a 
different position (𝑥𝑥2,𝑦𝑦2)
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Weight Sharing / Spatial Invariance
If the first layer were a MLP:

• MLP layer: this should have had 28 x 28 x 6 neurons in the output

• MLP layer with sparse connectivity: only 5x5 nonzero weights each neuron

• MLP layer: 28 x 28 x 6 x 25 weights + 28 x 28 x 6 biases (122 304) 

• Conv layer: 25 weights + 6 biases shared among neurons of the same layer
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Parameter sharing

Fully connected

3x1 convolutional

5x5 = 25 weights
(+ 5 bias)

3 weights!
(+ 1 bias)

Quiz: how many parameters 
does this layer have?
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Parameter sharing

Fully connected

3x1 convolutional

5x5 = 25 weights
(+ 5 bias)

3 weights!
(+ 1 bias)

Quiz: how many parameters 
does this layer have?
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To Summarize
Any CONV layer can be implemented by a FC layer performing exactly 
the same computations.
The weight matrix 𝑊𝑊 of the FC layer would be 
- a large matrix (#rows equal to the number of output neurons, #cols 

equal to the nr of input neurons).
- That is mostly zero except for at certain blocks where the local 

connectivity takes place.
- The weights in many of the blocks are equal due to parameter 

sharing.

… and we will see that the converse interpretation (FC as conv) is also 
viable and very useful!
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The Receptive Field
A very important aspect in CNNs
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The Receptive Field
One of the basic concepts in deep CNNs.

Due to sparse connectivity, unlike in FC networks where the value of 
each output depends on the entire input, in CNN each output only 
depends on a specific region in the input.

This region in the input is the receptive field for that output 

The deeper you go, the wider the receptive field is: maxpooling, 
convolutions and stride > 1 increase the receptive field

Usually, the receptive field refers to the final 
output unit of the network in relation to the 
network input, but the same definition holds
for intermediate volumes

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45659236
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Receptive fields

MPL, Fully connected

3x1 convolutional
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Receptive fields
Deeper neurons depend on wider patches of the input (convolution is 
enough to increase receptive field, no need of maxpooling)

3x1 convolutional

3x1 convolutional
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Exercise
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Receptive fields

Input
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How large is the receptive field of the black neuron?
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Receptive fields
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Receptive fields
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Receptive fields
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Receptive fields
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As we move deeper…
As we move to deeper layers:

• spatial resolution is reduced

• the number of maps increases

We search for higher-level 
patterns, and don’t care too 
much about their exact location.

There are more high-level 
patterns than low-level details!
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CNN Training
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Training a CNN
• Each CNN can be seen as a MLP, with sparse and shared 

connectivities)

• CNN can be in principle trained by gradient descent to minimize a 
loss function over a batch (e.g. binary cross-entropy, RMSE, Hinge 
loss..)

• Gradient can be computed by backpropagation (chain rule) as long 
as we can derive each layer of the CNN

• Weight sharing needs to be taken into account (fewer parameters to 
be used in the derivatives) while computing derivatives

• There are just a few details missing…
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Detail: backprop with max pooling
The gradient is only routed through the input pixel that contributes to 
the output value; e.g.:

Gradient of • with respect to • = 0 The derivative is:
• 1 at the location corresponding 

the maximum
• 0 otherwise
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Detail: backprop with max pooling
The gradient is only routed through the input pixel that contributes to 
the output value; e.g.:

Gradient of • with respect to • = 0 The derivative is:
• 1 at the location corresponding 

the maximum
• 0 otherwise
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Detail: derivative of ReLU
The ReLU derivative is straightforward
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A Breaktrough in Image Classification



Giacomo Boracchi

The impact of Deep Learning in Visual 
Recognition
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ILSVRC: ImageNet Large Scale Visual Recognition Challenge 

Many layers!
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Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural 
information processing systems 25 (2012).

AlexNet / Imagenet Images

37
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How was this possible?
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Large Collections of Annotated Data

The ImageNet project is a large 
visual database designed for use in visual 
object recognition software research. More 
than 14 million images have been hand-
annotated by the project to indicate what 
objects are pictured and in at least one 
million of the images, bounding boxes are 
also provided.[3] ImageNet contains more 
than 20,000 categories

From Wikipedia October 2021

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image 
Database. CVPR, 2009.
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Parallel Computing Architectures

https://www.flickr.com/photos/nvidia/34686550412
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And more recently…. Software libraries

Google LLC, Public domain, via Wikimedia Commons
PyTorch, BSD <http://opensource.org/licenses/bsd-license.php>, via Wikimedia Commons
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Data Scarcity
Training a CNN with Limited Aumont of Data
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The need of data
Deep learning models are very data hungry.

Networks such as AlexNet have been trained on ImageNet datasets 
containing tens of thousands of images over hundreds of classes
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The need of data

This is necessary to define millions of parameters characterizing these 
networks

Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello. "An analysis of deep neural network models for practical applications." arXiv preprint arXiv:1605.07678 (2016).
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The need of data
Deep learning models are very data hungry.

… watch out: each image in the training set have to be annotated!

How to train a deep learning model with a few training images?

• Data augmentation

• Transfer Learning
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Limited Amount of Data:
Data Augmentation

Training a CNN with Limited Aumont of Data
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Aleutian Islands 

Steller sea lions in the western Aleutian 
Islands have declined 94% in the last 30 

years.
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Kaggle in 2017 have opened a competition to 
develop algorithms which accurately count the 
number of sea lions in aerial photographs

Credits Yinan Zhou
https://github.com/marioZYN/FC-CNN-Demo

https://github.com/marioZYN/FC-CNN-Demo
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The Challenge 
In very large aerial images (≈ 5K x 4K) shot by drones, automatically 
count the number of sealions per each category 
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The Challenge 
This problem can be naively casted in a patch-by-patch 6-class 
classification problem, where we include also background
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An Example of CNN predictions

Credits Yinan Zhou
https://github.com/marioZYN/FC-CNN-Demo

https://github.com/marioZYN/FC-CNN-Demo
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Data Augmentation
Often, each annotated image represents a class of images that are all 
likely to belong to the same class

In aereal photograps, for instance, it is normal to have rotated, shifted 
or scaled images without changing the label
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Data Augmentation

Original image

Augmented Images
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Data Augmentation
Data augmentation is typically performed by means of

Geometric Transformations:
• Shifts /Rotation/Affine/perspective distortions
• Shear
• Scaling
• Flip

Photometric Transformations:
• Adding noise
• Modifying average intensity
• Superimposing other images
• Modifying image contrast
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Data Augmentation Criteria
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Data Augmentation: Criteria
Augmented versions should preserve the input label

• e.g. if size/orientation is a key information to determine the output 
target (either the class or the value in case of regression), wisely 
consider scaling/rotation as transformation

Augmentation is meant to promote network invariance w.r.t. 
transformation used for augmentation
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Non-preserving label augmentation

16:00 16:00

(𝐼𝐼, 𝑦𝑦) (𝑅𝑅(𝐼𝐼),𝑦𝑦)

A network predicting the time 
from an image of a clock without 
numbers is not invariant w.r.t
rotations

You don’t want to introduce 
transformations that ruin 
distinctive information of a given 
class 
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Mixup Augmentation
Augmented copies 𝐴𝐴𝑙𝑙 𝐼𝐼 𝑙𝑙 of an image 𝐼𝐼 live in a vicinity of 𝐼𝐼, and 
have the same label of 𝐼𝐼
Transformations (photometric or geometric) are expert-driven

Mixup is a domain-agnostic data augmentation technique

- No need to know which (label-preserving) transformations to use

- mixup trains a neural network on virtual samples that are convex 
combinations of pairs of examples and their labels

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). Mixup: Beyond empirical risk minimization. ICLR 2018
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Mixup Augmentation
Given a pair of training samples 𝐼𝐼𝑖𝑖 ,𝑦𝑦𝑖𝑖 and 𝐼𝐼𝑗𝑗 ,𝑦𝑦𝑗𝑗 of drawn at random 
possibly belonging to different classes, we define

Virtual samples (and their label)
𝐼𝐼 = 𝜆𝜆𝐼𝐼𝑖𝑖 + 1 − 𝜆𝜆 𝐼𝐼𝑗𝑗
�𝑦𝑦 = 𝜆𝜆𝑦𝑦𝑖𝑖 + 1 − 𝜆𝜆 𝑦𝑦𝑗𝑗

Where 𝜆𝜆 ∈ 0,1 and 𝑦𝑦𝑖𝑖 , and 𝑦𝑦𝑗𝑗 are one-hot encoded labels

https://www.kaggle.com/code/kaushal2896/data-augmentation-tutorial-basic-cutout-mixup 

https://www.kaggle.com/code/kaushal2896/data-augmentation-tutorial-basic-cutout-mixup
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Mixup Augmentation, Intuition
Mixup extends the training distribution by incorporating the prior 
knowledge that linear interpolations of feature vectors should lead to 
linear interpolations of the associated targets. 
Mixup can be implemented in a few lines of codes and introduces 
minimal computation overhead.

Mixup in keras: 
https://keras.io/guides/keras_cv/cut_mix_mix_up_and_rand_augment/

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). Mixup: Beyond empirical risk minimization. ICLR 2018

https://keras.io/guides/keras_cv/cut_mix_mix_up_and_rand_augment/
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The Benefits of Data Augmentation
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Image Augmentation and CNN invariance
Given an annotated image (𝐼𝐼,𝑦𝑦) and a set of augmentation 
transformations 𝐴𝐴𝑙𝑙 𝑙𝑙 ,  we train the network using these pairs

𝐴𝐴𝑙𝑙 𝐼𝐼 ,𝑦𝑦 𝑙𝑙 𝑙𝑙 

Through data augmentation we train the network to «become 
invariant» to selected transformations. Since the same label is 
associated to 𝐼𝐼 and 𝐴𝐴𝑙𝑙 𝐼𝐼  ∀𝑙𝑙 

Unfortunately:
• invariance might not be always achieved in practice,
• several type of invariance cannot be achieved by synthetic 

manipulation of images
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However…
This sort of data augmentation might not be enough to capture the 
inter-class variability of images…

Superimposition of targets
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However…
Background variations
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However…
Background variations
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However…
Out of focus, bad exposure 
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Image Augmentation and Overfitting
Given an annotated image (𝐼𝐼,𝑦𝑦) and a set of augmentation 
transformations 𝐴𝐴𝑙𝑙 𝑙𝑙 ,  we train the network using these pairs

𝐴𝐴𝑙𝑙 𝐼𝐼 ,𝑦𝑦 𝑙𝑙 𝑙𝑙 

Training including augmentation reduces the risk of overfitting, as it 
significantly increase the training set size.

Note: data augmentation can be implemented as a network layer, such 
that it is executed on each batch, thus changing augmented images at 
each epochs
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Image Augmentation and Class Imbalance
Moreover, data augmentation can be used to compensate for class 
imbalance in the training set, by creating more realistic examples from 
the minority class

In general, transformations used in data-augmentation 𝐴𝐴𝑙𝑙  can be also 
class-specific, in order to preserve the image label
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Watch out
If Data-augmentation introduces some «hidden traces» that are class-
discriminative, then the network will learn these to perform detection!

For instance

• Blurring only images of a specific class, makes the network learn 
that class “as blurry”, despite the image semantics. This holds for 
interpolation artifacts as well

• Changing colors / creating inconsistencies / introducing minor 
padding artifacts in a certain class of images, might create new
class-discriminative patterns.
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Test Time Augmentation
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Test Time Augmentation (TTA) or Self-ensembling 
Even if the CNN is trained using augmentation, it won’t achieve perfect 
invariance w.r.t. considered transformations

Test time augmentation (TTA): augmentation can be also performed at 
test time to improve prediction accuracy.

• Perform a few random augmentation of each test image 𝐼𝐼
𝐴𝐴𝑙𝑙 𝐼𝐼 𝑙𝑙

• Classify all the augmented images and save the posterior vectors
𝒑𝒑𝒍𝒍 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴𝑙𝑙 𝐼𝐼 )

• Define the CNN prediction by aggregating the posterior vectors {𝒑𝒑𝑙𝑙}
e. g.𝒑𝒑 = 𝐴𝐴𝐴𝐴𝐴𝐴( 𝒑𝒑𝑙𝑙 𝒍𝒍)CNN𝐼𝐼 �𝑦𝑦

AUG𝐼𝐼 {𝐴𝐴𝑡𝑡(𝐼𝐼)} CNN { �𝑦𝑦𝑡𝑡 } aggregation �𝑦𝑦
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Test Time Augmentation (TTA) or Self-ensembling 
TTA: 

- particularly useful for test images where the model is quite unsure.

- extremely computationally demanding

Need to wisely configure the number and type of transformations to be 
performed at test time
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Test Time Augmentation

Figure source: https://stepup.ai/test_time_data_augmentation/ 

https://stepup.ai/test_time_data_augmentation/
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Augmentation In Keras
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Augmentation in Keras
There are multiple preprocessing layers to be introduced after the input 
layer to perform:

- photometric transformations

- geometric transformations

to the image 

https://keras.io/api/layers/preprocessing_layers/image_augmentation/ 

https://keras.io/api/layers/preprocessing_layers/image_augmentation/
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Augmentation Layers
These layers apply random augmentation transforms to a batch of 
images. They are only active during training.

tf.keras.layers.RandomCrop

tf.keras.layers.RandomFlip

tf.keras.layers.RandomTranslation

tf.keras.layers.RandomRotation

tf.keras.layers.RandomZoom

tf.keras.layers.RandomHeight

tf.keras.layers.RandomWidth

tf.keras.layers.RandomContrast

https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_crop#randomcrop-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_flip#randomflip-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_translation#randomtranslation-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_rotation#randomrotation-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_zoom#randomzoom-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_height#randomheight-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_width#randomwidth-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_contrast#randomcontrast-class
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Preprocessing Layers
Image preprocessing layers, these are active at inference

- Resizing layer

- Rescaling layer

- CenterCrop layer

https://keras.io/api/layers/preprocessing_layers/image_preprocessing/resizing
https://keras.io/api/layers/preprocessing_layers/image_preprocessing/rescaling
https://keras.io/api/layers/preprocessing_layers/image_preprocessing/center_crop


Giacomo Boracchi

Augmenting Images
Define a simple network that performs a random flip of the input 

flip = tf.keras.Sequential([

tfkl.RandomFlip("horizontal_and_vertical"),

])

Invoke this network to apply augmentation to images

flipped_X_train = flip(X_train)



Giacomo Boracchi

Augmenting Images
You can stuck multiple layers
# pack a few augmentation layers in a sequence

augmentationNet = tf.keras.Sequential([

tfkl.RandomFlip("horizontal_and_vertical"),

tfkl.RandomTranslation(0.1,0.1),

tfkl.RandomRotation(0.1),

], name='augmentationNet’)

Invoke this network to apply augmentation to images
augmentated_X_train = augmentationNet(X_train)
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Training with data augmentation
You can include augmentation / preprocessing layers directly in the network architecture
Note:
- Augmentation layers will be active only during training
- Preprocessing layers will be active also during inference

def build_model_with_augmentation(input_shape, output_shape):
tf.random.set_seed(seed)

# Build the neural network layer by layer
input_layer = tfkl.Input(shape=input_shape, name='Input')

# include augmentation layers
a = tfkl.RandomFlip("horizontal_and_vertical")(input_layer)
b = tfkl.RandomTranslation(0.1,0.1)(a)
c = tfkl.RandomRotation(0.1)(b)

conv1 = tfkl.Conv2D(…)(c)
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A bit more of background
Performance measures

and an overview of successful architectures
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Confusion Matrix
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Confusion Matrix
The element 𝐶𝐶(𝑖𝑖, 𝑗𝑗) i.e. at the 𝑖𝑖-th row and 𝑗𝑗-th column corresponds to 
the percentage of elements belonging to class 𝑖𝑖 classified as elements 
of class 𝑗𝑗

71% of background 
patches have been 

correctly classified as 
background

42% of sub-adult males 
patches have been 

wrongly classified as 
adult-males
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… so, the ideal confusion matrix
Which rarely happens
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Two-Class Classification
Background:
In a two-class classification problem (binary classification), the CNN 
output is equivalent to a scalar, since 

𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼 = 𝑝𝑝, 1 − 𝑝𝑝
being 𝑝𝑝 the probability of 𝐼𝐼 to belong to the first class. 
Thus, we can write

𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼 = 𝑝𝑝
Then, we can decide that 𝐼𝐼 belongs to the first class when 

𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼 > Γ
and use Γ different from 0.5, which is the standard. 
We require stronger evidence before claiming 𝐼𝐼 belongs to class 1.
Changing Γ establishes a trade off between FPR and TPR.
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Two-Class Classification
Classification performance in case of binary classifiers can be also 
measured in terms of the ROC (receiver operating characteristic) curve, 
which does not depend on the threshold you set for each class

This is useful in case you plan to modify this and not use 𝟎𝟎.𝟓𝟓
The ideal detector would achieve: 

• 𝐹𝐹𝐹𝐹𝐹𝐹 =  0%,
• 𝑇𝑇𝑇𝑇𝑇𝑇 =  100%

Thus, the closer to (0,1) the better

The largest the Area Under the 
Curve (AUC), the better

The optimal parameter is the one
yielding the point closest to (0,1)

(𝐹𝐹𝐹𝐹𝐹𝐹,𝑇𝑇𝑇𝑇𝑇𝑇) for a 
specific parameter
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CNN for Quality Inspection

In collaboration
 with
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Scenario

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production 
monitoring. Pattern Recognition, 124, 108488.

Silicon Wafer

Chip Manufacturer
Chips / Memories / Sensors 
are everywere

In collaboration
 with



Giacomo Boracchi

Monitoring Silicon Wafer Manufacturing Process

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production monitoring. Pattern Recognition, 124, 108488.

Wafer

Inspection 
Tool

Wafer Defect Map (WDM)
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Specific patterns in WDMs might indicate problems in the production

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production monitoring. Pattern 
Recognition, 124, 108488.

Classess of WDM Patterns

BasketBall ClusterBig ClusterSmall Donut Fingerprints GeometricScratch

Grid HalfMoon Incomplete Ring Slice ZigZag

Classify WDM to raise prompt alerts
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• Huge resolution: a WDM as a grayscale would require ~ 3 GB to store 𝑤𝑤 in 
memory

• Very Limited Supervision

• Some defects occur very rarely

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production monitoring. Pattern 
Recognition, 124, 108488.

Challenges
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Our CNN

Train a deep learning model to 
identify defective patterns

R. di Bella, D. Carrera, B. Rossi, P. Fragneto, G. Boracchi «Wafer Defect Map Classification Using Sparse Convolutional Networks” ICIAP 2019

Wafer Defect Map

….

Defect Patterns

Deep Learning

Collaboration with
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Data Augmentation is often key..

Train a deep learning model to 
identify defective patterns

R. di Bella, D. Carrera, B. Rossi, P. Fragneto, G. Boracchi «Wafer Defect Map Classification Using Sparse Convolutional Networks” ICIAP 2019

Wafer Defect Map

….

Defect Patterns

Deep Learning

Augmentation can greatly improve clasification 
performance and successfully handle class imbalance

Collaboration with
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Our CNN

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production monitoring. Pattern 
Recognition, 124, 108488.

Latent 
Representation

NN Classifier

Branch to detect
unknown samples
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Results

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production monitoring. Pattern Recognition, 124, 108488.96
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Results

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production monitoring. Pattern Recognition, 124, 108488.97

Our system is currently monitoring the 
largest production line in Agrate and most 

backend sites
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Limited Amount of Data:
Transfer Learning

Training a CNN with Limited Aumont of Data
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The Rationale Behind Transfer Learning
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The typical architecture of a CNN

Latent Representation: 
Data-Driven Feature Vector

MLP for feature 
classification

FEN
…

…… …

Convolutional and Pooling Layers
Extract high-level features from pixels (general)

Classify
(task-specific)
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Very Good Features!
FEN is trained on large training sets (e.g. ImageNet) typically including 
hundres of classes.

FEN
…

…… …

0      tench, Tinca tinca
1      goldfish, Carassius auratus
2      great white shark, man-eating shark, Carcharodon caharias’,
…
998  ear, spike, capitulum
999  toilet tissue, toilet paper, bathroom tissue

𝑳𝑳 = 𝟗𝟗𝟗𝟗𝟗𝟗 output neurons

…
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Very Good Features!

The output of the fully connected layer has the same size as the 
number of classes 𝐿𝐿, and each component provide a score for the input 
image to belong to a specific class.
This is very task-specific:
• What if I have a small 𝑇𝑇𝑇𝑇 of images of cats and dogs for training?
• What if I want to train a classifier for the six types of sealions?
• Can we use these feature for solving other classification problems?

FEN
…

…… …

0      tench, Tinca tinca
1      goldfish, Carassius auratus
2      great white shark, man-eating shark, Carcharodon caharias’,
…
998  ear, spike, capitulum
999  toilet tissue, toilet paper, bathroom tissue

𝑳𝑳 = 𝟗𝟗𝟗𝟗𝟗𝟗 output neurons

…
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Transfer Learning

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)

FEN
…

…… …

0      tench, Tinca tinca
1      goldfish, Carassius auratus
2      great white shark, man-eating shark, Carcharodon caharias’,
…
998  ear, spike, capitulum
999  toilet tissue, toilet paper, bathroom tissue

𝑳𝑳 = 𝟗𝟗𝟗𝟗𝟗𝟗 output neurons

…
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Transfer Learning

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)

2. Remove the FC layers. 

FEN
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Transfer Learning

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)

2. Remove the FC layers. 

3. Design new FC layers to match the new problem, plug after the FEN 
(initialized at random)

FEN
…

…… …

0      dog
1      cat

𝑳𝑳 = 𝟐𝟐 output neurons
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Transfer Learning

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)

2. Remove the FC layers. 

3. Design new FC layers to match the new problem, plug after the FEN 
(initialized at random)

4. «Freeze» the weights of the FEN. 

FEN
…

…… …

0      dog
1      cat

𝑳𝑳 = 𝟐𝟐 output neurons
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Transfer Learning

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)

2. Remove the FC layers. 

3. Design new FC layers to match the new problem, plug after the FEN 
(initialized at random)

4. «Freeze» the weights of the FEN. 

5. Train the whole network on the new training data 𝑇𝑇𝑇𝑇

FEN
…

…… …

0      dog
1      cat

𝑳𝑳 = 𝟐𝟐 output neurons
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Transfer Learning in the Sealion Case

VGG16 

«Froozen»

Train the whole architecture on the training set 
of augmented patches from sealions

FC Layers having 
6 output neurons

Trainable

https://jhui.github.io/2017/03/16/CNN-Convolutional-neural-network/

6 × 1

https://jhui.github.io/2017/03/16/CNN-Convolutional-neural-network/
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Transfer Learning vs Fine Tuning
Different Options:

• Transfer Learning: only the FC layers are being trained. A good option 
when little training data are provided and the pre-trained model is 
expected to match the problem at hand

• Fine tuning: the whole CNN is retrained, but the convolutional layers 
are initialized to the pre-trained model. A good option when enough 
training data are provided or when the pre-trained model is not 
expected to match the problem at hand. 

Typically, for the same optimizer, lower learning rates are used when 
performing fine tuning than when training from scratches
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Best Practice
Typically, to take the most out of a pretrained model:

• Connect a new output layer (having few parameters)

• Transfer Learning: train the output layer only

• Make all the “last layers” trainable 

• Fine tuning: train the entire network with a low learning rate

# Compile the model
ft_model.compile(loss=tfk.losses.BinaryCrossentr
opy(), optimizer=tfk.optimizers.Adam(1e-
5), metrics='accuracy’)

This strategy allows defining good predictions once the output layer 
has been trained
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Transfer Learning In Keras
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Where to find pretrained models?
https://keras.io/api/applications/

https://keras.io/api/applications/
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Importing Pretrained Models in keras…
Pre-trained models are available, typically in two ways:

• include_top = True: provides the entire network, including 
the fully convolutional layers. This network can be used to solve the 
classification problem it was trained for

• include_top = False: contains only the convolutional layers 
of the network, and it is specifically meant for transfer learning. 

Have a look at the size of these models in the two options!
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Importing Pretrained Models in keras…
from keras import applications
base_model = applications.VGG16(weights = 
"imagenet", include_top=False, input_shape = 
(img_width, img_width, 3), pooling = “avg")
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Importing Pretrained Models in keras…
from keras import applications
base_model = applications.VGG16(weights = 
"imagenet", include_top=False, input_shape = 
(img_width, img_width, 3), pooling = “avg")

When include_top=False, the network returns the output of a 
global pooling layer, which can be: 

• pooling = “avg“ Global Averaging Pooling (GAP)

• pooling = “max“ Global Max Pooling (GMP)

• pooling = “none“ There is no pooling, it returns the 
activations
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How to extract the feature extraction network?
Actually, for sequential models, you create feature extraction network

fen = tfk.Sequential(model.layers[:-2])
fen.output_shape
>> 128
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How to extract the feature extraction network?
Actually, for sequential models, you create feature extraction network

fen = tfk.Sequential(model.layers[:-2])

Note: each Keras Application expects a specific kind of input preprocessing. 

For MobileNetV2, call 
tf.keras.applications.mobilenet_v2.preprocess_input 

on your inputs before passing them to the model. mobilenet_v2.preprocess_input 
will scale input pixels between -1 and 1.
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Transfer Learning in Keras…
Requires a bit of TensorFlow Backend to add the modified Fully 
connected layer at the top of a pretrained model

Then, before training it is necessary to loop through the network layers 
(they are in model.layers) and then modify the trainable property

for layer in model.layers[: lastFrozen]:
layer.trainable=False



Giacomo Boracchi

An example of model loading
# load a pre-
trained MobileNetV2 model without weights

mobile = tfk.applications.MobileNetV2(

input_shape=(224, 224, 3),

include_top=False,

pooling='avg',

)
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Transfer Learning: adding the new Network Top
Requires a bit of TensorFlow Backend to add the modified Fully connected 
layer at the top of a pretrained model
Then, before training it is necessary to loop through the network layers (they 
are in model.layers) and then modify the trainable property

# Add the classifier layer to the MobileNet
inputs = tfk.Input(shape=(224,224,3))
x = mobile(inputs) # concatenates inputs and the output
of the pretrined network... the entire mobileNet is hand
led as a layer
x = tfkl.Dropout(0.5)(x) # good to prevent overfitting
outputs = tfkl.Dense(1, activation='sigmoid')(x) # conne
ct a new output layer
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Transfer Learning: setting layers trainable property
Requires a bit of TensorFlow Backend to add the modified Fully 
connected layer at the top of a pretrained model

Then, before training it is necessary to loop through the network layers 
(they are in model.layers) and then modify the trainable property

for layer in model.layers[: lastFrozen]:
layer.trainable=False
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Image Retrieval From The 
Latent Space
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Features are Good For Image Retrieval

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

FEN

Test image

Feed a test image and compute its latent 
representation

𝐼𝐼 𝒙𝒙
Latent Representation: 

Data-Driven Feature Vector
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Features are Good For Image Retrieval

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

FEN

Test image

Latent Representation: 
Data-Driven Feature Vector

Feed a test image and compute its latent 
representation

Retrieve the training images 
having the closest latent 

representations 

𝐼𝐼 𝒙𝒙

The 3- nearest neighborhood of 𝒙𝒙

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑
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Features are Good For Image Retrieval

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

FEN

Test image

Latent Representation: 
Data-Driven Feature Vector

Feed a test image and compute its latent 
representation

Retrieve the training images 
having the closest latent 

representations 

𝐼𝐼 𝒙𝒙 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

The 3- nearest neighborhood of 𝒙𝒙
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Features are Good For Image Retrieval

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012).

FEN

Training Images corresponding to the 
closest latent representations!

Feed a test image and compute its latent 
representation

Test image



Giacomo Boracchi

1-NN classification in the latent space
# feed the test imate to the fen

image_features = fen.predict(test_image)

# feed fen with the entire training set (use batches of 512)

features = fen.predict(X_train_val,batch_size=512,verbose=0)

# compute distances (e.g. ell1) between image_featres and features,

distances = np.mean(np.abs(features - image_features),axis=-1)
sortedDistances = distances.argsort()

# sort images (and labels) according to the distance computed above

ordered_images = X_train_val[sortedDistances]

ordered_labels = y_train_val[sortedDistances]

# associate to image_features the closest image ordered_images[0]
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