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Abstract

We consider the problem of localizing a moving ball
from a single calibrated perspective image; after showing
that ordinary algorithms fail in analyzing motion blurred
scenes, we describe a theoretically-sound model for the
blurred image of a ball. Then, we present an algorithm ca-
pable of recovering both the ball 3D position and its veloc-
ity. The algorithm is experimentally validated both on real
and synthetic images.

1. Introduction

Basic projective geometry allows to reconstruct the 3D
position of a sphere from a single perspective image, pro-
vided that the camera parameters and the sphere radius are
known. However, this is rarely useful in practical applica-
tions where moving ball is captured: in fact, as the exposure
time is not infinitesimal in physical imaging devices (both
video and photo cameras), the moving ball rarely projects
to a crisp ellipse in the image. As a matter of fact, it often
appears as an elonged smear without sharp contours, con-
fusing most computer vision algorithms (see figure 1). The
straightforward approach for determining the sphere 3D po-
sition by fitting an ellipse in a single calibrated image fails
in this scenario.

In this work we present a novel algorithm to estimate
the 3D position and velocity of a uniformly-colored moving
ball from a single image, by explicitly analyzing and ex-
ploiting motion blur. Contrarily to most related works, we
use a realistic image formation model to handle perspective
images, where blur is not uniform.

In [4], we adopted a similar approach for reconstruct-
ing the curvilinear trajectory of a ball from a single long-
exposure image. Here we consider the complimentary case,
in which the exposure is short enough to encompass only a
short part of the ball trajectory. This characterizes most or-
dinary photographs and video frames, and also allows us to
assume a rectilinear, uniform-speed ball motion during the

exposure.
There are several works in literature that deal with mo-

tion blur; most of them ([1, 6]) aim at removing blur ar-
tifacts (“deblurring”), which greatly improves visual effec-
tiveness of images and performance of object classification
algorithms. However, this hardly permits exact measure-
ments needed for 3D reconstruction. Motion estimation
techniques from a single blurred image have been proposed
in [14, 15] to estimate the speed of a moving vehicle and of
a moving ball, respectively. However these works assume
uniform blur as perspective is neglected.

Ball localization and tracking in videos is the object of
many works, such as [8, 10, 11], where the trajectory of a
moving ball is reconstructed by tracking the ball through
the frames of a video sequence. However, these approaches
require that the ball is visible from multiple synchronized
cameras, whose corresponding frames are analyzed in order
to triangulate the ball’s position. Motion blur is neglected,
as the ball contours are never used. Reid in [17] provides
a method to reconstruct the ball position and motion from
a single video sequence by analyzing its shadow: this must
be visible and recognizable – which is a rather strict require-
ment in many application scenarios. In [13, 16], a physics-
based approach is proposed, to estimate the parameters of a
parabolic trajectory.

The considered image model is presented in Section 2
while the algorithm is described in Section 3. In Section 4
experiments are presented and discussed; Section 5 delin-
eates ongoing and future works.

2. Blurred ball image model

A motion blurred image Z occurs whenever the scene
projection on the image plane changes during the camera
exposure period e = [t0, t0 + ∆t]. Then we model Z as the
integration of infinite sharp images, each exposed for an in-
finitesimal portion of e. Equivalently, Z can be considered
as the temporal average of infinite sharp images It, each
taken with the same exposure time ∆t and representing the
scene frozen at a different instant t ∈ e (see figure 2). This



Figure 1. Top: example motion blurred ball images; the rightmost one results from a very long
exposure, and is not handled by our described technique. Bottom: an image (note perspective
distortion), gradient intensity and unsatisfying results of canny operator.

can be formalized as

Z(x) =

∫
e
It(x)dt

∆t
+ η(x), (1)

where x represents pixel coordinates ranging on a discrete
grid X and η ∼ N(0, σ) represents additive gaussian white
noise. Many 3D rendering packages exploit the model (1)
for accurate synthesis of motion blurred images.

We further assume that Z depicts a moving ball, and that
every image It shows a uniformly colored ellipse1 over a
uniform background. It0 and It0+∆t, respectively repre-
sent the ball at the beginning (“first curtain”) and at the end
(“second curtain”) of the exposure. Let c1 and c2 be the
ellipses appearing in these two images: these are used for
3D sphere motion estimation, as they represent the sphere at
time t0 and t0 +∆t. Figure 2 represents c1 and c2 and other
ellipses taken from some images It in between. Since the
ball trajectory is linear and the speed is uniform, all the el-
lipses have two tangent lines in common, which converge to
the vanishing point v associated to the sphere displacement
direction.

Because of perspective, the It images are not related by
a simple translation: therefore, model (1) can not be ex-
pressed as a convolution with a point spread function, being
more general.

In the following, we will ignore the contribution of the
image background and ball shading and pigmentation, by
assuming that in every It the ball image has a uniform color
over a roughly uniform background. Some techniques ([4])
allow to drop this restrictive assumption, under reasonable
constraints on the ball surface colors and provided that the

1A sphere in 3D space appears as an ellipse in a perspective image.

background is known. In short, we reduce to the case where
the intensity of each pixel is directly proportional to the time
the ball image covers that pixel. In Section 4, we show that
our technique performs reasonably well also in real images
where these assumptions are not precisely met.

Note that contours c1 and c2 are hardly recognizable
from the ball smear, as they are not characterized by a dis-
continuity in image intensity. On the contrary, the recti-
linear bounds (bitangent to c1 and c2) are more visible, al-
though they are not ordinary “step” contours either (refer to
[4]).

3 Reconstruction technique

Our reconstruction technique exploits the blurred image
model, described in Section 2, in order to recover the el-
lipses c1 and c2.

At the beginning, we roughly estimate the projection of
the ball motion direction on the image plane; then, analysis
of intensity profiles along this direction determines points
lying on c1 and c2. Finally, c1 and c2 are estimated consid-
ering some geometrical constraints; this allows us to recon-
struct the position of the ball at the beginning and end of the
exposure.

3.1 Blur direction estimation

In orthographic images the uniform blur assumption
holds, and the motion blur direction can be estimated as the
direction minimizing `2 norm of directional derivatives of



Figure 2. Model of a motion blurred ball: the blurred image can be interpreted as a temporal aver-
age of multiple images, in each of which the ball is still, at a different position. Note that due to
perspective the two tangents to all the ellipses are not parallel.

Z ([18]):

θ̂ = arg min
θ

∑
x∈X

∥∥Dθ

(
Z

)
(x)

∥∥2
, (2)

where Dθ can be any derivative filter along direction θ. The
minimization of (2) can be done in a closed form using
steerable filters [7].

However in perspective images there is no unique blur
direction, as blur is space varying and it is always directed
towards the vanishing point v. If eccentricities of c1 and
c2 are small compared to the blur extent, the blur directions
are close to symmetric w.r.t. to the projection of the 3D
ball displacement; θ̂ represents the projection of the ball
displacement.

Therefore θ̂ is used to initialize the algorithm both on
perspective and orthographic blurred images.

3.2 Finding points on c1 and c2

The procedure used to extract c1 and c2 exploits the pixel
intensity values along a line (“profile”), having direction θ̂.
We separately consider n profiles {pi(x)}i=1,..,n.

As shown in Figure 3, each profile p intersects c1 at two
points (B1 and F1), and c2 at B2 and F2. Profiles not inter-
secting both c1 and c2 are ignored in the current implemen-
tation.

On each profile, we identify five segments. The first
and last ([O,B1] and [B2, E]) contain pixels never covered
by the moving ball; they are therefore characterized by the
constant background intensity b. The neighboring segments
[B1, F1] and [F2, B2] contain pixels which have been cov-
ered by the ball only during part of the exposure: intensity
values at these pixels are linearly increasing (decreasing)
along the profile as the ball moves at uniform speed2. The

2The ball is assumed to be sufficiently far from the vanishing point, and
the pixel intensity is assumed proportional to the time it has been covered
by the ball.

central part [F1, F2] contains pixels covered by the ball dur-
ing the whole exposure; their value corresponds to the ball
intensity f .

We localize points B1, B2, F1 and F2 along profiles as
these determine c1 and c2. Because of noise, shading, back-
ground nonuniformity and other artifacts, identifying these
points is not straightforward in real images.

Profile denoising: before analysis, every profile is
denoised by local polynomial approximation on adaptive
neighborhoods ([12]), which preserves coarse-scale discon-
tinuities. This algorithm requires to be tuned on the noise
variance, estimated using [5].

Initialization of background and ball intensity: a
rough estimate f ′ for the ball intensity is obtained by an-
alyzing the histogram of values along the profile p. If the
ball is expected to be lighter than the background, as c1

and c2 overlap significantly, the highest peak in the second
half of the histogram is taken. Whenever the ball is darker
than the background, we simply invert the image before pro-
cessing. Estimation of ball color is performed separately on
each profile, in order to increase the robustness to lighting
variations. For the same reason, two background colors are
considered; they are initialized with the average of a fixed
number N of pixels at the beginning and at the end of the

profile: b′1 =
N∑

x=0

p(x)
N and b′2 =

E∑
x=E−N

p(x)
N .

Initialization of interest points given the index F̃ along
the profile of a pixel having the ball intensity f ′, an initial
estimation B′

1, B′
2 of B1, B2 is given as:

B′
1 = max

B
{B < F̃ , p(B) < b1 + M1σ̂} (3)

B′
2 = min

B
{B > F̃ , p(B) < b2 + M1σ̂}, (4)

where M1 is a tuning parameter, and σ̂ is the noise variance
previously estimated. Refined background colors b1 and b2

are obtained by averaging values on [O,B′
1] and [B′

2, E]. A



Figure 3. Intensity profiles along directions approximately parallel to the blur direction in the image
have similar characteristics.

similar procedure is implemented for estimating F ′
1 and F ′

2

as well as to refine f ′ to f .
Line fitting and final estimate a straight line l1 (l2)

is fitted to pi values on a central part of interval [B′
1, F

′
1]

([F ′
2, B

′
2]). The width of this interval is given as a tun-

ing parameter. Line fitting is performed by the itera-
tively reweighted least squares algorithm given by matlab
robustfit command. The intersection of lines l1 and l2
with the intensities b1, b2 and f gives B1, B2, F1, F2. The
last two steps are iterated once for further refinement.

The profile analysis procedure is sufficiently robust to
small errors in the estimation of θ̂, as well as mild ball shad-
ing and background nonuniformity.

3.3 Reconstructing the ball position and
speed

Once the points {Bi
1, F

i
2}i=1,··· ,n ({F i

1, B
i
2}i=1,··· ,n),

belonging to c1 (c2) are extracted from the n intensity pro-
files, the ellipse c1 (c2) is estimated by conic fitting.

The procedure is simplified by some geometric con-
straints on c1 and c2. In particular, given the perspective
camera calibration parameters, we can constrain c1 (c2) to
be the image of a sphere; this fixes 2 of the 5 degrees of
freedom of a conic. On the contrary although the rectilinear
bounds of the smear are usually visible, they are not used
to further constrain the solution (by requiring that c1 and
c2 are tangent to both), as theoretic and experimental evi-
dence ([4]) shows that ordinary edge extraction techniques
are affected by systematic error in locating these contours.

Once c1 and c2 (the image of the ball at the first and sec-
ond curtain) is known, the ball position at the beginning and
end of the exposure can be easily reconstructed by means of
basic projective geometry, provided that the sphere radius is
known and the camera is calibrated. The vector connecting
their centers is the 3D displacement occured during the ex-
posure. This also allows us to compute the absolute speed
of the ball whenever the exact exposure time ∆t is known

(which is often the case).

4 Experimental results

The proposed procedure has been validated both with
synthetic and camera images. Synthetic tests, in particular,
have been set up to compare results to ground truth, which
is hardly available on real data.

The synthetic dataset was composed by two images hav-
ing different amounts of perspective effect (see Figure 4,
first two rows). These have been rendered using the popular
3D modeling software Blender, creating an 800x600 pixel
blurred image with 90◦ horizontal field of view, by averag-
ing 100 frames of an animation, according to (1). Perfor-
mance metrics are computed exploiting the camera calibra-
tion matrix and ground truth: we consider the average of
the sphere center localization errors at the first and second
curtain. Tests have been run by taking into account several
resolutions and noise levels. Table 1 reports the localization
error averaged over the two images and 10 different realiza-
tions of noise on each.

The real dataset has been collected by using a 2MPixel
Canon A60 camera, photographing white and colored ta-
ble tennis balls, and other spheres of different diameter and
material such as a mouse ball. No special attention was de-
voted to lighting, therefore the “uniform-intensity ball im-
age” assumption is not exactly met: while our technique
did not work under severe shading or with shiny materials
such as metal, most other scenarios were handled correctly.
In general, quasi-lambertian materials (such as rubber cov-
ering the mouse ball) have been easily handled. Depend-
ing on the ball diameter and speed, we used exposure times
ranging from 1/200 to 1/25 seconds. Often, for significant
ball speeds, that was the fastest acceptable shutter speed for
achieving sufficient exposure, even using the widest lens
aperture stop f/2. All camera images have been shot using
the widest available field of view, to maximize perspective
effects.



Image res Ball image width (px) Mean error
100% 800x600 170 ÷ 130 0.012 · R
75% 600x450 127 ÷ 97 0.021 · R
50% 400x300 85 ÷ 65 0.110 · R
25% 200x150 42 ÷ 32 0.600 · R

AWN σ Average error
.000 0.001 · R
.005 0.012 · R
.010 0.040 · R
.015 0.211 · R

Table 1. Top: mean reconstruction error (fraction of the ball radius R) w.r.t. image resolution; AWN
σ = .005. Bottom: mean reconstruction error (fraction of the ball radius R) w.r.t. noise variance (full
resolution).

Figure 4. First and second rows: relevant part of a synthetic 800x600 image with AWN (σ = .005 of
the image dynamic range); fitted ellipses for c1 and c2 (blue), and ground truth (red); reconstructed
position and velocity with different noise realizations (blue), and ground truth (red). Bottom row:
real images and estimated c1 and c2.



Most cameras apply a logarithm-like transfer function to
the pixel intensity values returned by their sensors, which
partially invalidates our analysis since we assume a linear
transfer function. This manipulation of the sensor data can
be avoided by using digital cameras with RAW shooting
mode, or by compensating it applying the inverse camera
response function (see [9]). This issue is common to many
systems exploiting radiometry.

Our technique does not handle saturation (clipping) of
intensity values, which happens whenever the ball is over-
exposed: in this case, in fact, the intensity value of a pixel is
not directly related to the coverage time by the ball image.
Saturation can be avoided by choosing appropriate exposure
times and aperture.

In the current unoptimized Matlab implementation, pro-
cessing a typical image requires several seconds. The com-
putational effort is dominated by the profile analysis step:
considering fewer profiles results in significant speedup,
while degrading the localization accuracy. Since there are
no intrinsically expensive steps in our procedure, we expect
that an optimized implementation could work in realtime on
video frames.

5 Conclusions and future works

We provided a method for reconstructing the position
and velocity of a moving ball from a single perspective cal-
ibrated image, in which the ball image appears blurred. The
algorithm analyzes several 1D image intensity profiles in
order to extract points belonging to the ball contours at the
beginning and the endo of the exposure; then, a geometric
procedure allows to reconstruct the ball location and dis-
placement during the exposure, provided that the camera
calibration parameters are known.

The technique has been sucessfully tested both on syn-
thetic and camera images, obtaining convincing results even
on camera images where our assumptions are not exactly
met because of shading and other variations in the ball and
background intensities.

An optimized implementation is underway, for analyzing
and augmenting sport videos in realtime. We are also cur-
rently working on integrating a preprocessing step, to ex-
pand the applicability scenario of the algorithm to severely
nonuniform backgrounds or balls with nonuniform pigmen-
tation such as a soccer ball. Therefore, besides the global
displacement vector, the ball spin (both axis and speed) can
be estimated by locally analyzing the blur of features on the
surface, exploiting [3, 2].
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