
Giacomo Boracchi

CNN Anatomy and Training

Giacomo Boracchi,
DEIB, Politecnico di Milano

Artificial Neural Networks and Deep Learning AY2023-2024

giacomo.boracchi@polimi.it
https://boracchi.faculty.polimi.it/

mailto:giacomo.boracchi@polimi.it
https://boracchi.faculty.polimi.it/

Giacomo Boracchi

Parameters in a CNN

Giacomo Boracchi

Convolutional Layers
Convolutional layers "mix" all the input components

The output is a linear combination of all the values in a region of the
input, considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑤𝑤1(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑖𝑖, 𝑐𝑐 + 𝑗𝑗, 𝑘𝑘) + 𝑏𝑏1

The parameters of this layer are called filters.

The same filter is used through the
whole spatial extent of the input

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45659236

Giacomo Boracchi

Convolutions as MLP
Convolution is a linear operation!

Therefore, if you unroll the input image to a vector, you can consider
convolution weights as the weights of a Multilayer Perceptron Network!

𝑎𝑎 𝑥𝑥,𝑦𝑦, 𝑘𝑘 = �
𝑢𝑢,𝑣𝑣,𝑧𝑧

𝑤𝑤𝑘𝑘 𝑢𝑢, 𝑣𝑣, 𝑧𝑧 𝐼𝐼(𝑥𝑥 − 𝑢𝑢,𝑦𝑦 − 𝑣𝑣, 𝑧𝑧) + 𝑏𝑏𝑘𝑘

What are the differences between MLP and CNNs then?

parameters

inputs

Giacomo Boracchi

CNNs has Sparse Connectivity

MLP, Fully connected

3x1 convolutional

Input neurons
(unrolled image)

Output neurons
(unrolled

activations at the
first layer)

Input neurons

Output neurons

Giacomo Boracchi

Weight Sharing / Spatial Invariance
In a CNN, all the neurons in the same slice of a feature map use the
same weights and bias: this reduces the nr. of parameters in the CNN.

Underlying assumption: if one feature is useful to compute at some
spatial position (𝑥𝑥,𝑦𝑦), then it should also be useful to compute at a
different position (𝑥𝑥2,𝑦𝑦2)

Giacomo Boracchi

Weight Sharing / Spatial Invariance
If the first layer were a MLP:

• MLP layer: this should have had 28 x 28 x 6 neurons in the output

• MLP layer with sparse connectivity: only 5x5 nonzero weights each neuron

• MLP layer: 28 x 28 x 6 x 25 weights + 28 x 28 x 6 biases (122 304)

• Conv layer: 25 weights + 6 biases shared among neurons of the same layer

Giacomo Boracchi

Parameter sharing

Fully connected

3x1 convolutional

5x5 = 25 weights
(+ 5 bias)

3 weights!
(+ 1 bias)

Quiz: how many parameters
does this layer have?

Giacomo Boracchi

Parameter sharing

Fully connected

3x1 convolutional

5x5 = 25 weights
(+ 5 bias)

3 weights!
(+ 1 bias)

Quiz: how many parameters
does this layer have?

Giacomo Boracchi

To Summarize
Any CONV layer can be implemented by a FC layer performing exactly
the same computations.
The weight matrix 𝑊𝑊 of the FC layer would be
- a large matrix (#rows equal to the number of output neurons, #cols

equal to the nr of input neurons).
- That is mostly zero except for at certain blocks where the local

connectivity takes place.
- The weights in many of the blocks are equal due to parameter

sharing.

… and we will see that the converse interpretation (FC as conv) is also
viable and very useful!

Giacomo Boracchi

The Receptive Field
A very important aspect in CNNs

Giacomo Boracchi

The Receptive Field
One of the basic concepts in deep CNNs.

Due to sparse connectivity, unlike in FC networks where the value of
each output depends on the entire input, in CNN each output only
depends on a specific region in the input.

This region in the input is the receptive field for that output

The deeper you go, the wider the receptive field is: maxpooling,
convolutions and stride > 1 increase the receptive field

Usually, the receptive field refers to the final
output unit of the network in relation to the
network input, but the same definition holds
for intermediate volumes

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45659236

Giacomo Boracchi

Receptive fields

MPL, Fully connected

3x1 convolutional

Giacomo Boracchi

Receptive fields
Deeper neurons depend on wider patches of the input (convolution is
enough to increase receptive field, no need of maxpooling)

3x1 convolutional

3x1 convolutional

Giacomo Boracchi

Exercise

Input:

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

map

38x38

Giacomo Boracchi

Receptive fields

Input

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

map

?

How large is the receptive field of the black neuron?

Giacomo Boracchi

Receptive fields

Input

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

map

How large is the receptive field of the black neuron?

13x13

Giacomo Boracchi

Exercise

Input:

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

map

38x38

Giacomo Boracchi

Receptive fields

Input

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

map

Co
nv

 3
x3

M
P

2x
2

Co
nv

 3
x3

M
P

2x
2

Co
nv

 3
x3

M
P

2x
2

?

Co
nv

 3
x3

M
P

2x
2

Co
nv

 3
x3

M
P

2x
2

Co
nv

 3
x3

M
P

2x
2

How large is the receptive field of the black neuron?

13x13

?

Giacomo Boracchi

Receptive fields

Input

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

map

Co
nv

 3
x3

M
P

2x
2

Co
nv

 3
x3

M
P

2x
2

Co
nv

 3
x3

M
P

2x
2

?

Co
nv

 3
x3

M
P

2x
2

Co
nv

 3
x3

M
P

2x
2

Co
nv

 3
x3

M
P

2x
2

22x22

How large is the receptive field of the black neuron?

13x13

Giacomo Boracchi

Receptive fields

Input

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

Co
nv

 3
x3

map

Co
nv

 3
x3

M
P

2x
2

Co
nv

 3
x3

M
P

2x
2

Co
nv

 3
x3

M
P

2x
2

?

?

Co
nv

 3
x3

M
P

2x
2

Co
nv

 3
x3

M
P

2x
2

Co
nv

 3
x3

M
P

2x
2

?

How large is the receptive field of the black neuron?

Giacomo Boracchi

As we move deeper…
As we move to deeper layers:

• spatial resolution is reduced

• the number of maps increases

We search for higher-level
patterns, and don’t care too
much about their exact location.

There are more high-level
patterns than low-level details!

Giacomo Boracchi

CNN Training

Giacomo Boracchi

Training a CNN
• Each CNN can be seen as a MLP, with sparse and shared

connectivities)

• CNN can be in principle trained by gradient descent to minimize a
loss function over a batch (e.g. binary cross-entropy, RMSE, Hinge
loss..)

• Gradient can be computed by backpropagation (chain rule) as long
as we can derive each layer of the CNN

• Weight sharing needs to be taken into account (fewer parameters to
be used in the derivatives) while computing derivatives

• There are just a few details missing…

Giacomo Boracchi

Detail: backprop with max pooling
The gradient is only routed through the input pixel that contributes to
the output value; e.g.:

Gradient of • with respect to • = 0 The derivative is:
• 1 at the location corresponding

the maximum
• 0 otherwise

Giacomo Boracchi

Detail: backprop with max pooling
The gradient is only routed through the input pixel that contributes to
the output value; e.g.:

Gradient of • with respect to • = 0 The derivative is:
• 1 at the location corresponding

the maximum
• 0 otherwise

Giacomo Boracchi

Detail: derivative of ReLU
The ReLU derivative is straightforward

Giacomo Boracchi

A Breaktrough in Image Classification

Giacomo Boracchi

The impact of Deep Learning in Visual
Recognition

C
la

ss
ifi

ca
ti

on
 a

cc
u

ra
cy

 o
n

 IL
SV

R
C

ILSVRC: ImageNet Large Scale Visual Recognition Challenge

Many layers!

Giacomo Boracchi
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural
information processing systems 25 (2012).

AlexNet / Imagenet Images

37

Giacomo Boracchi

How was this possible?

Giacomo Boracchi

Large Collections of Annotated Data

The ImageNet project is a large
visual database designed for use in visual
object recognition software research. More
than 14 million images have been hand-
annotated by the project to indicate what
objects are pictured and in at least one
million of the images, bounding boxes are
also provided.[3] ImageNet contains more
than 20,000 categories

From Wikipedia October 2021

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image
Database. CVPR, 2009.

Giacomo Boracchi

Parallel Computing Architectures

https://www.flickr.com/photos/nvidia/34686550412

Giacomo Boracchi

And more recently…. Software libraries

Google LLC, Public domain, via Wikimedia Commons
PyTorch, BSD <http://opensource.org/licenses/bsd-license.php>, via Wikimedia Commons

Giacomo Boracchi

Data Scarcity
Training a CNN with Limited Aumont of Data

Giacomo Boracchi

The need of data
Deep learning models are very data hungry.

Networks such as AlexNet have been trained on ImageNet datasets
containing tens of thousands of images over hundreds of classes

Giacomo Boracchi

The need of data

This is necessary to define millions of parameters characterizing these
networks

Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello. "An analysis of deep neural network models for practical applications." arXiv preprint arXiv:1605.07678 (2016).

Giacomo Boracchi

The need of data
Deep learning models are very data hungry.

… watch out: each image in the training set have to be annotated!

How to train a deep learning model with a few training images?

• Data augmentation

• Transfer Learning

Giacomo Boracchi

Limited Amount of Data:
Data Augmentation

Training a CNN with Limited Aumont of Data

Giacomo Boracchi

Aleutian Islands

Steller sea lions in the western Aleutian
Islands have declined 94% in the last 30

years.

Giacomo Boracchi

Kaggle in 2017 have opened a competition to
develop algorithms which accurately count the
number of sea lions in aerial photographs

Credits Yinan Zhou
https://github.com/marioZYN/FC-CNN-Demo

https://github.com/marioZYN/FC-CNN-Demo

Giacomo Boracchi

The Challenge
In very large aerial images (≈ 5K x 4K) shot by drones, automatically
count the number of sealions per each category

Giacomo Boracchi

Giacomo Boracchi

The Challenge
This problem can be naively casted in a patch-by-patch 6-class
classification problem, where we include also background

Giacomo Boracchi

An Example of CNN predictions

Credits Yinan Zhou
https://github.com/marioZYN/FC-CNN-Demo

https://github.com/marioZYN/FC-CNN-Demo

Giacomo Boracchi

Data Augmentation
Often, each annotated image represents a class of images that are all
likely to belong to the same class

In aereal photograps, for instance, it is normal to have rotated, shifted
or scaled images without changing the label

Giacomo Boracchi

Data Augmentation

Original image

Augmented Images

Giacomo Boracchi

Data Augmentation
Data augmentation is typically performed by means of

Geometric Transformations:
• Shifts /Rotation/Affine/perspective distortions
• Shear
• Scaling
• Flip

Photometric Transformations:
• Adding noise
• Modifying average intensity
• Superimposing other images
• Modifying image contrast

Giacomo Boracchi

Data Augmentation Criteria

Giacomo Boracchi

Data Augmentation: Criteria
Augmented versions should preserve the input label

• e.g. if size/orientation is a key information to determine the output
target (either the class or the value in case of regression), wisely
consider scaling/rotation as transformation

Augmentation is meant to promote network invariance w.r.t.
transformation used for augmentation

Giacomo Boracchi

Non-preserving label augmentation

16:00 16:00

(𝐼𝐼, 𝑦𝑦) (𝑅𝑅(𝐼𝐼),𝑦𝑦)

A network predicting the time
from an image of a clock without
numbers is not invariant w.r.t
rotations

You don’t want to introduce
transformations that ruin
distinctive information of a given
class

Giacomo Boracchi

Mixup Augmentation
Augmented copies 𝐴𝐴𝑙𝑙 𝐼𝐼 𝑙𝑙 of an image 𝐼𝐼 live in a vicinity of 𝐼𝐼, and
have the same label of 𝐼𝐼
Transformations (photometric or geometric) are expert-driven

Mixup is a domain-agnostic data augmentation technique

- No need to know which (label-preserving) transformations to use

- mixup trains a neural network on virtual samples that are convex
combinations of pairs of examples and their labels

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). Mixup: Beyond empirical risk minimization. ICLR 2018

Giacomo Boracchi

Mixup Augmentation
Given a pair of training samples 𝐼𝐼𝑖𝑖 ,𝑦𝑦𝑖𝑖 and 𝐼𝐼𝑗𝑗 ,𝑦𝑦𝑗𝑗 of drawn at random
possibly belonging to different classes, we define

Virtual samples (and their label)
𝐼𝐼 = 𝜆𝜆𝐼𝐼𝑖𝑖 + 1 − 𝜆𝜆 𝐼𝐼𝑗𝑗
�𝑦𝑦 = 𝜆𝜆𝑦𝑦𝑖𝑖 + 1 − 𝜆𝜆 𝑦𝑦𝑗𝑗

Where 𝜆𝜆 ∈ 0,1 and 𝑦𝑦𝑖𝑖 , and 𝑦𝑦𝑗𝑗 are one-hot encoded labels

https://www.kaggle.com/code/kaushal2896/data-augmentation-tutorial-basic-cutout-mixup

https://www.kaggle.com/code/kaushal2896/data-augmentation-tutorial-basic-cutout-mixup

Giacomo Boracchi

Mixup Augmentation, Intuition
Mixup extends the training distribution by incorporating the prior
knowledge that linear interpolations of feature vectors should lead to
linear interpolations of the associated targets.
Mixup can be implemented in a few lines of codes and introduces
minimal computation overhead.

Mixup in keras:
https://keras.io/guides/keras_cv/cut_mix_mix_up_and_rand_augment/

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). Mixup: Beyond empirical risk minimization. ICLR 2018

https://keras.io/guides/keras_cv/cut_mix_mix_up_and_rand_augment/

Giacomo Boracchi

The Benefits of Data Augmentation

Giacomo Boracchi

Image Augmentation and CNN invariance
Given an annotated image (𝐼𝐼,𝑦𝑦) and a set of augmentation
transformations 𝐴𝐴𝑙𝑙 𝑙𝑙 , we train the network using these pairs

𝐴𝐴𝑙𝑙 𝐼𝐼 ,𝑦𝑦 𝑙𝑙 𝑙𝑙

Through data augmentation we train the network to «become
invariant» to selected transformations. Since the same label is
associated to 𝐼𝐼 and 𝐴𝐴𝑙𝑙 𝐼𝐼 ∀𝑙𝑙

Unfortunately:
• invariance might not be always achieved in practice,
• several type of invariance cannot be achieved by synthetic

manipulation of images

Giacomo Boracchi

However…
This sort of data augmentation might not be enough to capture the
inter-class variability of images…

Superimposition of targets

Giacomo Boracchi

However…
Background variations

Giacomo Boracchi

However…
Background variations

Giacomo Boracchi

However…
Out of focus, bad exposure

Giacomo Boracchi

Image Augmentation and Overfitting
Given an annotated image (𝐼𝐼,𝑦𝑦) and a set of augmentation
transformations 𝐴𝐴𝑙𝑙 𝑙𝑙 , we train the network using these pairs

𝐴𝐴𝑙𝑙 𝐼𝐼 ,𝑦𝑦 𝑙𝑙 𝑙𝑙

Training including augmentation reduces the risk of overfitting, as it
significantly increase the training set size.

Note: data augmentation can be implemented as a network layer, such
that it is executed on each batch, thus changing augmented images at
each epochs

Giacomo Boracchi

Image Augmentation and Class Imbalance
Moreover, data augmentation can be used to compensate for class
imbalance in the training set, by creating more realistic examples from
the minority class

In general, transformations used in data-augmentation 𝐴𝐴𝑙𝑙 can be also
class-specific, in order to preserve the image label

Giacomo Boracchi

Watch out
If Data-augmentation introduces some «hidden traces» that are class-
discriminative, then the network will learn these to perform detection!

For instance

• Blurring only images of a specific class, makes the network learn
that class “as blurry”, despite the image semantics. This holds for
interpolation artifacts as well

• Changing colors / creating inconsistencies / introducing minor
padding artifacts in a certain class of images, might create new
class-discriminative patterns.

Giacomo Boracchi

Test Time Augmentation

Giacomo Boracchi

Test Time Augmentation (TTA) or Self-ensembling
Even if the CNN is trained using augmentation, it won’t achieve perfect
invariance w.r.t. considered transformations

Test time augmentation (TTA): augmentation can be also performed at
test time to improve prediction accuracy.

• Perform a few random augmentation of each test image 𝐼𝐼
𝐴𝐴𝑙𝑙 𝐼𝐼 𝑙𝑙

• Classify all the augmented images and save the posterior vectors
𝒑𝒑𝒍𝒍 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴𝑙𝑙 𝐼𝐼)

• Define the CNN prediction by aggregating the posterior vectors {𝒑𝒑𝑙𝑙}
e. g.𝒑𝒑 = 𝐴𝐴𝐴𝐴𝐴𝐴(𝒑𝒑𝑙𝑙 𝒍𝒍)CNN𝐼𝐼 �𝑦𝑦

AUG𝐼𝐼 {𝐴𝐴𝑡𝑡(𝐼𝐼)} CNN { �𝑦𝑦𝑡𝑡 } aggregation �𝑦𝑦

Giacomo Boracchi

Test Time Augmentation (TTA) or Self-ensembling
TTA:

- particularly useful for test images where the model is quite unsure.

- extremely computationally demanding

Need to wisely configure the number and type of transformations to be
performed at test time

Giacomo Boracchi

Test Time Augmentation

Figure source: https://stepup.ai/test_time_data_augmentation/

https://stepup.ai/test_time_data_augmentation/

Giacomo Boracchi

Augmentation In Keras

Giacomo Boracchi

Augmentation in Keras
There are multiple preprocessing layers to be introduced after the input
layer to perform:

- photometric transformations

- geometric transformations

to the image

https://keras.io/api/layers/preprocessing_layers/image_augmentation/

https://keras.io/api/layers/preprocessing_layers/image_augmentation/

Giacomo Boracchi

Augmentation Layers
These layers apply random augmentation transforms to a batch of
images. They are only active during training.

tf.keras.layers.RandomCrop

tf.keras.layers.RandomFlip

tf.keras.layers.RandomTranslation

tf.keras.layers.RandomRotation

tf.keras.layers.RandomZoom

tf.keras.layers.RandomHeight

tf.keras.layers.RandomWidth

tf.keras.layers.RandomContrast

https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_crop#randomcrop-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_flip#randomflip-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_translation#randomtranslation-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_rotation#randomrotation-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_zoom#randomzoom-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_height#randomheight-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_width#randomwidth-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_contrast#randomcontrast-class

Giacomo Boracchi

Preprocessing Layers
Image preprocessing layers, these are active at inference

- Resizing layer

- Rescaling layer

- CenterCrop layer

https://keras.io/api/layers/preprocessing_layers/image_preprocessing/resizing
https://keras.io/api/layers/preprocessing_layers/image_preprocessing/rescaling
https://keras.io/api/layers/preprocessing_layers/image_preprocessing/center_crop

Giacomo Boracchi

Augmenting Images
Define a simple network that performs a random flip of the input

flip = tf.keras.Sequential([

tfkl.RandomFlip("horizontal_and_vertical"),

])

Invoke this network to apply augmentation to images

flipped_X_train = flip(X_train)

Giacomo Boracchi

Augmenting Images
You can stuck multiple layers
pack a few augmentation layers in a sequence

augmentationNet = tf.keras.Sequential([

tfkl.RandomFlip("horizontal_and_vertical"),

tfkl.RandomTranslation(0.1,0.1),

tfkl.RandomRotation(0.1),

], name='augmentationNet’)

Invoke this network to apply augmentation to images
augmentated_X_train = augmentationNet(X_train)

Giacomo Boracchi

Training with data augmentation
You can include augmentation / preprocessing layers directly in the network architecture
Note:
- Augmentation layers will be active only during training
- Preprocessing layers will be active also during inference

def build_model_with_augmentation(input_shape, output_shape):
tf.random.set_seed(seed)

Build the neural network layer by layer
input_layer = tfkl.Input(shape=input_shape, name='Input')

include augmentation layers
a = tfkl.RandomFlip("horizontal_and_vertical")(input_layer)
b = tfkl.RandomTranslation(0.1,0.1)(a)
c = tfkl.RandomRotation(0.1)(b)

conv1 = tfkl.Conv2D(…)(c)

Giacomo Boracchi

A bit more of background
Performance measures

and an overview of successful architectures

Giacomo Boracchi

Confusion Matrix

Giacomo Boracchi

Confusion Matrix
The element 𝐶𝐶(𝑖𝑖, 𝑗𝑗) i.e. at the 𝑖𝑖-th row and 𝑗𝑗-th column corresponds to
the percentage of elements belonging to class 𝑖𝑖 classified as elements
of class 𝑗𝑗

71% of background
patches have been

correctly classified as
background

42% of sub-adult males
patches have been

wrongly classified as
adult-males

Giacomo Boracchi

… so, the ideal confusion matrix
Which rarely happens

Giacomo Boracchi

Two-Class Classification
Background:
In a two-class classification problem (binary classification), the CNN
output is equivalent to a scalar, since

𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼 = 𝑝𝑝, 1 − 𝑝𝑝
being 𝑝𝑝 the probability of 𝐼𝐼 to belong to the first class.
Thus, we can write

𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼 = 𝑝𝑝
Then, we can decide that 𝐼𝐼 belongs to the first class when

𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼 > Γ
and use Γ different from 0.5, which is the standard.
We require stronger evidence before claiming 𝐼𝐼 belongs to class 1.
Changing Γ establishes a trade off between FPR and TPR.

Giacomo Boracchi

Two-Class Classification
Classification performance in case of binary classifiers can be also
measured in terms of the ROC (receiver operating characteristic) curve,
which does not depend on the threshold you set for each class

This is useful in case you plan to modify this and not use 𝟎𝟎.𝟓𝟓
The ideal detector would achieve:

• 𝐹𝐹𝐹𝐹𝐹𝐹 = 0%,
• 𝑇𝑇𝑇𝑇𝑇𝑇 = 100%

Thus, the closer to (0,1) the better

The largest the Area Under the
Curve (AUC), the better

The optimal parameter is the one
yielding the point closest to (0,1)

(𝐹𝐹𝐹𝐹𝐹𝐹,𝑇𝑇𝑇𝑇𝑇𝑇) for a
specific parameter

Giacomo Boracchi

CNN for Quality Inspection

In collaboration
 with

Giacomo Boracchi

Scenario

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production
monitoring. Pattern Recognition, 124, 108488.

Silicon Wafer

Chip Manufacturer
Chips / Memories / Sensors
are everywere

In collaboration
 with

Giacomo Boracchi

Monitoring Silicon Wafer Manufacturing Process

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production monitoring. Pattern Recognition, 124, 108488.

Wafer

Inspection
Tool

Wafer Defect Map (WDM)

Giacomo Boracchi

Specific patterns in WDMs might indicate problems in the production

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production monitoring. Pattern
Recognition, 124, 108488.

Classess of WDM Patterns

BasketBall ClusterBig ClusterSmall Donut Fingerprints GeometricScratch

Grid HalfMoon Incomplete Ring Slice ZigZag

Classify WDM to raise prompt alerts

Giacomo Boracchi

• Huge resolution: a WDM as a grayscale would require ~ 3 GB to store 𝑤𝑤 in
memory

• Very Limited Supervision

• Some defects occur very rarely

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production monitoring. Pattern
Recognition, 124, 108488.

Challenges

Giacomo Boracchi

Our CNN

Train a deep learning model to
identify defective patterns

R. di Bella, D. Carrera, B. Rossi, P. Fragneto, G. Boracchi «Wafer Defect Map Classification Using Sparse Convolutional Networks” ICIAP 2019

Wafer Defect Map

….

Defect Patterns

Deep Learning

Collaboration with

Giacomo Boracchi

Data Augmentation is often key..

Train a deep learning model to
identify defective patterns

R. di Bella, D. Carrera, B. Rossi, P. Fragneto, G. Boracchi «Wafer Defect Map Classification Using Sparse Convolutional Networks” ICIAP 2019

Wafer Defect Map

….

Defect Patterns

Deep Learning

Augmentation can greatly improve clasification
performance and successfully handle class imbalance

Collaboration with

Giacomo Boracchi

Our CNN

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production monitoring. Pattern
Recognition, 124, 108488.

Latent
Representation

NN Classifier

Branch to detect
unknown samples

Giacomo Boracchi

Results

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production monitoring. Pattern Recognition, 124, 108488.96

Giacomo Boracchi

Results

Frittoli, L., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2022). Deep open-set recognition for silicon wafer production monitoring. Pattern Recognition, 124, 108488.97

Our system is currently monitoring the
largest production line in Agrate and most

backend sites

Giacomo Boracchi

Limited Amount of Data:
Transfer Learning

Training a CNN with Limited Aumont of Data

Giacomo Boracchi

The Rationale Behind Transfer Learning

Giacomo Boracchi

The typical architecture of a CNN

Latent Representation:
Data-Driven Feature Vector

MLP for feature
classification

FEN
…

…… …

Convolutional and Pooling Layers
Extract high-level features from pixels (general)

Classify
(task-specific)

Giacomo Boracchi

Very Good Features!
FEN is trained on large training sets (e.g. ImageNet) typically including
hundres of classes.

FEN
…

…… …

0 tench, Tinca tinca
1 goldfish, Carassius auratus
2 great white shark, man-eating shark, Carcharodon caharias’,
…
998 ear, spike, capitulum
999 toilet tissue, toilet paper, bathroom tissue

𝑳𝑳 = 𝟗𝟗𝟗𝟗𝟗𝟗 output neurons

…

Giacomo Boracchi

Very Good Features!

The output of the fully connected layer has the same size as the
number of classes 𝐿𝐿, and each component provide a score for the input
image to belong to a specific class.
This is very task-specific:
• What if I have a small 𝑇𝑇𝑇𝑇 of images of cats and dogs for training?
• What if I want to train a classifier for the six types of sealions?
• Can we use these feature for solving other classification problems?

FEN
…

…… …

0 tench, Tinca tinca
1 goldfish, Carassius auratus
2 great white shark, man-eating shark, Carcharodon caharias’,
…
998 ear, spike, capitulum
999 toilet tissue, toilet paper, bathroom tissue

𝑳𝑳 = 𝟗𝟗𝟗𝟗𝟗𝟗 output neurons

…

Giacomo Boracchi

Transfer Learning

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)

FEN
…

…… …

0 tench, Tinca tinca
1 goldfish, Carassius auratus
2 great white shark, man-eating shark, Carcharodon caharias’,
…
998 ear, spike, capitulum
999 toilet tissue, toilet paper, bathroom tissue

𝑳𝑳 = 𝟗𝟗𝟗𝟗𝟗𝟗 output neurons

…

Giacomo Boracchi

Transfer Learning

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)

2. Remove the FC layers.

FEN

Giacomo Boracchi

Transfer Learning

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)

2. Remove the FC layers.

3. Design new FC layers to match the new problem, plug after the FEN
(initialized at random)

FEN
…

…… …

0 dog
1 cat

𝑳𝑳 = 𝟐𝟐 output neurons

Giacomo Boracchi

Transfer Learning

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)

2. Remove the FC layers.

3. Design new FC layers to match the new problem, plug after the FEN
(initialized at random)

4. «Freeze» the weights of the FEN.

FEN
…

…… …

0 dog
1 cat

𝑳𝑳 = 𝟐𝟐 output neurons

Giacomo Boracchi

Transfer Learning

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)

2. Remove the FC layers.

3. Design new FC layers to match the new problem, plug after the FEN
(initialized at random)

4. «Freeze» the weights of the FEN.

5. Train the whole network on the new training data 𝑇𝑇𝑇𝑇

FEN
…

…… …

0 dog
1 cat

𝑳𝑳 = 𝟐𝟐 output neurons

Giacomo Boracchi

Transfer Learning in the Sealion Case

VGG16

«Froozen»

Train the whole architecture on the training set
of augmented patches from sealions

FC Layers having
6 output neurons

Trainable

https://jhui.github.io/2017/03/16/CNN-Convolutional-neural-network/

6 × 1

https://jhui.github.io/2017/03/16/CNN-Convolutional-neural-network/

Giacomo Boracchi

Transfer Learning vs Fine Tuning
Different Options:

• Transfer Learning: only the FC layers are being trained. A good option
when little training data are provided and the pre-trained model is
expected to match the problem at hand

• Fine tuning: the whole CNN is retrained, but the convolutional layers
are initialized to the pre-trained model. A good option when enough
training data are provided or when the pre-trained model is not
expected to match the problem at hand.

Typically, for the same optimizer, lower learning rates are used when
performing fine tuning than when training from scratches

Giacomo Boracchi

Best Practice
Typically, to take the most out of a pretrained model:

• Connect a new output layer (having few parameters)

• Transfer Learning: train the output layer only

• Make all the “last layers” trainable

• Fine tuning: train the entire network with a low learning rate

Compile the model
ft_model.compile(loss=tfk.losses.BinaryCrossentr
opy(), optimizer=tfk.optimizers.Adam(1e-
5), metrics='accuracy’)

This strategy allows defining good predictions once the output layer
has been trained

Giacomo Boracchi

Giacomo Boracchi

Transfer Learning In Keras

Giacomo Boracchi

Where to find pretrained models?
https://keras.io/api/applications/

https://keras.io/api/applications/

Giacomo Boracchi

Importing Pretrained Models in keras…
Pre-trained models are available, typically in two ways:

• include_top = True: provides the entire network, including
the fully convolutional layers. This network can be used to solve the
classification problem it was trained for

• include_top = False: contains only the convolutional layers
of the network, and it is specifically meant for transfer learning.

Have a look at the size of these models in the two options!

Giacomo Boracchi

Importing Pretrained Models in keras…
from keras import applications
base_model = applications.VGG16(weights =
"imagenet", include_top=False, input_shape =
(img_width, img_width, 3), pooling = “avg")

Giacomo Boracchi

Importing Pretrained Models in keras…
from keras import applications
base_model = applications.VGG16(weights =
"imagenet", include_top=False, input_shape =
(img_width, img_width, 3), pooling = “avg")

When include_top=False, the network returns the output of a
global pooling layer, which can be:

• pooling = “avg“ Global Averaging Pooling (GAP)

• pooling = “max“ Global Max Pooling (GMP)

• pooling = “none“ There is no pooling, it returns the
activations

Giacomo Boracchi

How to extract the feature extraction network?
Actually, for sequential models, you create feature extraction network

fen = tfk.Sequential(model.layers[:-2])
fen.output_shape
>> 128

Giacomo Boracchi

How to extract the feature extraction network?
Actually, for sequential models, you create feature extraction network

fen = tfk.Sequential(model.layers[:-2])

Note: each Keras Application expects a specific kind of input preprocessing.

For MobileNetV2, call
tf.keras.applications.mobilenet_v2.preprocess_input

on your inputs before passing them to the model. mobilenet_v2.preprocess_input
will scale input pixels between -1 and 1.

Giacomo Boracchi

Transfer Learning in Keras…
Requires a bit of TensorFlow Backend to add the modified Fully
connected layer at the top of a pretrained model

Then, before training it is necessary to loop through the network layers
(they are in model.layers) and then modify the trainable property

for layer in model.layers[: lastFrozen]:
layer.trainable=False

Giacomo Boracchi

An example of model loading
load a pre-
trained MobileNetV2 model without weights

mobile = tfk.applications.MobileNetV2(

input_shape=(224, 224, 3),

include_top=False,

pooling='avg',

)

Giacomo Boracchi

Transfer Learning: adding the new Network Top
Requires a bit of TensorFlow Backend to add the modified Fully connected
layer at the top of a pretrained model
Then, before training it is necessary to loop through the network layers (they
are in model.layers) and then modify the trainable property

Add the classifier layer to the MobileNet
inputs = tfk.Input(shape=(224,224,3))
x = mobile(inputs) # concatenates inputs and the output
of the pretrined network... the entire mobileNet is hand
led as a layer
x = tfkl.Dropout(0.5)(x) # good to prevent overfitting
outputs = tfkl.Dense(1, activation='sigmoid')(x) # conne
ct a new output layer

Giacomo Boracchi

Transfer Learning: setting layers trainable property
Requires a bit of TensorFlow Backend to add the modified Fully
connected layer at the top of a pretrained model

Then, before training it is necessary to loop through the network layers
(they are in model.layers) and then modify the trainable property

for layer in model.layers[: lastFrozen]:
layer.trainable=False

Giacomo Boracchi

Image Retrieval From The
Latent Space

Giacomo Boracchi

Features are Good For Image Retrieval

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

FEN

Test image

Feed a test image and compute its latent
representation

𝐼𝐼 𝒙𝒙
Latent Representation:

Data-Driven Feature Vector

Giacomo Boracchi

Features are Good For Image Retrieval

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

FEN

Test image

Latent Representation:
Data-Driven Feature Vector

Feed a test image and compute its latent
representation

Retrieve the training images
having the closest latent

representations

𝐼𝐼 𝒙𝒙

The 3- nearest neighborhood of 𝒙𝒙

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

Giacomo Boracchi

Features are Good For Image Retrieval

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

FEN

Test image

Latent Representation:
Data-Driven Feature Vector

Feed a test image and compute its latent
representation

Retrieve the training images
having the closest latent

representations

𝐼𝐼 𝒙𝒙 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑

The 3- nearest neighborhood of 𝒙𝒙

Giacomo Boracchi

Features are Good For Image Retrieval

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012).

FEN

Training Images corresponding to the
closest latent representations!

Feed a test image and compute its latent
representation

Test image

Giacomo Boracchi

1-NN classification in the latent space
feed the test imate to the fen

image_features = fen.predict(test_image)

feed fen with the entire training set (use batches of 512)

features = fen.predict(X_train_val,batch_size=512,verbose=0)

compute distances (e.g. ell1) between image_featres and features,

distances = np.mean(np.abs(features - image_features),axis=-1)
sortedDistances = distances.argsort()

sort images (and labels) according to the distance computed above

ordered_images = X_train_val[sortedDistances]

ordered_labels = y_train_val[sortedDistances]

associate to image_features the closest image ordered_images[0]

	CNN Anatomy and Training�
	Parameters in a CNN
	Convolutional Layers
	Convolutions as MLP
	CNNs has Sparse Connectivity
	Weight Sharing / Spatial Invariance
	Weight Sharing / Spatial Invariance
	Parameter sharing
	Parameter sharing
	To Summarize
	The Receptive Field�A very important aspect in CNNs�
	The Receptive Field
	Receptive fields
	Receptive fields
	Exercise
	Receptive fields
	Receptive fields
	Exercise
	Receptive fields
	Receptive fields
	Receptive fields
	As we move deeper…
	CNN Training
	Training a CNN
	Detail: backprop with max pooling
	Detail: backprop with max pooling
	Detail: derivative of ReLU
	A Breaktrough in Image Classification
	The impact of Deep Learning in Visual Recognition
	AlexNet / Imagenet Images
	How was this possible?
	Large Collections of Annotated Data
	Parallel Computing Architectures
	And more recently…. Software libraries
	Data Scarcity
	The need of data
	The need of data
	The need of data
	Limited Amount of Data:�Data Augmentation
	Diapositiva numero 47
	Diapositiva numero 48
	The Challenge
	Diapositiva numero 50
	The Challenge
	An Example of CNN predictions
	Data Augmentation
	Data Augmentation
	Data Augmentation
	Data Augmentation Criteria
	Data Augmentation: Criteria
	Non-preserving label augmentation
	Mixup Augmentation
	Mixup Augmentation
	Mixup Augmentation, Intuition
	The Benefits of Data Augmentation
	Image Augmentation and CNN invariance
	However…
	However…
	However…
	However…
	Image Augmentation and Overfitting
	Image Augmentation and Class Imbalance
	Watch out
	Test Time Augmentation
	Test Time Augmentation (TTA) or Self-ensembling
	Test Time Augmentation (TTA) or Self-ensembling
	Test Time Augmentation
	Augmentation In Keras
	Augmentation in Keras
	Augmentation Layers
	Preprocessing Layers
	Augmenting Images
	Augmenting Images
	Training with data augmentation
	A bit more of background
	Confusion Matrix
	Confusion Matrix
	… so, the ideal confusion matrix
	Two-Class Classification
	Two-Class Classification
	CNN for Quality Inspection�
	Scenario
	Monitoring Silicon Wafer Manufacturing Process
	Classess of WDM Patterns
	Challenges
	Our CNN
	Data Augmentation is often key..
	Our CNN
	Results
	Results
	Limited Amount of Data:�Transfer Learning
	The Rationale Behind Transfer Learning
	The typical architecture of a CNN
	Very Good Features!
	Very Good Features!
	Transfer Learning
	Transfer Learning
	Transfer Learning
	Transfer Learning
	Transfer Learning
	Transfer Learning in the Sealion Case
	Transfer Learning vs Fine Tuning
	Best Practice
	Diapositiva numero 111
	Transfer Learning In Keras
	Where to find pretrained models?
	Importing Pretrained Models in keras…
	Importing Pretrained Models in keras…
	Importing Pretrained Models in keras…
	How to extract the feature extraction network?
	How to extract the feature extraction network?
	Transfer Learning in Keras…
	An example of model loading
	Transfer Learning: adding the new Network Top
	Transfer Learning: setting layers trainable property
	Image Retrieval From The Latent Space
	Features are Good For Image Retrieval
	Features are Good For Image Retrieval
	Features are Good For Image Retrieval
	Features are Good For Image Retrieval
	1-NN classification in the latent space

