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Abstract—Semi-Supervised Federated Learning (SSFL) aims
to improve a pretrained model using unlabeled data from
clients. Traditional SSFL solutions relying on pseudo-labels or
autoencoders often struggle in the presence of domain shift, i.e. a
difference in data distributions between the server and the clients.
In this paper we present SemiFDA, the first solution to effectively
handle domain shift in SSFL. After training an initial classifier on
the server’s labeled data, we establish an unsupervised learning
process at clients to train feature extractors based on encoders.
This process adopts a custom unsupervised loss function that
promotes the clients’ encoders to align their feature distributions
with those extracted by the encoder at server. The updated
encoders are then aggregated at the server using Federated Aver-
aging and sent back for the next iteration, while the classification
head remains frozen to preserve the benefits of aligning features
locally. Furthermore, we design an experimental framework to
mimic various levels of domain shift and test SSFL methods in
real-world scenarios, including HAR and Digit Classification. Our
results also demonstrate the detrimental effects of domain shift
in SSFL and show that SemiFDA outperforms other solutions
under these challenging conditions.

I. INTRODUCTION

Semi-Supervised Federated Learning (SSFL) is a subfield
of Federated Learning (FL) that aims to improve a model
by using partially labeled data. SSFL approaches can be
categorized as labels-at-clients, when clients have access to
both labeled and unlabeled data, and labels-at-server, when
clients have only unlabeled data and the server holds the
labeled data. This work focuses on the latter case, which is
more realistic, since clients in many FL tasks, such as Human
Activity Recognition (HAR), cannot label their own data
automatically. Despite often ignored, SSFL settings typically
imply an additional challenge: domain shift, which refers to
differences in data distributions between the server and clients
or among the clients themselves. Many tasks, including HAR,
are inherently affected by a form of domain shift called client
heterogeneity, as clients (or subjects) vary in physical traits,
sensing equipment, and how they carry out activities.

Popular SSFL methods often combine traditional Semi-
Supervised Learning (SSL) solutions based on pseudo-labeling
with Federated Averaging [7], such as in FedMatch [6] and
FedRGD [13]. The state-of-the-art SSFL solution based on
pseudo-labels is SemiFL [4], which uses advanced data aug-
mentations and consistency regularization techniques, combin-

ing [2] and [8], with an alternating training strategy. Other
SSFL methods do not rely on pseudo-labels and instead
perform unsupervised learning at the clients by using AutoEn-
coders (AEs) [15] or GANs [14]. However, all these methods
are ineffective in the presence of domain shift, which may
lead to incorrect pseudo-labels negatively impacting perfor-
mance [11]. Moreover, standard approaches based on AEs also
struggle with diverse and realistic datasets [5].

In this paper, we introduce SemiFDA, a new SSFL frame-
work that incorporates an unsupervised adaptation process to
address domain shift. SemiFDA grounds on an iterative SSFL
scheme where clients have only access to unlabeled data and
locally fine-tune their model encoders. The encoders updated
by the clients are then aggregated by the server and sent back
for the next iteration. The rationale behind SemiFDA is to train
the clients’ encoders in an unsupervised manner by aligning
their latent feature spaces with that of the encoder at the server.
This alignment enables a classification head, initially trained
on labeled server data, to classify both server and clients
data effectively. We achieve this by minimizing a custom
unsupervised loss function inspired by the CORAL loss [9]
and employing and encoder-only aggregation scheme which
avoids retraining the whole model. To benchmark the impact
of domain shift in SSFL, we design a novel experimental
framework where competing SSFL methods are tested under
different levels of domain shift. We test our framework on
two learning tasks: HAR and Digit Classification, specifically
organizing the datasets to mimic different levels of domain
shift. We underline that our experimental framework is general
and can be used for other learning tasks as well.

To summarize, our contributions are the following:
• We introduce SemiFDA1, the first effective solution to

face domain shift in SSFL. SemiFDA incorporates: i) a
domain adaptation strategy based on a custom unsuper-
vised loss and ii) a new aggregation scheme at server.

• We design a novel experimental framework to reproduce
different levels of domain shift and test SSFL methods.

• Through extensive experiments, we show the detrimental
effects caused by the domain shift in SSFL and we prove
that SemiFDA outperforms several competitors.

1The code is available at https://github.com/Michelec1997/SemiFDA.

https://github.com/Michelec1997/SemiFDA


Fig. 1. Illustrative description of SemiFDA, our solution to handle domain
shift in SSFL. For a detailed explanation of the steps, refer to Section III-C.

II. PROBLEM FORMULATION

Let S represent a server and let C1, . . . , CM denote a set of
clients that communicate with S and collaborate in a SSFL
scheme. We consider a labels-at-server scenario, where the
server S has a labeled dataset {XS , YS}, with XS denoting
the inputs and YS the corresponding labels. Each client Cm
has access to its unlabeled dataset Xm. Let ϕs = ϕs(x, y)
and ϕm = ϕm(x, y) denote the joint distribution of inputs
and labels on the server and on the client Cm, respectively. In
our domain shift settings we assume that there is at least a
client Cm for which ϕs and ϕm are different, and potentially
different clients are characterized by different distributions.

Our goal is to train a single classification model M by
utilizing both the labeled data from S and the unlabeled
datasets from all the clients Cm within a SSFL scheme, to
achieve high accuracy on client data.

III. PROPOSED SOLUTION

In this Section, we introduce SemiFDA, our solution for
Semi-Supervised Federated Domain Adaptation. SemiFDA,
depicted in Figure 1 and detailed in Algorithm 1, is designed
to operate in a SSFL scenario where there is a single server
S with unlimited memory and computational capabilities, and
multiple resource-constrained clients C1 . . . , CM that contin-
uously gather unlabeled data. We assume that the learning
scheme develops along multiple communication rounds, in
which the server and clients exchange models and additional
parameters, but not data. In SemiFDA, the classification
model, denoted as M, consists of 2 parts: a feature extractor
E which we design as an encoder, and a classification head K.
In the following, E(x, θ) represents the output of the encoder
E with parameters θ for the input x, while the output of the
full classification model is denoted as y =M(x) and can be
expressed as M(x, [θ, ω]) = K(E(x, θ), ω).

The rationale behind SemiFDA is to compensate for domain
shift by training all the client encoders E(·, θm) so that the
distribution of latent features extracted by E(·, θm) on the data
of client Cm is aligned with the distribution of the features
extracted by E(·, θS) from server data. This alignment allows
the classification head K, which is trained only on labeled
server data, to accurately classify data on client Cm using
the local encoder E(·, θm). In the SemiFDA framework, all

encoders E(·, θm) are trained at clients during the client update
step, as outlined in Section III-A. This training is driven by
an unsupervised loss function that we specifically design to
align the distribution of latent features from both clients and
server encoders. Then, the aggregation phase described in
Section III-B involves aggregating the client encoders E(·, θm)
via Federated Averaging, while the parameters ω of K remain
unchanged after the initial training at server.

A. Local Unsupervised Training

The first ingredient of SemiFDA is a fully unsupervised
loss function that enables local training while compensating
for domain shift. During our local unsupervised training, each
client Cm focuses exclusively on the encoder E , which is
trained to align the distribution of each local latent space
with the one of the server. To achieve this, we minimize
the squared Frobenius norm of the difference between the
covariance matrices of features extracted by the server encoder
and those extracted over batches of client data. Specifically,
we update E at Cm by solving the optimization problem:

θm = argmin
θ
LU(θ,Xm,ΣS) , (1)

where the unsupervised loss function LU is defined as

LU(θ,Xm,ΣS) = ||ΣS − cov[E(Xm, θ)]||2F . (2)

Here cov[·] denotes the operator computing the sample covari-
ance, and ΣS denotes the covariance matrix of the features
extracted by E(·, θS) at server, which is exchanged between
the server and clients only once after the model initialization.

Our loss LU shares with CORAL [9] the idea of aligning
covariance matrices of latent features to perform unsupervised
domain adaptation. In [9], such alignment was achieved by
defining roto-translation in the feature space of a SVM. Deep
CORAL [10] adopts a similar principle to compensate for
domain shift when training Deep CNN for classification.
However, in our SSFL scenario, neither CORAL nor Deep
CORAL can be directly applied, as they would either require to
collect client data at the server, which clearly violates privacy,
or to distribute the server data to clients, which is not feasible
due to memory and communication constraints. Additionally,
the proposed LU represents the sole training loss at clients
(and not a regularization term as in [10]), making our learning
process at clients unsupervised.

B. Encoder-only Aggregation Scheme

The second ingredient of SemiFDA is an encoder-only
aggregation scheme, which is essential to address domain shift
in our SSFL scenario. We aggregate via FedAvg [7] all the
locally updated encoder parameters {θ(t)m }Mm=1, which are sent
by each client to the server, to obtain a unique global encoder
of parameters θ(t)S . In contrast, we never update the parameters
ωS of the classification head K and the covariance matrix
ΣS of latent features at server, after they have been initially
trained with labeled data from the server. The aggregated
global encoder is not retrained on server data, thus model
updates are based only on unsupervised training at clients.



Algorithm 1 SemiFDA
1: Server Executes:
2: //Centralized Model Initialization
3: Train M on the training set (XS , YS) and define

encoder and classification head parameters [θS , ωS ]
4: ΣS = cov[E(XS , θS)] //Covariance Computation
5: send(θS , ωS ,ΣS) to all clients {Cm}Mm=1

6: Federated Learning Loop:
7: for each communication round t = 1 . . . T
8: for each client Cm,m = 1 . . .M in parallel do
9: θ

(t)
m ← ClientUpdate(Cm, θ

(t−1)
S ,ΣS , X

(t)
m )

10: end for
11: θ

(t)
S ←

1
M

∑M
m=1 θ

(t)
m //Encoders Aggregation

12: send(θ(t)S ) to all clients {Cm}Mm=1

13: end for
14: Inference:
15: ŷ = K(E(x, θ(T )

S ), ωS)
16: ClientUpdate(Cm, θS ,ΣS , Xm):
17: θm = θS
18: B ← (split Xm into batches)
19: for each local epochs l = 1, . . . , L do
20: for batch B ∈ B do
21: θm ← θm − η∇LU(B, θm,ΣS)
22: end for
23: end for
24: return θm to server.

Our intuition is that in a federated context affected by
domain shift it is crucial to establish a fixed reference point
using labeled server features, and gradually align with that
reference through unsupervised iterations. In our case, the
reference is defined by the latent representation of the server,
characterized by the covariance matrix ΣS and coupled with
the classification head K. The alignment is thus obtained
through local unsupervised training and encoder-only aggre-
gation. In particular, it is crucial to avoid retraining the
entire model on the server’s data at each iteration, and to
maintain ΣS and K fixed. In fact, any update would modify
the distribution of features at server where K is trained, thus
nullifying the benefits of local feature alignment. This could
result in significant instability and fluctuations during training,
as shown by our experiments.

C. SemiFDA

The overall scheme of SemiFDA is illustrated in steps in
Figure 1 and the pseudocode is reported in Algorithm 1. Here,
we illustrate each step in detail.

a) Step 0 - Model Initialization: S pre-trains in an end-
to-end manner the encoder E(·, θS) and the classification head
K(·, ωS) by minimizing a classification loss over the labeled
training set (XS , YS). This training phase (line 3) defines the
parameters of the encoder θS and the classification head ωS .

b) Step 1 - Covariance Computation at server: S extracts
the latent features corresponding to XS using the initialized
encoder E(·, θS), computes the covariance matrix ΣS =

cov[E(XS , θS)] and sends ΣS to the clients (lines 4-5). The
clients are thus able to perform inference on their own data
using the full modelM = K(E(x, θS), ωS). After these initial
steps, the Client Update and Encoders Aggregation (steps 2
and 3 of Figure 1) are iterated over T communication rounds,
progressively updating the encoder parameters θ

(t)
S .

c) Step 2 - Client Update: at communication round
t, each client Cm locally updates its encoder E(·, θm) by
minimizing the loss (2). Each client trains its encoder for a
fixed number of epochs on all the data gathered during the
t-th iteration, namely X

(t)
m , which is split in batches (line 18).

The batches need to contain a sufficient number of samples to
estimate the covariance matrices in the latent space of E(·, θ⇕),
and are discarded after the parameters update. The parameters
θ
(t)
m are updated (line 21) as follows:

θ(t)m = θ(t)m − η∇LU(B, θ(t)m ,ΣS). (3)

d) Step 3 - Encoders Aggregation: at the end of the
communication round t, S receives the updated local encoders’
parameters {θ(t)m }Mm=1 from the M clients and aggregates them
via FedAvg as θ

(t)
S = 1

M

∑M
m=1 θ

(t)
m . The resulting weights

θ
(t)
S define the aggregated encoder E(·, θ(t)S ) (line 11), and are

sent back to the clients for the next iteration (line 12).
e) Step 4 - Inference: the clients can perform on-device

inference after any communication round t by combining the
current aggregated encoder E(·, θ(t)S ) with the classification
head K(·, ωS). Similarly, at the end of the last communication
round t = T , the encoder E(·, θ(T )

S ) is combined with the
fixed classification head K(·, ωS) within a unique model M
that is sent to the clients (line 15) for on-device inference.
This modelM is not specifically designed for a client Cm, but
rather a model incorporating local updates from all clients, as
the encoder employed by M is not fine-tuned on Cm.

IV. EXPERIMENTS

A. Experimental Framework

Our experimental framework aims to evaluate SemiFDA and
other SSFL works across different degrees of domain shift.
We focus on the HAR task, which is inherently affected by the
domain shift and by lack of labels on clients. Additionally, we
examine the Digit Classification task to show that SemiFDA
can be applied beyond just one specific use case. In HAR, we
consider 3 publicly available datasets: USC-HAD, RealWorld,
and MobiAct. We resample all data to a frequency of 50Hz and
we split the recordings to segments of 64 samples. We consider
only 4 activities these datasets have in common: standing,
walking, running, and jumping. In Digit Classification, we
consider 4 benchmark datasets: MNIST, MNIST-M, SVHN
and USPS. For both tasks, we organize the datasets in different
ways between the server and the clients, to study the following
4 scenarios:

a) No domain shift: in this case we consider i.i.d. data
partitions among the server and the clients, without any
form of domain shift. We explore this scenario using Digit
Classification datasets, which consist of i.i.d. samples. We
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Fig. 2. Classification accuracies achieved by SemiFDA w.r.t. baselines and competitors in the mild (a), medium (b, c) and strong (d) domain shift. In (d) we
have both MobiAct and USCHAD at clients (as for (c)), but the encoder parameters are aggregated exclusively among clients referring to the same dataset.

conduct 4 experiments, one for each digit dataset, where we
randomly split the samples between the server and the clients.
To create a realistic FL setting, we restrict the training set size
at the server to prevent the initial classifier from saturating its
performance. Specifically, for each experiment, we use only
250 labeled images for supervised training at the server.

b) Mild domain shift: this is a peculiar case of HAR (and
other subject-specific tasks) due to client heterogeneity. We
simulate this scenario by selecting a single HAR dataset at a
time and splitting that between the server and the clients. This
results in 3 distinct experiments, one for each HAR dataset.
In each experiment, we randomly select 2 random subjects
at the server, and we distribute the remaining subjects among
the clients, ensuring that each client has data from distinct
users. As in the previous case, to simulate a realistic FL en-
vironment, we prevent the Centralized model from saturating
its performance. We did not use Digit datasets, even though
we could have artificially designed splits to generate non-i.i.d.
partitions on clients, e.g., by altering class proportions, as this
would have not reflected a realistic form of domain shift.

c) Medium domain shift: we increase the level of domain
shift by looking at pairs of datasets, selecting one at the
server and distributing the other among the clients. In Digit
Classification, we perform 3 different experiments, using the
MNIST dataset on the server and one of the other datasets at
the clients. In HAR, we test all the 6 combinations of dataset
pairs, using the first at the server and dividing the second
among the clients preserving subject-wise splits.

d) Strong domain shift: this scenario corresponds to
facing a change of distributions both between the server
and the clients and between the clients themselves. In Digit
Classification, we consider all datasets collectively, using the
MINST dataset on the server and dividing the data from the
3 other datasets among the clients, with each client getting
data from just one dataset. In HAR, we perform 3 different
experiments, each time using a different dataset on the server
and distributing the other among the clients, by preserving
dataset-wise and subject-wise splits.

We compare SemiFDA against various alternatives in the
SSFL domain. To ensure a fair comparison, we use the same
model architecture, hyperparameters and train-test splits as
SemiFDA for all the methods. Our classification model is a
standard CNN, comprising a feature extractor (an encoder),
and a classification head. Specifically, the encoder has 4

Convolutional layers with ReLu activations, each followed by
a Max Pooling layer. The classification head consists solely
of Dense layers, each followed by Dropout. The bottleneck
size is set to 16, which represents the dimension of the latent
space, where we compute the covariance matrix. The model
is initially trained until convergence (300 epochs for HAR,
30 epochs for Digit Classification) with an early stopping
callback on the validation loss (validation split=0.2). In each
local iteration, encoders are trained for 30 epochs, with a batch
size of 64. In each experiment we consider 10 communication
rounds and we set the participation rate of the clients to 100%
for simplicity. We split the data of each client in train and test
sets using a 80%− 20% split, and we adopt Adam optimizer
with a learning rate of 1e-3. As baselines, we consider 1) the
Centralized model (lower bound), which trains the classifier
only with the server’s labeled data without any update from
clients; 2) the supervised FedAvg [7] (upper bound), which uti-
lizes labeled data from clients. Since FedAvg depends on client
supervision, it cannot be considered a competitor. We design
a few competitors by combining centralized SSL techniques
based on pseudo-labeling (PL) with Federated Averaging [7]:
i) Vanilla PL ([1]+[7], denoted in tables and figures as PL),
ii) CPL ([12]+[7], iii) FedMix ([8]+[7]), and iv) FedMatch
([2]+[7]). Other competitors are v) AEs for SSFL from [15],
which is based on AutoEncoders, and vi) SemiFL [4], which
represents the state-of-the-art in the SSFL scenario.

B. Results

To quantitatively assess the classification performance of
SemiFDA, for every experiment we measure the accuracy on
test data at clients at the end of the iterations. We compare
the accuracy achieved by each method using the statistical
procedure of [3], which employs a Friedman test followed by
post-hoc tests. In all the tables of results, we highlight in bold
the method achieving the best accuracy if it outperforms the
second-best one with a statistical significance of 5%.

a) No domain shift: results for the Digit Classification
task, reported in Table I, show that, in the absence of domain
shift, SemiFL [4] outperforms all competitors, including our
SemiFDA, confirming its state-of-the-art performance. This is
not surprising, as SemiFDA is tailored to face domain shift and
in i.i.d. settings the fact that classification head is not retrained
during iterations is detrimental. Notably, if we simply retrain
the classification head K on the server at each iteration (results



TABLE I
NO DOMAIN SHIFT IN DIGIT-CLASSIFICATION: SAME DATASET AT SERVER AND CLIENTS

Dataset Centralized PL CPL FedMatch FedMix AE-SSFL SemiFL SemiFDA SemiFDA-retr FedAvg

MNIST .15 (.01) .92 (.06) .93 (.06) .92 (.08) .91 (.07) .79 (.01) .93 (.06) .11 (.01) .68 (.04) .98 (.06)
MNIST-M .12 (.01) .55 (.07) .59 (.08) .51 (.06) .54 (.09) .18 (.02) .58 (.07) .10 (.01) .20 (.02) .89 (.11)

SVHN .16 (.01) .39 (.02) .41 (.02) .33 (.02) .39 (.02) .19 (.01) .45 (.02) .14 (.01) .17 (.01) .76 (.03)
USPS .22 (.02) .94 (.05) .93 (.05) .96 (.05) .95 (.05) .87 (.01) .95 (.05) .29 (.02) .88 (.04) .90 (.06)

Avg .17 (.01) .70 (.05) .72 (.06) .68 (.06) .70 (.06) .42 (.01) .73 (.05) .17 (.01) .42 (.03) .84 (.07)

TABLE II
MILD DOMAIN SHIFT IN HAR: SAME DATASET AT SERVER AND CLIENTS

Dataset Centralized PL CPL FedMatch FedMix AE-SSFL SemiFL SemiFDA FedAvg

USCHAD .88 (.02) .81 (.02) .90 (.02) .66 (.02) .59 (.04) .93 (.01) .95 (.01) .92 (.01) .96 (.01)
RealWorld .73 (.02) .71 (.04) .69 (.04) .71 (.04) .59 (.04) .81 (.01) .76 (.02) .85 (.01) .90 (.01)
MobiAct .79 (.02) .76 (.03) .79 (.03) .73 (.03) .68 (.04) .70 (.03) .76 (.03) .84 (.02) .92 (.01)

Avg .80 (.02) .76 (.03) .79 (.03) .70 (.03) .62 (.04) .81 (.02) .82 (.02) .87 (.01) .93 (.01)

TABLE III
MEDIUM DOMAIN SHIFT IN DIGIT CLASSIFICATION AND HAR: DIFFERENT DATASET AT SERVER AND CLIENTS

Dataset at server Dataset at clients Centralized PL CPL FedMatch FedMix AE-SSFL SemiFL SemiFDA FedAvg

MNIST MNIST-M .22 (.01) .13 (.01) .13 (.01) .13 (.01) .13 (.01) .27 (.01) .19 (.01) .43 (.01) .89 (.02)
MNIST SVHN .14 (.01) .16 (.01) .16 (.01) .15 (.01) .17 (.01) .08 (.01) .14 (.01) .12 (.01) .79 (.04)
MNIST USPS .88 (.01) .72 (.02) .69 (.03) .83 (.01) .75 (.03) .67 (.01) .87 (.01) .94 (.01) .99 (.01)

Avg Avg .41 (.01) .34 (.01) .33 (.01) .37 (.01) .35 (.02) .34 (.01) .40 (.01) .50 (.01) .89 (.02)

USCHAD RealWorld .49 (.03) .45 (.03) .46 (.03) .46 (.03) .45 (.03) .49 (.03) .47 (.04) .62 (.04) .89 (.02)
USCHAD MobiAct .21 (.02) .29 (.03) .32 (.03) .31 (.03) .29 (.03) .21 (.02) .35 (.04) .50 (.04) .87 (.04)
RealWorld USCHAD .54 (.03) .52 (.04) .48 (.03) .51 (.04) .52 (.03) .64 (.05) .54 (.04) .90 (.02) .98 (.01)
RealWorld MobiAct .45 (.05) .39 (.05) .43 (.05) .37 (.05) .38 (.05) .58 (.04) .51 (.04) .58 (.05) .86 (.03)
MobiAct USCHAD .36 (.02) .30 (.02) .30 (.02) .34 (.02) .33 (.03) .66 (.03) .38 (.03) .67 (.07) .96 (.03)
MobiAct RealWorld .70 (.03) .70 (.03) .70 (.03) .68 (.03) .69 (.03) .76 (.03) .71 (.03) .58 (.04) .90 (.01)

Avg Avg .46 (.03) .44 (.03) .45 (.03) .45 (.03) .44 (.03) .56 (.03) .49 (.04) .64 (.05) .91 (.03)

reported as SemiFDA-retr in Table I), SemiFDA becomes
effective in scenarios without domain shift as well.

b) Mild domain shift: results from the 3 HAR datasets,
reported in Table II, show that SemiFDA outperforms on
average both the Centralized model and all the competitors.
Both [15] and SemiFL [4] can improve the Centralized model,
albeit less than our SemiFDA, while other alternatives can even
decrease its performance.

c) Medium domain shift: the results for Digit Classifica-
tion are reported in Table III. On average, SemiFDA improves
over the Centralized model and outperforms all the competitors
in 2 out of 3 experiments. On the contrary, all PL solutions and
[15], on average, decrease the performance of the Centralized
model, resulting in a negative learning effect. This happens
because these SSFL solutions are not designed to handle
domain shift, which can lead to incorrect pseudo-labels. HAR
results are reported in Table III. SemiFDA outperforms both
the Centralized model and the other competitors in all the ex-
periments, but one. Notably, SemiFDA significantly improves
the Centralized model even when the server and client datasets
differ significantly and the initial accuracy is very low (such as
the case USCHAD-MobiAct). In contrast, methods based on
PL or AEs fail to perform effectively in presence of domain
shifts. As illustrated in Figure 2(b), SemiFDA increases the

accuracy from 0.54 to 0.9 in the RealWorld-USCHAD case,
achieving results comparable to the supervised FedAvg and
outperforming all other competitors.

d) Strong domain shift: the results for Digit Classifica-
tion, adopting MNIST at server, are reported in the last row of
Table IV. SemiFDA outperforms both the Centralized model
and all other competitors in all the cases, demonstrating it is
always the best solution to cope with domain shift. The results
for HAR are reported in Table IV, where again SemiFDA
emerges as the top-performing solution on average, surpassing
all competitors and the Centralized model. Moreover, both Ta-
ble IV and Figure 2 indicate that current SSFL solutions may
negatively impact the performance of the Centralized model.
A comparison between Figure 2(c) and Figure 2(d) reveals
there is a significant domain shift among clients that affects
the accuracy of all methods, including SemiFDA. Figure 2(c)
reports the average accuracy of the two medium domain
shift experiments with RealWorld at the server. Figure 2(c)
can be seen as the performance achieved when using the
SSFL solutions in combination with an oracle that enables
aggregating models trained on clients with data from the same
HAR dataset. For all methods, this average accuracy is higher
than the accuracy obtained in the strong domain shift case of
Figure 2(d), confirming that this scenario poses an additional



TABLE IV
STRONG DOMAIN SHIFT IN HAR AND DIGIT CLASSIFICATION: IN HAR WE USE 1 DATASET AT SERVER, AND THE REMAINING 2 AT CLIENTS. THE

ACCURACY IS COMPUTED OVER CLIENTS HAVING DATA FROM THE SAME DATASET AND AVERAGED OVER ALL CLIENTS (AVG). IN DIGIT
CLASSIFICATION, WE USE MNIST ON THE SERVER AND THE OTHER 3 DATASETS (MNIST-M, SVHN AND USPS) AT CLIENTS.

Dataset at server Centralized PL CPL FedMatch FedMix AE-SSFL SemiFL SemiFDA FedAvg

USCHAD .31 (.02) .37 (.02) .35 (.03) .35 (.03) .33 (.03) .28 (.01) .48 (.04) .53 (.06) .87 (.04)
RealWorld .47 (.03) .39 (.04) .39 (.04) .41 (.04) .37 (.03) .55 (.06) .47 (.04) .61 (.04) .84 (.04)
MobiAct .56 (.03) .54 (.02) .54(.02) .55 (.03) .54 (.03) .72 (.05) .51 (.02) .53 (.05) .84 (.03)

Avg .45 (.03) .43 (.03) .43 (.03) .44 (.03) .41 (.03) .52 (.05) .49 (.03) .56 (.05) .85 (.04)

MNIST .41 (.01) .37 (.01) .36 (.01) .41 (.01) .37 (.01) .35 (.01) .41 (.01) .53 (.01) .63 (.01)

challenge for SSFL and necessitates improved aggregation
strategies to address severe domain shift among clients.

C. Ablation Study
To demonstrate that all the components of SemiFDA are

needed to effectively handle domain shift, we discuss our
design choices by analyzing 3 alternative solutions. The first,
Non-Federated SemiFDA, removes the aggregation step from
SemiFDA, and can also be viewed as an unsupervised person-
alization method, where individual clients fine-tune their local
encoders with their own unlabeled data. The second alterna-
tive, SemiFDA Regularization, modifies the method in [15]
by adding our loss (2) as a regularization term when training
the local AEs at the clients. The third alternative, SemiFDA-
retr, involves iteratively fine-tuning K on the server, while
freezing the aggregated encoder. In Figure 3, these variants are
compared to SemiFDA in the medium domain shift scenario.
While Non-Federated SemiFDA improves over the Centralized
model, it still underperforms w.r.t. SemiFDA. Comparing the
accuracy of SemiFDA Regularization against [15] in Fig-
ure 2(b), we observe that the regularization is beneficial, but
suboptimal w.r.t. SemiFDA. This confirms that it is crucial
to use the proposed loss as primary learning loss, and not as
regularization term. Also the SemiFDA-retr variant is subop-
timal w.r.t. SemiFDA in presence of domain shift, leading to
oscillations and instability in the training process. The iterative
fine-tuning brings the latent space back to the server’s data
distribution, without compensating for domain shift.

V. CONCLUSION AND FUTURE WORKS

This paper presents SemiFDA, a novel solution to handle
domain shift in SSFL, which employs a custom unsupervised
loss function on clients to align their feature distributions to
those of the server, where the classification head is trained. We
assess the performance of SemiFDA on HAR and Digit Clas-
sification by designing an experimental framework that mimic
different levels of domain shift. Our experiments demonstrate
that SemiFDA outperforms existing SSFL methods in several
scenarios with domain shifts. Future works will focus on en-
hancing SemiFDA to better address substantial domain shifts
among clients, e.g. by incorporating clustering techniques.
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