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Errata Corrige on Logistics
Task 1 (deadline Friday 27 October 23:59). Create the teams and fill in the 
form: 
https://docs.google.com/forms/d/e/1FAIpQLScpcA5A5kfayZSbUZ3wqIw1lWS2nV
ReOTs_xu5HNcXO3VlKHA/viewform?usp=sf_link

Task 2 Everyone start navigating the CodaLab platform to become familiar 
with it. Please have a look at the CodaLab documentation 
https://github.com/codalab/codalab-competitions/wiki#1-participants.

Students with already complete teams: follow the Profile teams instructions 
(https://github.com/codalab/codalab-competitions/wiki/User_Teams#profile-
teams) and register your team name on your CodaLab settings.

Students without a team and students with incomplete teams: wait for our 
communication for team assignments. Then register the team.

All the teams made by students without a team and students with 
incomplete teams will be finalized and communicated before.

https://docs.google.com/forms/d/e/1FAIpQLScpcA5A5kfayZSbUZ3wqIw1lWS2nVReOTs_xu5HNcXO3VlKHA/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScpcA5A5kfayZSbUZ3wqIw1lWS2nVReOTs_xu5HNcXO3VlKHA/viewform?usp=sf_link
https://github.com/codalab/codalab-competitions/wiki#1-participants
https://github.com/codalab/codalab-competitions/wiki/User_Teams#profile-teams
https://github.com/codalab/codalab-competitions/wiki/User_Teams#profile-teams
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Errata Corrige on Logistics
Deadlines:

Friday 27 October NO ANSWERS TO THE FORM WILL BE ACCEPTED AFTER 
THE DEADLINE

Wednesday 1 November. All the teams made by students without a 
team and students with incomplete teams will be finalized and 
communicated before Wednesday 1 November.

The challenge will start around 2 November
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Perspective
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The Feature Extraction Perspective
Images can not be directly fed to a classifier

We need some intermediate step to:

• Extract meaningful information (to our understanding)

• Reduce data-dimension

We need to extract features:

• The better our features, the better the classifier
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The Feature Extraction Perspective
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The Feature Extraction Perspective
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Hand-Crafted Features
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Example of Hand-Crafted Features
Example of features:

• Average height

• Area (coverage with nonzero measurements)

• Distribution of heights

• Perimeter

• Diagonals
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Neural Networks
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Neural Networks
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Neural Networks
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Neural Networks
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Image Classification by Hand Crafted Features
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Hand Crafted Featues, pros:
• Exploit a priori / expert information

• Features are interpretable (you might understand why they are not 
working)

• You can adjust features to improve your performance

• Limited amount of training data needed

• You can give more relevance to some features
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Hand Crafted Featues, cons: 
• Requires a lot of design/programming efforts

• Not viable in many visual recognition tasks (e.g. on natural images) 
which are easily performed by humans

• Risk of overfitting the training set used in the design

• Not very general and "portable"
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Data-Driven Features
… the advent of deep learning
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Data-Driven Features
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Convolutional Neural 
Networks

Setting up the stage
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Local Linear Filters
Linear Transformation: Linearity implies that the output 𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐  is a 
linear combination of the pixels in 𝑈𝑈:

𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 =  �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤𝑖𝑖(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

Considering some weights {𝑤𝑤𝑖𝑖}

𝑟𝑟

𝑐𝑐

We can consider weights as an 
image, or a filter ℎ

The filter ℎ entirely defines this 
operation ℎ
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Local Linear Filters
Linear Transformation: the filter weights can be assoicated to a matrix 𝒘𝒘

𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 =  �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤𝑖𝑖(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

𝑤𝑤(−1,−1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,1)

𝑤𝑤(0,−1) 𝑤𝑤(0,0) 𝑤𝑤(0,1)

𝑤𝑤(1,−11) 𝑤𝑤(1,0) 𝑤𝑤(1,1)

This operation is 
repeated for each 
pixel in the input 

image

𝒘𝒘

𝑇𝑇 𝐼𝐼

𝐼𝐼 𝐼𝐼

𝐼𝐼

𝐼𝐼𝐼𝐼

𝐼𝐼
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2D Correlation
Convolution is a linear transformation. Linearity implies that  

(𝐼𝐼 ⊗ 𝑤𝑤) 𝑟𝑟, 𝑐𝑐 =  �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤 𝑢𝑢, 𝑣𝑣  𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

𝑐𝑐

𝑟𝑟

𝑤𝑤(−1,−1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,1)

𝑤𝑤(0,−1) 𝑤𝑤(0,0) 𝑤𝑤(0,1)

𝑤𝑤(1,−1) 𝑤𝑤(1,0) 𝑤𝑤(1,1)

𝑤𝑤
𝐼𝐼

We can consider weights as a filter ℎ
The filter ℎ entirely defines convolution

Convolution operates the same in each pixel
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2D Convolution
Convolution is a linear transformation. Linearity implies that  

(𝐼𝐼 ⊛ 𝑤𝑤) 𝑟𝑟, 𝑐𝑐 =  �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤 𝑢𝑢, 𝑣𝑣  𝐼𝐼(𝑟𝑟 − 𝑢𝑢, 𝑐𝑐 − 𝑣𝑣)

𝑐𝑐

𝑟𝑟

𝑤𝑤(1,1) 𝑤𝑤(1,0) 𝑤𝑤(1,−1)

𝑤𝑤(0,1) 𝑤𝑤(0,0) 𝑤𝑤(0,−1)

𝑤𝑤(−1,1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,−1)

𝐼𝐼

We can consider weights as a filter ℎ
The filter ℎ entirely defines convolution

Convolution operates the same in each pixel

𝑤𝑤 Rmk: indexes 
have been shifted 
in the filter 𝑤𝑤
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2D Convolution
Convolution is a linear transformation. Linearity implies that  

(𝐼𝐼 ⊛ 𝑤𝑤) 𝑟𝑟, 𝑐𝑐 =  �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤 𝑢𝑢, 𝑣𝑣  𝐼𝐼(𝑟𝑟 − 𝑢𝑢, 𝑐𝑐 − 𝑣𝑣)

𝑐𝑐

𝑟𝑟

𝐼𝐼

We can consider weights as a filter ℎ
The filter ℎ entirely defines convolution

Convolution operates the same in each pixel

𝑤𝑤(1,1) 𝑤𝑤(1,0) 𝑤𝑤(1,−1)

𝑤𝑤(0,1) 𝑤𝑤(0,0) 𝑤𝑤(0,−1)

𝑤𝑤(−1,1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,−1)

𝑤𝑤 Rmk: indexes 
have been shifted 
in the filter 𝑤𝑤

The same operation is being performed in
 each pixel of the input image

It is equivalent to 2D Correlation 
up to a «flip» in the filter 𝒘𝒘
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2D Convolution
Convolution is a linear transformation. Linearity implies that  

(𝐼𝐼 ⊛ 𝑤𝑤) 𝑟𝑟, 𝑐𝑐 =  �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 − 𝑢𝑢, 𝑐𝑐 − 𝑣𝑣)

Convolution is defined up to the “filter flip” for the Fourier Theorem to 
apply. Filter flip must be considered when computing convolution in 
Fourier domain and when designing filters.

However, in CNN, convolutional filters are being learned from data, thus 
it is only important to use these in a consistent way.

In practice, in CNN arithmetic there is no flip!
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Convolution: Padding
How to define convolution output close to image boundaries?

Padding with zero is the most frequent option, as this does not change 
the output size. However, no padding or symmetric padding are also 
viable options

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

Original image is in 
violet, grey values are 

padded to zero to 
enable  convolution 
at image boundaries

http://cs231n.stanford.edu/
http://cs231n.github.io/
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Convolution: Padding
How to define convolution output close to image boundaries?

Padding with zero is the most frequent option, as this does not change 
the output size. However, no padding or symmetric padding are also 
viable options

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

Original image is in 
violet, grey values are 

padded to zero to 
enable  convolution 
at image boundaries

http://cs231n.stanford.edu/
http://cs231n.github.io/
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Padding Options in Convolution Animation

Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

No padding
«valid»

Rmk: Blue maps are inputs, and cyan maps the outputs.
Rmk: the filter here is 3 × 3

Half padding
«same» full padding

«full»

output

input

https://arxiv.org/abs/1603.07285
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Convolutional Neural Networks
CNNs
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The typical architecture of a CNN

24@64x64 24@16x16
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The typical architecture of a CNN

The input of a CNN 
is an entire image

The image gets 
convolved against 
many filters

24@64x64 24@16x16
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The typical architecture of a CNN

The input of a CNN 
is an entire image

When progressing along the network, the 
«number of images» or the «number of 
channels in the images» increases, while 
the image size decreases

The image gets 
convolved against 
many filters

24@64x64 24@16x16
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The typical architecture of a CNN

The input of a CNN 
is an entire image

When progressing along the network, the 
«number of images» or the «number of 
channels in the images» increases, while 
the image size decreases

Once the image 
gets to a vector, 
this is fed to a 
traditional 
neural network

The image gets 
convolved against 
many filters

24@64x64 24@16x16
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The typical architecture of a CNN
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Convolutional Neural Networks (CNN)
CNN are typically made of blocks that include:

• Convolutional layers

• Nonlinearities (activation functions)

• Pooling Layers (Subsampling / maxpooling)

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45661858
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Convolutional Neural Networks (CNN)
• An image passing through a CNN is transformed in a sequence of 

volumes.

• As the depth increases, the height and width of the volume 
decreases 

• Each layer takes as input 
and returns a volume

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45661858
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Convolutional Layers
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Convolutional Layers
Convolutional layers "mix" all the input components 

The output is a linear combination of all the values in a region of the 
input, considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏1

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236

Filters need to have the same number of channels 
as the input, to process all the values 
from the input layer

𝑎𝑎𝑥𝑥
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Convolutional Layers
Convolutional layers "mix" all the input components 

The output is a linear combination of all the values in a region of the 
input, considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏1

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236

Filters need to have the same number of channels 
as the input, to process all the values 
from the input layer

𝑎𝑎𝑥𝑥
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Convolutional Layers
Convolutional layers "mix" all the input components 

The output is a linear combination of all the values in a region of the 
input, considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏1

The parameters of this layer are called filters.

The same filter is used through the
whole spatial extent of the input

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236
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Convolutional Layers
Convolutional layers "mix" all the input components 

The output is a linear combination of all the values in a region of the 
input, considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏1

The spatial dimension:

- spans a small neigborhood 𝑈𝑈 (local 
processing, it’s a convolution)

- 𝑈𝑈 needs to be specified, it is a very important
attribute of the filter

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236
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Convolutional Layers
Convolutional layers "mix" all the input components 

The output is a linear combination of all the values in a region of the 
input, considering all the channels

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝑥𝑥(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏1

The channel dimension:

- spans the entire input depth (no local 
processing, like spatial dimension)

- there is no need to specify that in the
filter attributes 

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236
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Convolutional Layers

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236

𝐼𝐼 𝑤𝑤1 𝑏𝑏1
𝑎𝑎(: , : , 1)
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Convolutional Layers
Different filters yield different layers in the output

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 1) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤1(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝒙𝒙(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏1

𝑎𝑎(𝑟𝑟, 𝑐𝑐, 2) = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈,𝑘𝑘

𝑤𝑤2(𝑢𝑢, 𝑣𝑣, 𝑘𝑘) 𝒙𝒙(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣, 𝑘𝑘) + 𝑏𝑏2

Different filters of the same layer have the 
same spatial extent
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Convolutional Layers

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236

𝐼𝐼 𝑤𝑤1, 𝑏𝑏1

𝑎𝑎(: , : , 1)

𝑤𝑤𝑛𝑛, 𝑏𝑏𝑛𝑛

𝑎𝑎(: , : ,𝑛𝑛)
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Recap: Convolutional Layers
Convolutional layers "mix" all the input components 

• The output is also called volume or activation maps

• Each filter yields a different slice of the output volume

• Each filter has depth equal to the
depth of the input volume

Overall number of parameters

Conv2(
ℎ𝑥𝑥

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236

𝑎𝑎𝑥𝑥
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Convolutional Layers, remarks: 
Given:

conv2 = tfkl.Conv2D(

    filters = n_f,

    kernel_size = (h_x,h_y),

    activation = 'relu',

    name = 'conv2'

  )

The parametres are the weights + one bias per filter

The overall number of parameters is

ℎ𝑥𝑥 ⋅ ℎ𝑦𝑦 ⋅ 𝑑𝑑 ⋅ 𝑛𝑛𝑓𝑓 + 𝑛𝑛𝑓𝑓
Where 𝑑𝑑 is the depth of the input activation

Layers with the same attribute can have different number of parameters
depending on where these are located

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45659236
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CNN Arithmetic 

1 input map 1 filter 5x5
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CNN Arithmetic 

1 input map 1 output map
1 filters 5x5
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1 input map 2 output maps

CNN Arithmetic 

2 filters 5x5
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1 input map 2 output maps

CNN Arithmetic 

2 filters 5x5
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3 input maps 2 output maps

CNN Arithmetic 

2 filters 5x5
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3 input maps 2 output maps2 filters 5x5

CNN Arithmetic 
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3 input maps 2 output maps2 filters 5x5

CNN Arithmetic 
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3 input maps 2 output maps2 filters 5x5

CNN Arithmetic 
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3 input maps 2 output maps2 filters 5x5

CNN Arithmetic 

Quiz: how many parameters 
does this layer have?



Giacomo Boracchi

3 input maps 2 output maps2 filters 5x5

CNN Arithmetic 

= 150 parameters in the filters
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3 input maps 2 output maps2 filters 5x5

CNN Arithmetic 

= 150 ...                 + 2 biases
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3 input maps 2 output maps2 filters 5x5

CNN Arithmetic 

= 150 ...                 + 2 biases
= 152 trainable parameters (weights)
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To Recap…

Image credits Nicolò Ghielmetti
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Other Layers
Activation and Pooling
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Activation Layers
Introduce nonlinearities in the network, otherwise the CNN might be equivalent to 
a linear classifier…

Activation functions are scalar functions, namely they operate on each single value 
of the volume. Activations don’t change volume size

RELU (Rectifier Linear Units): it’s a thresholding on the feature maps, i.e., a 
max 0,⋅  operator.

• By far the most popular activation function in 
deep NN (since when it has been used 
in AlexNet)

• Dying neuron problem: a few neurons
become insensitive to the input (vanishing
grandient problem)

𝑇𝑇 𝑥𝑥 =  �𝑥𝑥,  if 𝑥𝑥 ≥ 0
0,  if 𝑥𝑥 < 0

𝑇𝑇(
𝑥𝑥)

𝑥𝑥0

0

1-1

1
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Activation Layers
Introduce nonlinearities in the network, otherwise the CNN might be 
equivalent to a linear classifier…

LEAKY RELU: like the relu but include a small slope for negative values

𝑇𝑇 𝑥𝑥 =  �𝑥𝑥,  if 𝑥𝑥 ≥ 0
0.01 ∗ 𝑥𝑥 if 𝑥𝑥 < 0

𝑥𝑥

𝑇𝑇(
𝑥𝑥)

0

0

1-1

1
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ReLu
Acts separately on each layer

66

𝑎𝑎1 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑎𝑎1)
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ReLu
Acts separately on each layer

67

𝑎𝑎2 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑎𝑎2)



Giacomo Boracchi

Activation Layers
Introduce nonlinearities in the network, otherwise the CNN might be 
equivalent to a linear classifier…

TANH (hyperbolic Tangent): has a range (-1,1), continuous and 
differentiable

𝑇𝑇 𝑥𝑥 =
2

1 + 𝑒𝑒−2𝑥𝑥
 − 1

SIGMOID: has a range (0,1), continuous and differentiable

𝑆𝑆 𝑥𝑥 =
1

1 + 𝑒𝑒−2𝑥𝑥
These activation functions are mostly popular in MLP architectures
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𝑥𝑥

activation(𝑥𝑥)
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Pooling Layers
Pooling Layers reduce the spatial size of the volume.

The Pooling Layer operates independently on every depth slice 
of the input and resizes it spatially, often using the MAX 
operation.

In a 2x2 support it discards 75% of samples in a volume

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

http://cs231n.stanford.edu/
http://cs231n.github.io/
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Max-Pooling (MP)

72

Acts separately on each layer

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑎𝑎1)

MP(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑎𝑎1))
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Strides in Pooling Layers
Typically, the stride is assumed equal to the pooling size

• Where note specified, maxpooling has stride 2 × 2 and reduces 
image size to 25%

It is also possible to use a different stride. In particular, it is possible to 
adopt stride = 1, which does not reduce the spatial size, but just 
perform pooling on each pixel

• this operation makes sense with nonlinear pooling (max-pooling)
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Dense Layers
As in feed-forward NN
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The Dense Layers
Here the spatial dimension is lost, the CNN 
stacks hidden layers from a MLP NN.
It is called Dense as each output neuron is 
connected to each input neuron

32@4x4
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Convolutional Neural Networks (CNN)
The typical architecture of a convolutional neural network

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to document recognition” Proceedings of the 
IEEE, 1998 86(11), 2278-2324.

Assume zero 
padding

Convolution: 
There are 8 

filters

Max-pooling 
reduces 
spatial 

dimensions 
by 2

Convolution: 
There are 24 

filters

24@64x64 24@16x16



Giacomo Boracchi

Convolutional Neural Networks (CNN)
The typical architecture of a convolutional neural network

The output of the fully connected (FC) layer has the same size as the 
number of classes, and provides a score for the input image to belong 
to each class

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to document recognition” Proceedings of the 
IEEE, 1998 86(11), 2278-2324.

24@64x64 24@16x16
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Convolutional Neural Networks (CNN)

Convolution filters are 
learned for the 

classification task at hand Thresholding + 
Downsampling 

(ReLu + Maxpooling)

Fully Connected 
Neural Network 

providing as output 
class probabilities

Conv Conv.Subsampling DenseSubsampling

24@64x64 24@16x16
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The typical architecture of a CNN

Data-Driven Feature 
extraction

Feature 
Classification

FEN
…

…… …

(Learned) Features or
Latent Representation

FEN: FEATURE EXTRACTION NETWORK, the convolutional block of CNN
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The typical architecture of a CNN

Data-Driven Feature 
extraction

Feature 
Classification

FEN
…

…… …

(Learned) Features or
Latent Representation

Typically, to learn meaningful representations, many layers are required
The network becomes deep 
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CNN «in action»



Giacomo BoracchiCS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

Activations in a convolutional network

http://cs231n.stanford.edu/
http://cs231n.github.io/
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Activations in a convolutional network

Each layer in the volume is represented as an image here
 (using the same size but different resolution for visualization sake)

http://cs231n.stanford.edu/
http://cs231n.github.io/
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Activations in a convolutional network

http://cs231n.stanford.edu/
http://cs231n.github.io/
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Activations in a convolutional network

http://cs231n.stanford.edu/
http://cs231n.github.io/
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Convolutional Neural Networks (CNN)
The typical architecture of a convolutional neural network

By Aphex34 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45679374

Btw, this figure contains an error. 
If you are CNN-Pro, you should spot it!
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The First CNN



Giacomo BoracchiLeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998)
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https://awards.acm.org/about/2018-turing 

https://awards.acm.org/about/2018-turing
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LeNet-5 (1998)

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998)

Stack of Conv2D + RELU + AVG-POOLING A TRADITIONAL MLP

conv2d_1 average_
pooling2d_1

conv2d_2 average_
pooling2d_2

dense_1

dense_2
dense_3



Giacomo Boracchi

The First CNN
Do not use each pixel as a separate input of a large MLP, because: 

• images are highly spatially correlated, 

• using individual pixel of the image as separate input features would 
not take advantage of these correlations.

The first convolutional layer: 6 filters 5x5

The second convolutional layer: 16 filters 5x5
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LeNet-5 in Keras
from keras.models import Sequential

from keras.layers import Dense, Flatten, Conv2D, AveragePooling2D

num_classes = 10;

input_shape=(32, 32, 1);

model = Sequential()

model.add(Conv2D(filters = 6, kernel_size = (5, 5), activation='tanh', input_shape=inp
ut_shape, padding = 'valid'))

model.add(AveragePooling2D(pool_size=(2, 2)))

model.add(Conv2D(filters = 16, kernel_size = (5, 5), activation='tanh', 
padding = 'valid'))

model.add(AveragePooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(120, activation='relu'))

model.add(Dense(84, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))
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model.summary()
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 28, 28, 6)          ...      
_________________________________________________________________
average_pooling2d_1 (Average (None, 14, 14, 6)          ...       
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 10, 10, 16)         ...     
_________________________________________________________________
average_pooling2d_2 (Average (None, 5, 5, 16)           ...
_________________________________________________________________
flatten_1 (Flatten)          (None, 400)                ...        
_________________________________________________________________
dense_1 (Dense)              (None, 120)                ...    
_________________________________________________________________
dense_2 (Dense)              (None, 84)                 ...    
_________________________________________________________________
dense_3 (Dense)              (None, 10)                 ...      
=================================================================
Total params: 61,706
Trainable params: 61,706
Non-trainable params: 0
_________________________________________________________________
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model.summary()
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 28, 28, 6)          ...      
_________________________________________________________________
average_pooling2d_1 (Average (None, 14, 14, 6)          ...       
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 10, 10, 16)         ...     
_________________________________________________________________
average_pooling2d_2 (Average (None, 5, 5, 16)           ...
_________________________________________________________________
flatten_1 (Flatten)          (None, 400)                ...        
_________________________________________________________________
dense_1 (Dense)              (None, 120)                ...    
_________________________________________________________________
dense_2 (Dense)              (None, 84)                 ...    
_________________________________________________________________
dense_3 (Dense)              (None, 10)                 ...      
=================================================================
Total params: 61,706
Trainable params: 61,706
Non-trainable params: 0
_________________________________________________________________
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model.summary()
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 28, 28, 6)         156 (6 x 5 x 5 + 6)
_________________________________________________________________
average_pooling2d_1 (Average (None, 14, 14, 6)         0
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 10, 10, 16)        2416 (16 x 5 x 5 x 6 + 16)
_________________________________________________________________
average_pooling2d_2 (Average (None, 5, 5, 16)          0 
_________________________________________________________________
flatten_1 (Flatten)          (None, 400)               0         
_________________________________________________________________
dense_1 (Dense)              (None, 120)               48120
_________________________________________________________________
dense_2 (Dense)              (None, 84)                10164
_________________________________________________________________
dense_3 (Dense)              (None, 10)                850
=================================================================
Total params: 61,706
Trainable params: 61,706
Non-trainable params: 0
_________________________________________________________________

Input is a grayscale image

The input is a volume 
having depth = 6

Most parameters are still 
in the MLP



Giacomo Boracchi

model.summary()
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 28, 28, 6)         156 (6 x 5 x 5 + 6)
_________________________________________________________________
average_pooling2d_1 (Average (None, 14, 14, 6)         0
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 10, 10, 16)        2416 (16 x 5 x 5 x 6 + 16)
_________________________________________________________________
average_pooling2d_2 (Average (None, 5, 5, 16)          0 
_________________________________________________________________
flatten_1 (Flatten)          (None, 400)               0         
_________________________________________________________________
dense_1 (Dense)              (None, 120)               48120
_________________________________________________________________
dense_2 (Dense)              (None, 84)                10164
_________________________________________________________________
dense_3 (Dense)              (None, 10)                850
=================================================================
Total params: 61,706
Trainable params: 61,706
Non-trainable params: 0
_________________________________________________________________

Input is a grayscale image

The input is a volume 
having depth = 6

Most parameters are still 
in the MLP

Here, no-padding at the first layer is necessary to reduce the size of the latent 
representation… and has no loss of information since images are black there! 
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Most of parameters are in MLP 
What about a MLP taking as input the whole image?

Input 32 x 32 = 1024 pixels, fed to a 84 neurons (the last FC layers of 
the network) -> 86950 parameters: 1024 * 84 + 84 + 84 * 10 + 10
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Most of parameters are in MLP 
What about a MLP taking as input the whole image?

Input 32 x 32 = 1024 pixels, fed to a 84 neurons (the last FC layers of 
the network) -> 86950 parameters

But.. If you take an RGB input: 32 x 32 x 3, 

CNN: only the nr. of parameters in the filters at the first layer increases 
156 + 61550 →  456 + 61550
(6 × 5 × 5) → (6 × 5 × 5 × 3)

MLP: only the first layer increases the # of parameters by a factor 3
1024 × 84 → 1024 × 84 × 3
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Latent representation in 
CNNs

Repeat the «t-SNE experiment» on the CIFAR dataset, 
using the last layer of the CNN as vectors
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The typical architecture of a CNN

Latent Representation: 
Data-Driven Feature Vector

MLP for feature 
classification

FEN
…

…… …

Convolutional Layers 
Extract high-level features from pixels Classify
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t-SNE of the 4096 dimensional 
vector right before the 

classifier (CIFAR 100 images)
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Distances in the latent 
representation of a CNN are 
much more meaningful than 

data itself
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CNNs in Keras
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What is Keras?
An open-source library providing high-level building blocks for 
developing deep-learning models in Python

Designed to enable fast experimentation with deep neural networks, it 
focuses on being user-friendly, modular, and extensible

Doesn’t handle low-level operations such as tensor manipulation and 
differentiation.

Relies on backends (TensorFlow, Microsoft Cognitive Toolkit, Theano, or 
PlaidML)

Enables full access to the backend
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The software stack
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Why Keras?
Pros:

Higher level  fewer lines of code

Modular backend  not tied to tensorflow

Way to go if you focus on applications

Cons:

Not as flexible

Need more flexibility? Access the backend directly!
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We will manipulate 4D tensors
Images are represented in 4D tensors:

Tensorflow convention: (samples, height, width, channels) 
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Building the Network
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Convolutional Networks in Keras
# it is necessary to import some package
from keras.models import Sequential
from keras.layers import Dense, Flatten
from keras.layers import Conv2D, MaxPooling2D

# and initialize an object from Sequential()
model = Sequential()
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A very simple CNN
# Network Layers are stacked by means of the 
.add() method
model.add(Conv2D(filters = 64, kernel_size=3, 
activation=’relu’, input_shape=(28,28,1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(10, activation=’softmax’))
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Convolutional Layers
# Convolutional Layer 
model.add(Conv2D(filters = 64, kernel_size=3, 
activation=’relu’, input_shape=(28,28,1)))
# the input are meant to define:
# - The number of filters,
# - The spatial size of the filter (assumed 
squared), while the depth depends on the network 
structure
# - the activation layer (always include a 
nonlinearity after the convolution)
# - the input size: (rows, cols, n_channels)
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Convolutional Layers
# Convolutional Layer 
model.add(Conv2D(filters = 64, kernel_size=3, 
activation=’relu’, input_shape=(28,28,1)))
# This layer creates a convolution kernel that 
is convolved with the layer input to produce a 
tensor of outputs.
# When using this layer as the first layer in a 
model, provide the keyword argument input_shape
(tuple of integers, does not include the batch 
axis), e.g. input_shape=(128, 128, 3) for 
128x128 RGB pictures in 
data_format="channels_last".
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Conv2D help
Arguments

filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution).

kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution 
window. Can be a single integer to specify the same value for all spatial dimensions.

strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and 
width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value 
!= 1 is incompatible with specifying any dilation_rate value != 1.

padding: one of "valid" or "same" (case-insensitive). Note that "same" is slightly inconsistent across backends
with strides != 1, as described here

data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the 
inputs. "channels_last" corresponds to inputs with shape (batch, height, width, 
channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults 
to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then 
it will be "channels_last".
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Conv2D help
Arguments

dilation_rate: an integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. 
Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying 
any dilation_rate value != 1 is incompatible with specifying any stride value != 1.

activation: Activation function to use (see activations). If you don't specify anything, no activation is applied 
(ie. "linear" activation: a(x) = x).

use_bias: Boolean, whether the layer uses a bias vector.

kernel_initializer: Initializer for the kernel weights matrix (see initializers).

bias_initializer: Initializer for the bias vector (see initializers).

kernel_regularizer: Regularizer function applied to the kernel weights matrix (see regularizer).

bias_regularizer: Regularizer function applied to the bias vector (see regularizer).

activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see regularizer).

kernel_constraint: Constraint function applied to the kernel matrix (see constraints).

bias_constraint: Constraint function applied to the bias vector (see constraints).
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MaxPooling Layers
# Maxpooling layer 
model.add(MaxPooling2D(pool_size=(2, 2)))
# the only parameter here is the (spatial) size 
to be reduced by the maximum operator
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MaxPooling2D help
Arguments:

pool_size: integer or tuple of 2 integers, factors by which to downscale (vertical, horizontal). (2, 2) 
will halve the input in both spatial dimension. If only one integer is specified, the same window 
length will be used for both dimensions.

strides: Integer, tuple of 2 integers, or None. Strides values. If None, it will default to pool_size.

padding: One of "valid" or "same" (case-insensitive).

data_format: A string, one of channels_last (default) or channels_first. The ordering of the 
dimensions in the inputs.  channels_last corresponds to inputs with shape  (batch, height, width, 
channels) while channels_first corresponds to inputs with shape  (batch, channels, height, width). It 
defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If 
you never set it, then it will be "channels_last".
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MaxPooling2D help
Input shape:

If data_format='channels_last': 4D tensor with shape:  (batch_size, 
rows, cols, channels)

If data_format='channels_first': 4D tensor with shape:  (batch_size, 
channels, rows, cols)

Output shape:

If data_format='channels_last': 4D tensor with shape: (batch_size, 
pooled_rows, pooled_cols, channels)

If data_format='channels_first': 4D tensor with shape: (batch_size, 
channels, pooled_rows, pooled_cols)
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Fully Connected Layers
# at the end the activation maps are “flattened” i.e. 
they move from an image to a vector (just unrolling)

model.add(Flatten())

# Dense is a Fully Connected layer in a traditional 
Neural Network. 

model.add(Dense(units=10, activation=’softmax’))

# Implements: 

# output = activation(dot(input, kernel) + bias)

• activation is the element-wise activation function 
passed as the activation argument, 

• kernel is a weights matrix created by the layer,

• bias is a bias vector created by the layer

# “Units” defines the number of neurons
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Visualizing the model
# a nice output describing the model 
architecture
model.summary()
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Layer (type)                 Output Shape           Param #   

===========================================================

conv2d_7 (Conv2D)            (None, 26, 26, 64)        640       

___________________________________________________________

flatten_3 (Flatten)          (None, 43264)             0         

___________________________________________________________

dense_4 (Dense)              (None, 10)             432650    

===========================================================

Total params: 433,290

Trainable params: 433,290

Non-trainable params: 0
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Training the Model
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Compiling the model
Then we need to compile the model using the compile method and 
specifying:

• optimizer  which controls the learning rate. Adam is generally a 
good option as it adjusts the learning rate throughout training.

• loss function the most common choice for classification is 
‘categorical_crossentropy’ for our loss function. The lower the better.

• Metric to assess model performance, ‘accuracy’ is more 
interpretable

model.compile(optimizer='adam', 
loss='categorical_crossentropy', 
metrics=['accuracy'])
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Training the model using
The fit() method of the model is used to train the model. 

Specify at least the following inputs:

• training data (input images), 

• target data (corresponding labels in categorical format), 

• validation data (a pair of data, labels to be used only for computing 
validation performance)

• number of epochs (number of times the whole dataset is scanned 
during training)

model.fit(X_train, y_train, 
validation_data=(X_test, y_test), epochs=3)
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Training output
Epoch 22/100

18000/18000 [==============================] - 136s 8ms/step - loss: 0.7567 
- acc: 0.6966 - val_loss: 1.9446 - val_acc: 0.4325

Epoch 23/100

18000/18000 [==============================] - 137s 8ms/step - loss: 0.7520 
- acc: 0.6959 - val_loss: 1.9646 - val_acc: 0.4275

Epoch 24/100

18000/18000 [==============================] - 137s 8ms/step - loss: 0.7442 
- acc: 0.7024 - val_loss: 1.9067 - val_acc: 0.4129
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Advanced Training Options
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Callbacks in Keras
A callback is a set of functions to be applied at given stages of the 
training procedure. 

Callbacks give a view on internal states and statistics of the model 
during training. 

You can pass a list of callbacks (as the keyword argument callbacks) to 
the .fit() method of the Sequential or Model classes.

The relevant methods of the callbacks will then be called at each stage 
of the training.

callback_list = [cb1,…,cbN]
model.fit(X_train, y_train, 
validation_data=(X_test, y_test), epochs=3, 
callbacks = callback_list)
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Model Checkpoint
Training a network might take up to several hours

Checkpoints are snapshots of the state of the system to be saved in 
case of system failure. 

When training a deep learning model, the checkpoint is the weights of 
the model. These weights can be used to make predictions as is, or 
used as the basis for ongoing training.

from keras.callbacks import ModelCheckpoint

[…]

cp = ModelCheckpoint(filepath, 
monitor='val_loss', verbose=0, 
save_best_only=False, save_weights_only=False, 
mode='auto', period=1)
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Early Stopping
The only stopping criteria when training a Deep Learning model is 
“reaching the required number of epochs.”

However, it might be enough to train a model further, as sometimes the 
training error decreases but the validation error does not (overfitting)

Checkpoints are used to stop training when a monitored quantity has 
stopped improving.

from keras.callbacks import EarlyStopping

[…]

es = EarlyStopping(monitor='val_loss', 
min_delta=0, patience=0, verbose=0, mode='auto', 
baseline=None, restore_best_weights=False)
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Testing the model
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Predict() method
#returns the class probabilities for the input 
image X_test
score = model.predict(X_test) 
# select the class with the largest score
prediction_test = np.argmax(score, axis=1)



Giacomo Boracchi

Tensorboard
When training a model it is important to monitor its progresses

Google has developed tensorboard a very useful tool for visualizing 
reports.

from keras.callbacks import TensorBoard

[…]

 tb = TensorBoard(log_dir="dirname")

 

… and add tb to the checkpoint list as well
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