
Giacomo Boracchi

Convolutional Neural
Networks

Giacomo Boracchi,
DEIB, Politecnico di Milano

October, 10th, 2022

giacomo.boracchi@polimi.it
https://boracchi.faculty.polimi.it/

mailto:giacomo.boracchi@polimi.it
https://boracchi.faculty.polimi.it/

Giacomo Boracchi

Errata Corrige on Logistics
Task 1 (deadline Friday 27 October 23:59). Create the teams and fill in the
form:
https://docs.google.com/forms/d/e/1FAIpQLScpcA5A5kfayZSbUZ3wqIw1lWS2nV
ReOTs_xu5HNcXO3VlKHA/viewform?usp=sf_link

Task 2 Everyone start navigating the CodaLab platform to become familiar
with it. Please have a look at the CodaLab documentation
https://github.com/codalab/codalab-competitions/wiki#1-participants.

Students with already complete teams: follow the Profile teams instructions
(https://github.com/codalab/codalab-competitions/wiki/User_Teams#profile-
teams) and register your team name on your CodaLab settings.

Students without a team and students with incomplete teams: wait for our
communication for team assignments. Then register the team.

All the teams made by students without a team and students with
incomplete teams will be finalized and communicated before.

https://docs.google.com/forms/d/e/1FAIpQLScpcA5A5kfayZSbUZ3wqIw1lWS2nVReOTs_xu5HNcXO3VlKHA/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScpcA5A5kfayZSbUZ3wqIw1lWS2nVReOTs_xu5HNcXO3VlKHA/viewform?usp=sf_link
https://github.com/codalab/codalab-competitions/wiki#1-participants
https://github.com/codalab/codalab-competitions/wiki/User_Teams#profile-teams
https://github.com/codalab/codalab-competitions/wiki/User_Teams#profile-teams

Giacomo Boracchi

Errata Corrige on Logistics
Deadlines:

Friday 27 October NO ANSWERS TO THE FORM WILL BE ACCEPTED AFTER
THE DEADLINE

Wednesday 1 November. All the teams made by students without a
team and students with incomplete teams will be finalized and
communicated before Wednesday 1 November.

The challenge will start around 2 November

Giacomo Boracchi

The Feature Extraction
Perspective

Giacomo Boracchi

The Feature Extraction Perspective
Images can not be directly fed to a classifier

We need some intermediate step to:

• Extract meaningful information (to our understanding)

• Reduce data-dimension

We need to extract features:

• The better our features, the better the classifier

Giacomo Boracchi

The Feature Extraction Perspective

Input image

Fe
at

ur
e

Ex
tr

ac
tio

n
Al

go
ri
th

m
𝐱𝐱 ∈ ℝ𝑑𝑑

Cl
as

si
fie

r
(N

N
)

(𝑑𝑑 ≪ 𝑟𝑟1 × 𝑐𝑐1)

𝑦𝑦 ∈ Λ

“wheel”

𝐼𝐼1 ∈ ℝ𝑟𝑟1×𝑐𝑐1

Giacomo Boracchi

The Feature Extraction Perspective

Input image

Fe
at

ur
e

Ex
tr

ac
tio

n
Al

go
ri
th

m
𝐼𝐼2 ∈ ℝ𝑟𝑟2×𝑐𝑐2

𝐱𝐱 ∈ ℝ𝑑𝑑

Cl
as

si
fie

r
(N

N
)

(𝑑𝑑 ≪ 𝑟𝑟2 × 𝑐𝑐2)

𝑦𝑦 ∈ Λ

“castle”

Giacomo Boracchi

Hand-Crafted Features

Giacomo Boracchi

Example of Hand-Crafted Features
Example of features:

• Average height

• Area (coverage with nonzero measurements)

• Distribution of heights

• Perimeter

• Diagonals

Giacomo Boracchi

Neural Networks

Input image

Fe
at

ur
e

Ex
tr

ac
tio

n
Al

go
ri
th

m

𝐼𝐼1 ∈ ℝ𝑟𝑟1×𝑐𝑐1

…

Hidden layer(s)

…… …

input layer Output Layer

𝐱𝐱 ∈ ℝ𝑑𝑑

Giacomo Boracchi

Neural Networks

Input image

Fe
at

ur
e

Ex
tr

ac
tio

n
Al

go
ri
th

m

𝐱𝐱 ∈ ℝ𝑑𝑑𝐼𝐼1 ∈ ℝ𝑟𝑟1×𝑐𝑐1

…

Hidden layer(s)

…… …

input layer Output Layer

Input layer: Same size of the
feature vector

𝑥𝑥1

𝑥𝑥𝑑𝑑

Giacomo Boracchi

Neural Networks

Input image

Fe
at

ur
e

Ex
tr

ac
tio

n
Al

go
ri
th

m

𝑃𝑃(𝑙𝑙 = "doub. "|𝒙𝒙)

𝐼𝐼1 ∈ ℝ𝑟𝑟1×𝑐𝑐1

…

Hidden layer(s)

…… …

input layer

𝑃𝑃(𝑙𝑙 = "env. "|𝒙𝒙)

𝑃𝑃(𝑙𝑙 = "parc. "|𝒙𝒙)

Output Layer

Output layer: Same size
as the number of

classes

𝐱𝐱 ∈ ℝ𝑑𝑑

Giacomo Boracchi

Neural Networks

Input image

Fe
at

ur
e

Ex
tr

ac
tio

n
Al

go
ri
th

m

𝐼𝐼1 ∈ ℝ𝑟𝑟1×𝑐𝑐1

…

Hidden layer(s)

…… …

input layer Output Layer

Hidden layers: arbitrary size

𝐱𝐱 ∈ ℝ𝑑𝑑

Giacomo Boracchi

Image Classification by Hand Crafted Features

Input image

Fe
at

ur
e

Ex
tr

ac
tio

n
Al

go
ri
th

m

𝐼𝐼1 ∈ ℝ𝑟𝑟1×𝑐𝑐1

…

…… …

Data DrivenHand Crafted

Giacomo Boracchi

Hand Crafted Featues, pros:
• Exploit a priori / expert information

• Features are interpretable (you might understand why they are not
working)

• You can adjust features to improve your performance

• Limited amount of training data needed

• You can give more relevance to some features

Giacomo Boracchi

Hand Crafted Featues, cons:
• Requires a lot of design/programming efforts

• Not viable in many visual recognition tasks (e.g. on natural images)
which are easily performed by humans

• Risk of overfitting the training set used in the design

• Not very general and "portable"

Giacomo Boracchi

Data-Driven Features
… the advent of deep learning

Giacomo Boracchi

Data-Driven Features

Input image

Fe
at

ur
e

Ex
tr

ac
tio

n

𝐼𝐼1 ∈ ℝ𝑟𝑟1×𝑐𝑐1 …

…… …

Data DrivenData Driven

Giacomo Boracchi

Convolutional Neural
Networks

Setting up the stage

Giacomo Boracchi

Local Linear Filters
Linear Transformation: Linearity implies that the output 𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 is a
linear combination of the pixels in 𝑈𝑈:

𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤𝑖𝑖(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

Considering some weights {𝑤𝑤𝑖𝑖}

𝑟𝑟

𝑐𝑐

We can consider weights as an
image, or a filter ℎ

The filter ℎ entirely defines this
operation ℎ

Giacomo Boracchi

Local Linear Filters
Linear Transformation: the filter weights can be assoicated to a matrix 𝒘𝒘

𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤𝑖𝑖(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

𝑤𝑤(−1,−1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,1)

𝑤𝑤(0,−1) 𝑤𝑤(0,0) 𝑤𝑤(0,1)

𝑤𝑤(1,−11) 𝑤𝑤(1,0) 𝑤𝑤(1,1)

This operation is
repeated for each
pixel in the input

image

𝒘𝒘

𝑇𝑇 𝐼𝐼

𝐼𝐼 𝐼𝐼

𝐼𝐼

𝐼𝐼𝐼𝐼

𝐼𝐼

Giacomo Boracchi

2D Correlation
Convolution is a linear transformation. Linearity implies that

(𝐼𝐼 ⊗ 𝑤𝑤) 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤 𝑢𝑢, 𝑣𝑣 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

𝑐𝑐

𝑟𝑟

𝑤𝑤(−1,−1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,1)

𝑤𝑤(0,−1) 𝑤𝑤(0,0) 𝑤𝑤(0,1)

𝑤𝑤(1,−1) 𝑤𝑤(1,0) 𝑤𝑤(1,1)

𝑤𝑤
𝐼𝐼

We can consider weights as a filter ℎ
The filter ℎ entirely defines convolution

Convolution operates the same in each pixel

Giacomo Boracchi

2D Convolution
Convolution is a linear transformation. Linearity implies that

(𝐼𝐼 ⊛ 𝑤𝑤) 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤 𝑢𝑢, 𝑣𝑣 𝐼𝐼(𝑟𝑟 − 𝑢𝑢, 𝑐𝑐 − 𝑣𝑣)

𝑐𝑐

𝑟𝑟

𝑤𝑤(1,1) 𝑤𝑤(1,0) 𝑤𝑤(1,−1)

𝑤𝑤(0,1) 𝑤𝑤(0,0) 𝑤𝑤(0,−1)

𝑤𝑤(−1,1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,−1)

𝐼𝐼

We can consider weights as a filter ℎ
The filter ℎ entirely defines convolution

Convolution operates the same in each pixel

𝑤𝑤 Rmk: indexes
have been shifted
in the filter 𝑤𝑤

Giacomo Boracchi

2D Convolution
Convolution is a linear transformation. Linearity implies that

(𝐼𝐼 ⊛ 𝑤𝑤) 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤 𝑢𝑢, 𝑣𝑣 𝐼𝐼(𝑟𝑟 − 𝑢𝑢, 𝑐𝑐 − 𝑣𝑣)

𝑐𝑐

𝑟𝑟

𝐼𝐼

We can consider weights as a filter ℎ
The filter ℎ entirely defines convolution

Convolution operates the same in each pixel

𝑤𝑤(1,1) 𝑤𝑤(1,0) 𝑤𝑤(1,−1)

𝑤𝑤(0,1) 𝑤𝑤(0,0) 𝑤𝑤(0,−1)

𝑤𝑤(−1,1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,−1)

𝑤𝑤 Rmk: indexes
have been shifted
in the filter 𝑤𝑤

The same operation is being performed in
 each pixel of the input image

It is equivalent to 2D Correlation
up to a «flip» in the filter 𝒘𝒘

Giacomo Boracchi

2D Convolution
Convolution is a linear transformation. Linearity implies that

(𝐼𝐼 ⊛ 𝑤𝑤) 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 − 𝑢𝑢, 𝑐𝑐 − 𝑣𝑣)

Convolution is defined up to the “filter flip” for the Fourier Theorem to
apply. Filter flip must be considered when computing convolution in
Fourier domain and when designing filters.

However, in CNN, convolutional filters are being learned from data, thus
it is only important to use these in a consistent way.

In practice, in CNN arithmetic there is no flip!

Giacomo Boracchi

Convolution: Padding
How to define convolution output close to image boundaries?

Padding with zero is the most frequent option, as this does not change
the output size. However, no padding or symmetric padding are also
viable options

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

Original image is in
violet, grey values are

padded to zero to
enable convolution
at image boundaries

http://cs231n.stanford.edu/
http://cs231n.github.io/

Giacomo Boracchi

Convolution: Padding
How to define convolution output close to image boundaries?

Padding with zero is the most frequent option, as this does not change
the output size. However, no padding or symmetric padding are also
viable options

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

Original image is in
violet, grey values are

padded to zero to
enable convolution
at image boundaries

http://cs231n.stanford.edu/
http://cs231n.github.io/

Giacomo Boracchi

Padding Options in Convolution Animation

Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

No padding
«valid»

Rmk: Blue maps are inputs, and cyan maps the outputs.
Rmk: the filter here is 3 × 3

Half padding
«same» full padding

«full»

output

input

https://arxiv.org/abs/1603.07285

Giacomo Boracchi

Convolutional Neural Networks
CNNs

Giacomo Boracchi

The typical architecture of a CNN

24@64x64 24@16x16

Giacomo Boracchi

The typical architecture of a CNN

The input of a CNN
is an entire image

The image gets
convolved against
many filters

24@64x64 24@16x16

Giacomo Boracchi

The typical architecture of a CNN

The input of a CNN
is an entire image

When progressing along the network, the
«number of images» or the «number of
channels in the images» increases, while
the image size decreases

The image gets
convolved against
many filters

24@64x64 24@16x16

Giacomo Boracchi

The typical architecture of a CNN

The input of a CNN
is an entire image

When progressing along the network, the
«number of images» or the «number of
channels in the images» increases, while
the image size decreases

Once the image
gets to a vector,
this is fed to a
traditional
neural network

The image gets
convolved against
many filters

24@64x64 24@16x16

Giacomo Boracchi

The typical architecture of a CNN

Giacomo Boracchi

Convolutional Neural Networks (CNN)
CNN are typically made of blocks that include:

• Convolutional layers

• Nonlinearities (activation functions)

• Pooling Layers (Subsampling / maxpooling)

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45661858

Giacomo Boracchi

Convolutional Neural Networks (CNN)
• An image passing through a CNN is transformed in a sequence of

volumes.

• As the depth increases, the height and width of the volume
decreases

• Each layer takes as input
and returns a volume

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45661858

Giacomo Boracchi

Convolutional Layers

Giacomo Boracchi

Convolutional Layers
Convolutional layers "mix" all the input components

The output is a linear combination of all the values in a region of the
input, considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏1

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45659236

Filters need to have the same number of channels
as the input, to process all the values
from the input layer

𝑎𝑎𝑥𝑥

Giacomo Boracchi

Convolutional Layers
Convolutional layers "mix" all the input components

The output is a linear combination of all the values in a region of the
input, considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏1

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45659236

Filters need to have the same number of channels
as the input, to process all the values
from the input layer

𝑎𝑎𝑥𝑥

Giacomo Boracchi

Convolutional Layers
Convolutional layers "mix" all the input components

The output is a linear combination of all the values in a region of the
input, considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏1

The parameters of this layer are called filters.

The same filter is used through the
whole spatial extent of the input

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45659236

Giacomo Boracchi

Convolutional Layers
Convolutional layers "mix" all the input components

The output is a linear combination of all the values in a region of the
input, considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏1

The spatial dimension:

- spans a small neigborhood 𝑈𝑈 (local
processing, it’s a convolution)

- 𝑈𝑈 needs to be specified, it is a very important
attribute of the filter

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45659236

Giacomo Boracchi

Convolutional Layers
Convolutional layers "mix" all the input components

The output is a linear combination of all the values in a region of the
input, considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏1

The channel dimension:

- spans the entire input depth (no local
processing, like spatial dimension)

- there is no need to specify that in the
filter attributes

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45659236

Giacomo Boracchi

Convolutional Layers

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45659236

𝐼𝐼 𝑤𝑤1 𝑏𝑏1
𝑎𝑎(: , : , 1)

Giacomo Boracchi

Convolutional Layers
Different filters yield different layers in the output

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45659236

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝒙𝒙(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏1

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 2) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤2(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝒙𝒙(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏2

Different filters of the same layer have the
same spatial extent

Giacomo Boracchi

Convolutional Layers

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45659236

𝐼𝐼 𝑤𝑤1, 𝑏𝑏1

𝑎𝑎(: , : , 1)

𝑤𝑤𝑛𝑛, 𝑏𝑏𝑛𝑛

𝑎𝑎(: , : ,𝑛𝑛)

Giacomo Boracchi

Recap: Convolutional Layers
Convolutional layers "mix" all the input components

• The output is also called volume or activation maps

• Each filter yields a different slice of the output volume

• Each filter has depth equal to the
depth of the input volume

Overall number of parameters

Conv2(
ℎ𝑥𝑥

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45659236

𝑎𝑎𝑥𝑥

Giacomo Boracchi

Convolutional Layers, remarks:
Given:

conv2 = tfkl.Conv2D(

 filters = n_f,

 kernel_size = (h_x,h_y),

 activation = 'relu',

 name = 'conv2'

)

The parametres are the weights + one bias per filter

The overall number of parameters is

ℎ𝑥𝑥 ⋅ ℎ𝑦𝑦 ⋅ 𝑑𝑑 ⋅ 𝑛𝑛𝑓𝑓 + 𝑛𝑛𝑓𝑓
Where 𝑑𝑑 is the depth of the input activation

Layers with the same attribute can have different number of parameters
depending on where these are located

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45659236

Giacomo Boracchi

CNN Arithmetic

1 input map 1 filter 5x5

Giacomo Boracchi

CNN Arithmetic

1 input map 1 output map
1 filters 5x5

Giacomo Boracchi

1 input map 2 output maps

CNN Arithmetic

2 filters 5x5

Giacomo Boracchi

1 input map 2 output maps

CNN Arithmetic

2 filters 5x5

Giacomo Boracchi

3 input maps 2 output maps

CNN Arithmetic

2 filters 5x5

Giacomo Boracchi

3 input maps 2 output maps2 filters 5x5

CNN Arithmetic

Giacomo Boracchi

3 input maps 2 output maps2 filters 5x5

CNN Arithmetic

Giacomo Boracchi

3 input maps 2 output maps2 filters 5x5

CNN Arithmetic

Giacomo Boracchi

3 input maps 2 output maps2 filters 5x5

CNN Arithmetic

Quiz: how many parameters
does this layer have?

Giacomo Boracchi

3 input maps 2 output maps2 filters 5x5

CNN Arithmetic

= 150 parameters in the filters

Giacomo Boracchi

3 input maps 2 output maps2 filters 5x5

CNN Arithmetic

= 150 ... + 2 biases

Giacomo Boracchi

3 input maps 2 output maps2 filters 5x5

CNN Arithmetic

= 150 ... + 2 biases
= 152 trainable parameters (weights)

Giacomo Boracchi

To Recap…

Image credits Nicolò Ghielmetti

Giacomo Boracchi

Other Layers
Activation and Pooling

Giacomo Boracchi

Activation Layers
Introduce nonlinearities in the network, otherwise the CNN might be equivalent to
a linear classifier…

Activation functions are scalar functions, namely they operate on each single value
of the volume. Activations don’t change volume size

RELU (Rectifier Linear Units): it’s a thresholding on the feature maps, i.e., a
max 0,⋅ operator.

• By far the most popular activation function in
deep NN (since when it has been used
in AlexNet)

• Dying neuron problem: a few neurons
become insensitive to the input (vanishing
grandient problem)

𝑇𝑇 𝑥𝑥 = �𝑥𝑥, if 𝑥𝑥 ≥ 0
0, if 𝑥𝑥 < 0

𝑇𝑇(
𝑥𝑥)

𝑥𝑥0

0

1-1

1

Giacomo Boracchi

Activation Layers
Introduce nonlinearities in the network, otherwise the CNN might be
equivalent to a linear classifier…

LEAKY RELU: like the relu but include a small slope for negative values

𝑇𝑇 𝑥𝑥 = �𝑥𝑥, if 𝑥𝑥 ≥ 0
0.01 ∗ 𝑥𝑥 if 𝑥𝑥 < 0

𝑥𝑥

𝑇𝑇(
𝑥𝑥)

0

0

1-1

1

Giacomo Boracchi

ReLu
Acts separately on each layer

66

𝑎𝑎1 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑎𝑎1)

Giacomo Boracchi

ReLu
Acts separately on each layer

67

𝑎𝑎2 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑎𝑎2)

Giacomo Boracchi

Activation Layers
Introduce nonlinearities in the network, otherwise the CNN might be
equivalent to a linear classifier…

TANH (hyperbolic Tangent): has a range (-1,1), continuous and
differentiable

𝑇𝑇 𝑥𝑥 =
2

1 + 𝑒𝑒−2𝑥𝑥
 − 1

SIGMOID: has a range (0,1), continuous and differentiable

𝑆𝑆 𝑥𝑥 =
1

1 + 𝑒𝑒−2𝑥𝑥
These activation functions are mostly popular in MLP architectures

Giacomo Boracchi

𝑥𝑥

activation(𝑥𝑥)

Giacomo Boracchi

Pooling Layers
Pooling Layers reduce the spatial size of the volume.

The Pooling Layer operates independently on every depth slice
of the input and resizes it spatially, often using the MAX
operation.

In a 2x2 support it discards 75% of samples in a volume

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

http://cs231n.stanford.edu/
http://cs231n.github.io/

Giacomo Boracchi

Max-Pooling (MP)

72

Acts separately on each layer

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑎𝑎1)

MP(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑎𝑎1))

Giacomo Boracchi

Strides in Pooling Layers
Typically, the stride is assumed equal to the pooling size

• Where note specified, maxpooling has stride 2 × 2 and reduces
image size to 25%

It is also possible to use a different stride. In particular, it is possible to
adopt stride = 1, which does not reduce the spatial size, but just
perform pooling on each pixel

• this operation makes sense with nonlinear pooling (max-pooling)

Giacomo Boracchi

Dense Layers
As in feed-forward NN

Giacomo Boracchi

The Dense Layers
Here the spatial dimension is lost, the CNN
stacks hidden layers from a MLP NN.
It is called Dense as each output neuron is
connected to each input neuron

32@4x4

Giacomo Boracchi

Convolutional Neural Networks (CNN)
The typical architecture of a convolutional neural network

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to document recognition” Proceedings of the
IEEE, 1998 86(11), 2278-2324.

Assume zero
padding

Convolution:
There are 8

filters

Max-pooling
reduces
spatial

dimensions
by 2

Convolution:
There are 24

filters

24@64x64 24@16x16

Giacomo Boracchi

Convolutional Neural Networks (CNN)
The typical architecture of a convolutional neural network

The output of the fully connected (FC) layer has the same size as the
number of classes, and provides a score for the input image to belong
to each class

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to document recognition” Proceedings of the
IEEE, 1998 86(11), 2278-2324.

24@64x64 24@16x16

Giacomo Boracchi

Convolutional Neural Networks (CNN)

Convolution filters are
learned for the

classification task at hand Thresholding +
Downsampling

(ReLu + Maxpooling)

Fully Connected
Neural Network

providing as output
class probabilities

Conv Conv.Subsampling DenseSubsampling

24@64x64 24@16x16

Giacomo Boracchi

The typical architecture of a CNN

Data-Driven Feature
extraction

Feature
Classification

FEN
…

…… …

(Learned) Features or
Latent Representation

FEN: FEATURE EXTRACTION NETWORK, the convolutional block of CNN

Giacomo Boracchi

The typical architecture of a CNN

Data-Driven Feature
extraction

Feature
Classification

FEN
…

…… …

(Learned) Features or
Latent Representation

Typically, to learn meaningful representations, many layers are required
The network becomes deep

Giacomo Boracchi

CNN «in action»

Giacomo BoracchiCS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

Activations in a convolutional network

http://cs231n.stanford.edu/
http://cs231n.github.io/

Giacomo BoracchiCS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

Activations in a convolutional network

Each layer in the volume is represented as an image here
 (using the same size but different resolution for visualization sake)

http://cs231n.stanford.edu/
http://cs231n.github.io/

Giacomo BoracchiCS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

Activations in a convolutional network

http://cs231n.stanford.edu/
http://cs231n.github.io/

Giacomo BoracchiCS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

Activations in a convolutional network

http://cs231n.stanford.edu/
http://cs231n.github.io/

Giacomo Boracchi

Convolutional Neural Networks (CNN)
The typical architecture of a convolutional neural network

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45679374

Btw, this figure contains an error.
If you are CNN-Pro, you should spot it!

Giacomo Boracchi

The First CNN

Giacomo BoracchiLeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998)

Giacomo Boracchi

https://awards.acm.org/about/2018-turing

https://awards.acm.org/about/2018-turing

Giacomo Boracchi

LeNet-5 (1998)

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998)

Stack of Conv2D + RELU + AVG-POOLING A TRADITIONAL MLP

conv2d_1 average_
pooling2d_1

conv2d_2 average_
pooling2d_2

dense_1

dense_2
dense_3

Giacomo Boracchi

The First CNN
Do not use each pixel as a separate input of a large MLP, because:

• images are highly spatially correlated,

• using individual pixel of the image as separate input features would
not take advantage of these correlations.

The first convolutional layer: 6 filters 5x5

The second convolutional layer: 16 filters 5x5

Giacomo Boracchi

LeNet-5 in Keras
from keras.models import Sequential

from keras.layers import Dense, Flatten, Conv2D, AveragePooling2D

num_classes = 10;

input_shape=(32, 32, 1);

model = Sequential()

model.add(Conv2D(filters = 6, kernel_size = (5, 5), activation='tanh', input_shape=inp
ut_shape, padding = 'valid'))

model.add(AveragePooling2D(pool_size=(2, 2)))

model.add(Conv2D(filters = 16, kernel_size = (5, 5), activation='tanh',
padding = 'valid'))

model.add(AveragePooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(120, activation='relu'))

model.add(Dense(84, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

Giacomo Boracchi

model.summary()
Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 28, 28, 6) ...

average_pooling2d_1 (Average (None, 14, 14, 6) ...

conv2d_2 (Conv2D) (None, 10, 10, 16) ...

average_pooling2d_2 (Average (None, 5, 5, 16) ...

flatten_1 (Flatten) (None, 400) ...

dense_1 (Dense) (None, 120) ...

dense_2 (Dense) (None, 84) ...

dense_3 (Dense) (None, 10) ...
===
Total params: 61,706
Trainable params: 61,706
Non-trainable params: 0

Giacomo Boracchi

model.summary()
Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 28, 28, 6) ...

average_pooling2d_1 (Average (None, 14, 14, 6) ...

conv2d_2 (Conv2D) (None, 10, 10, 16) ...

average_pooling2d_2 (Average (None, 5, 5, 16) ...

flatten_1 (Flatten) (None, 400) ...

dense_1 (Dense) (None, 120) ...

dense_2 (Dense) (None, 84) ...

dense_3 (Dense) (None, 10) ...
===
Total params: 61,706
Trainable params: 61,706
Non-trainable params: 0

Giacomo Boracchi

model.summary()
Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 28, 28, 6) 156 (6 x 5 x 5 + 6)

average_pooling2d_1 (Average (None, 14, 14, 6) 0

conv2d_2 (Conv2D) (None, 10, 10, 16) 2416 (16 x 5 x 5 x 6 + 16)

average_pooling2d_2 (Average (None, 5, 5, 16) 0

flatten_1 (Flatten) (None, 400) 0

dense_1 (Dense) (None, 120) 48120

dense_2 (Dense) (None, 84) 10164

dense_3 (Dense) (None, 10) 850
===
Total params: 61,706
Trainable params: 61,706
Non-trainable params: 0

Input is a grayscale image

The input is a volume
having depth = 6

Most parameters are still
in the MLP

Giacomo Boracchi

model.summary()
Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 28, 28, 6) 156 (6 x 5 x 5 + 6)

average_pooling2d_1 (Average (None, 14, 14, 6) 0

conv2d_2 (Conv2D) (None, 10, 10, 16) 2416 (16 x 5 x 5 x 6 + 16)

average_pooling2d_2 (Average (None, 5, 5, 16) 0

flatten_1 (Flatten) (None, 400) 0

dense_1 (Dense) (None, 120) 48120

dense_2 (Dense) (None, 84) 10164

dense_3 (Dense) (None, 10) 850
===
Total params: 61,706
Trainable params: 61,706
Non-trainable params: 0

Input is a grayscale image

The input is a volume
having depth = 6

Most parameters are still
in the MLP

Here, no-padding at the first layer is necessary to reduce the size of the latent
representation… and has no loss of information since images are black there!

Giacomo Boracchi

Most of parameters are in MLP
What about a MLP taking as input the whole image?

Input 32 x 32 = 1024 pixels, fed to a 84 neurons (the last FC layers of
the network) -> 86950 parameters: 1024 * 84 + 84 + 84 * 10 + 10

Giacomo Boracchi

Most of parameters are in MLP
What about a MLP taking as input the whole image?

Input 32 x 32 = 1024 pixels, fed to a 84 neurons (the last FC layers of
the network) -> 86950 parameters

But.. If you take an RGB input: 32 x 32 x 3,

CNN: only the nr. of parameters in the filters at the first layer increases
156 + 61550 → 456 + 61550
(6 × 5 × 5) → (6 × 5 × 5 × 3)

MLP: only the first layer increases the # of parameters by a factor 3
1024 × 84 → 1024 × 84 × 3

Giacomo Boracchi

Latent representation in
CNNs

Repeat the «t-SNE experiment» on the CIFAR dataset,
using the last layer of the CNN as vectors

Giacomo Boracchi

The typical architecture of a CNN

Latent Representation:
Data-Driven Feature Vector

MLP for feature
classification

FEN
…

…… …

Convolutional Layers
Extract high-level features from pixels Classify

Giacomo Boracchi

t-SNE of the 4096 dimensional
vector right before the

classifier (CIFAR 100 images)

Giacomo Boracchi

Giacomo Boracchi

Distances in the latent
representation of a CNN are
much more meaningful than

data itself

Giacomo Boracchi

CNNs in Keras

Giacomo Boracchi

What is Keras?
An open-source library providing high-level building blocks for
developing deep-learning models in Python

Designed to enable fast experimentation with deep neural networks, it
focuses on being user-friendly, modular, and extensible

Doesn’t handle low-level operations such as tensor manipulation and
differentiation.

Relies on backends (TensorFlow, Microsoft Cognitive Toolkit, Theano, or
PlaidML)

Enables full access to the backend

Giacomo Boracchi

The software stack

Giacomo Boracchi

Why Keras?
Pros:

Higher level  fewer lines of code

Modular backend  not tied to tensorflow

Way to go if you focus on applications

Cons:

Not as flexible

Need more flexibility? Access the backend directly!

Giacomo Boracchi

We will manipulate 4D tensors
Images are represented in 4D tensors:

Tensorflow convention: (samples, height, width, channels)

Giacomo Boracchi

Building the Network

Giacomo Boracchi

Convolutional Networks in Keras
it is necessary to import some package
from keras.models import Sequential
from keras.layers import Dense, Flatten
from keras.layers import Conv2D, MaxPooling2D

and initialize an object from Sequential()
model = Sequential()

Giacomo Boracchi

A very simple CNN
Network Layers are stacked by means of the
.add() method
model.add(Conv2D(filters = 64, kernel_size=3,
activation=’relu’, input_shape=(28,28,1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(10, activation=’softmax’))

Giacomo Boracchi

Convolutional Layers
Convolutional Layer
model.add(Conv2D(filters = 64, kernel_size=3,
activation=’relu’, input_shape=(28,28,1)))
the input are meant to define:
- The number of filters,
- The spatial size of the filter (assumed
squared), while the depth depends on the network
structure
- the activation layer (always include a
nonlinearity after the convolution)
- the input size: (rows, cols, n_channels)

Giacomo Boracchi

Convolutional Layers
Convolutional Layer
model.add(Conv2D(filters = 64, kernel_size=3,
activation=’relu’, input_shape=(28,28,1)))
This layer creates a convolution kernel that
is convolved with the layer input to produce a
tensor of outputs.
When using this layer as the first layer in a
model, provide the keyword argument input_shape
(tuple of integers, does not include the batch
axis), e.g. input_shape=(128, 128, 3) for
128x128 RGB pictures in
data_format="channels_last".

Giacomo Boracchi

Conv2D help
Arguments

filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution).

kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution
window. Can be a single integer to specify the same value for all spatial dimensions.

strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and
width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value
!= 1 is incompatible with specifying any dilation_rate value != 1.

padding: one of "valid" or "same" (case-insensitive). Note that "same" is slightly inconsistent across backends
with strides != 1, as described here

data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the
inputs. "channels_last" corresponds to inputs with shape (batch, height, width,
channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults
to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then
it will be "channels_last".

Giacomo Boracchi

Conv2D help
Arguments

dilation_rate: an integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution.
Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying
any dilation_rate value != 1 is incompatible with specifying any stride value != 1.

activation: Activation function to use (see activations). If you don't specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

use_bias: Boolean, whether the layer uses a bias vector.

kernel_initializer: Initializer for the kernel weights matrix (see initializers).

bias_initializer: Initializer for the bias vector (see initializers).

kernel_regularizer: Regularizer function applied to the kernel weights matrix (see regularizer).

bias_regularizer: Regularizer function applied to the bias vector (see regularizer).

activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see regularizer).

kernel_constraint: Constraint function applied to the kernel matrix (see constraints).

bias_constraint: Constraint function applied to the bias vector (see constraints).

Giacomo Boracchi

MaxPooling Layers
Maxpooling layer
model.add(MaxPooling2D(pool_size=(2, 2)))
the only parameter here is the (spatial) size
to be reduced by the maximum operator

Giacomo Boracchi

MaxPooling2D help
Arguments:

pool_size: integer or tuple of 2 integers, factors by which to downscale (vertical, horizontal). (2, 2)
will halve the input in both spatial dimension. If only one integer is specified, the same window
length will be used for both dimensions.

strides: Integer, tuple of 2 integers, or None. Strides values. If None, it will default to pool_size.

padding: One of "valid" or "same" (case-insensitive).

data_format: A string, one of channels_last (default) or channels_first. The ordering of the
dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width,
channels) while channels_first corresponds to inputs with shape (batch, channels, height, width). It
defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If
you never set it, then it will be "channels_last".

Giacomo Boracchi

MaxPooling2D help
Input shape:

If data_format='channels_last': 4D tensor with shape: (batch_size,
rows, cols, channels)

If data_format='channels_first': 4D tensor with shape: (batch_size,
channels, rows, cols)

Output shape:

If data_format='channels_last': 4D tensor with shape: (batch_size,
pooled_rows, pooled_cols, channels)

If data_format='channels_first': 4D tensor with shape: (batch_size,
channels, pooled_rows, pooled_cols)

Giacomo Boracchi

Fully Connected Layers
at the end the activation maps are “flattened” i.e.
they move from an image to a vector (just unrolling)

model.add(Flatten())

Dense is a Fully Connected layer in a traditional
Neural Network.

model.add(Dense(units=10, activation=’softmax’))

Implements:

output = activation(dot(input, kernel) + bias)

• activation is the element-wise activation function
passed as the activation argument,

• kernel is a weights matrix created by the layer,

• bias is a bias vector created by the layer

“Units” defines the number of neurons

Giacomo Boracchi

Visualizing the model
a nice output describing the model
architecture
model.summary()

Giacomo Boracchi

Layer (type) Output Shape Param #

===

conv2d_7 (Conv2D) (None, 26, 26, 64) 640

flatten_3 (Flatten) (None, 43264) 0

dense_4 (Dense) (None, 10) 432650

===

Total params: 433,290

Trainable params: 433,290

Non-trainable params: 0

Giacomo Boracchi

Training the Model

Giacomo Boracchi

Compiling the model
Then we need to compile the model using the compile method and
specifying:

• optimizer which controls the learning rate. Adam is generally a
good option as it adjusts the learning rate throughout training.

• loss function the most common choice for classification is
‘categorical_crossentropy’ for our loss function. The lower the better.

• Metric to assess model performance, ‘accuracy’ is more
interpretable

model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])

Giacomo Boracchi

Training the model using
The fit() method of the model is used to train the model.

Specify at least the following inputs:

• training data (input images),

• target data (corresponding labels in categorical format),

• validation data (a pair of data, labels to be used only for computing
validation performance)

• number of epochs (number of times the whole dataset is scanned
during training)

model.fit(X_train, y_train,
validation_data=(X_test, y_test), epochs=3)

Giacomo Boracchi

Training output
Epoch 22/100

18000/18000 [==============================] - 136s 8ms/step - loss: 0.7567
- acc: 0.6966 - val_loss: 1.9446 - val_acc: 0.4325

Epoch 23/100

18000/18000 [==============================] - 137s 8ms/step - loss: 0.7520
- acc: 0.6959 - val_loss: 1.9646 - val_acc: 0.4275

Epoch 24/100

18000/18000 [==============================] - 137s 8ms/step - loss: 0.7442
- acc: 0.7024 - val_loss: 1.9067 - val_acc: 0.4129

Giacomo Boracchi

Advanced Training Options

Giacomo Boracchi

Callbacks in Keras
A callback is a set of functions to be applied at given stages of the
training procedure.

Callbacks give a view on internal states and statistics of the model
during training.

You can pass a list of callbacks (as the keyword argument callbacks) to
the .fit() method of the Sequential or Model classes.

The relevant methods of the callbacks will then be called at each stage
of the training.

callback_list = [cb1,…,cbN]
model.fit(X_train, y_train,
validation_data=(X_test, y_test), epochs=3,
callbacks = callback_list)

Giacomo Boracchi

Model Checkpoint
Training a network might take up to several hours

Checkpoints are snapshots of the state of the system to be saved in
case of system failure.

When training a deep learning model, the checkpoint is the weights of
the model. These weights can be used to make predictions as is, or
used as the basis for ongoing training.

from keras.callbacks import ModelCheckpoint

[…]

cp = ModelCheckpoint(filepath,
monitor='val_loss', verbose=0,
save_best_only=False, save_weights_only=False,
mode='auto', period=1)

Giacomo Boracchi

Early Stopping
The only stopping criteria when training a Deep Learning model is
“reaching the required number of epochs.”

However, it might be enough to train a model further, as sometimes the
training error decreases but the validation error does not (overfitting)

Checkpoints are used to stop training when a monitored quantity has
stopped improving.

from keras.callbacks import EarlyStopping

[…]

es = EarlyStopping(monitor='val_loss',
min_delta=0, patience=0, verbose=0, mode='auto',
baseline=None, restore_best_weights=False)

Giacomo Boracchi

Testing the model

Giacomo Boracchi

Predict() method
#returns the class probabilities for the input
image X_test
score = model.predict(X_test)
select the class with the largest score
prediction_test = np.argmax(score, axis=1)

Giacomo Boracchi

Tensorboard
When training a model it is important to monitor its progresses

Google has developed tensorboard a very useful tool for visualizing
reports.

from keras.callbacks import TensorBoard

[…]

 tb = TensorBoard(log_dir="dirname")

… and add tb to the checkpoint list as well

	Convolutional Neural Networks
	Errata Corrige on Logistics
	Errata Corrige on Logistics
	The Feature Extraction Perspective
	The Feature Extraction Perspective
	The Feature Extraction Perspective
	The Feature Extraction Perspective
	Hand-Crafted Features
	Example of Hand-Crafted Features
	Neural Networks
	Neural Networks
	Neural Networks
	Neural Networks
	Image Classification by Hand Crafted Features
	Hand Crafted Featues, pros:
	Hand Crafted Featues, cons:
	Data-Driven Features
	Data-Driven Features
	Convolutional Neural Networks
	Local Linear Filters
	Local Linear Filters
	2D Correlation
	2D Convolution
	2D Convolution
	2D Convolution
	Convolution: Padding
	Convolution: Padding
	Padding Options in Convolution Animation
	Convolutional Neural Networks
	The typical architecture of a CNN
	The typical architecture of a CNN
	The typical architecture of a CNN
	The typical architecture of a CNN
	The typical architecture of a CNN
	Convolutional Neural Networks (CNN)
	Convolutional Neural Networks (CNN)
	Convolutional Layers
	Convolutional Layers
	Convolutional Layers
	Convolutional Layers
	Convolutional Layers
	Convolutional Layers
	Convolutional Layers
	Convolutional Layers
	Convolutional Layers
	Recap: Convolutional Layers
	Convolutional Layers, remarks:
	CNN Arithmetic
	CNN Arithmetic
	CNN Arithmetic
	CNN Arithmetic
	CNN Arithmetic
	CNN Arithmetic
	CNN Arithmetic
	CNN Arithmetic
	CNN Arithmetic
	CNN Arithmetic
	CNN Arithmetic
	CNN Arithmetic
	To Recap…
	Other Layers
	Activation Layers
	Activation Layers
	ReLu
	ReLu
	Activation Layers
	Diapositiva numero 69
	Pooling Layers
	Max-Pooling (MP)
	Strides in Pooling Layers
	Dense Layers
	The Dense Layers
	Convolutional Neural Networks (CNN)
	Convolutional Neural Networks (CNN)
	Convolutional Neural Networks (CNN)
	The typical architecture of a CNN
	The typical architecture of a CNN
	CNN «in action»
	Activations in a convolutional network
	Activations in a convolutional network
	Activations in a convolutional network
	Activations in a convolutional network
	Convolutional Neural Networks (CNN)
	The First CNN
	Diapositiva numero 88
	Diapositiva numero 89
	LeNet-5 (1998)
	The First CNN
	LeNet-5 in Keras
	model.summary()
	model.summary()
	model.summary()
	model.summary()
	Most of parameters are in MLP
	Most of parameters are in MLP
	Latent representation in CNNs
	The typical architecture of a CNN
	Diapositiva numero 103
	Diapositiva numero 104
	Diapositiva numero 105
	CNNs in Keras
	What is Keras?
	The software stack
	Why Keras?
	We will manipulate 4D tensors
	Building the Network
	Convolutional Networks in Keras
	A very simple CNN
	Convolutional Layers
	Convolutional Layers
	Conv2D help
	Conv2D help
	MaxPooling Layers
	MaxPooling2D help
	MaxPooling2D help
	Fully Connected Layers
	Visualizing the model
	Diapositiva numero 123
	Training the Model
	Compiling the model
	Training the model using
	Training output
	Advanced Training Options
	Callbacks in Keras
	Model Checkpoint
	Early Stopping
	Testing the model
	Predict() method
	Tensorboard

