
Multi-body Depth and Camera Pose Estimation from Multiple Views
- Supplementary Materials -

Andrea Porfiri Dal Cin
Politecnico di Milano

andrea.porfiridalcin@polimi.it

Giacomo Boracchi
Politecnico di Milano

giacomo.boracchi@polimi.it

Luca Magri
Politecnico di Milano
luca.magri@polimi.it

This document provides additional materials omitted
from the main manuscript due to space restrictions. First,
we provide further insights on our Multi-Body Plane Sweep
Network. Specifically, we provide an in-depth look at the
depth cost volume construction and regularization (Sec. 1).
Then, we describe the algorithmic and implementation de-
tails of our framework (Sec. 2) and discuss the main pa-
rameters of our solution. In Sec. 3, we provide a descrip-
tion of the proposed Multi-body Unstructured dataset used
in conjunction with the ETH3D and KITTI Depth datasets
for multi-body evaluation. In Sec. 4, we describe the met-
rics used in the main manuscript for depth evaluation. In
Sec. 5, we compare our method against traditional SfM
baselines on static datasets and present additional experi-
ments to evaluate the behavior of our method when it op-
erates outside its optimal conditions. Finally, in Sec. 6, we
illustrate our implementation and list third-party software
used in the development process.

...

4D Cost Volume Feature blocks

Figure 1: Cost volume construction by multi-body plane sweep.
For each virtual depth plane at dl ∈ {dl}Ll=1, we generate a
2C × W × H feature map by concatenating the target feature Fj

(gray) to the warped source feature F̃γ
il (in color) at depth dl us-

ing motion [R̂α
γ , t̂

α
γ]. The 4D cost volume is constructed through

concatenation of these L feature blocks. F̃k
il (in blue) indicates

a source feature Fi warped onto Fj through the homography in-
duced by the generic plane at dl and its relative camera motion
[R̂α

k , t̂
α
k]. Instead, F̃h

il is induced by the motion [R̂α
h , t̂

α
h] (in pink).

Initial CV Residual CV Final CV2D Conv

Target features

Figure 2: Context Network for Edge-Preserving Filtering. Each
slice cl of the regularized 3D cost volume of size L×W×H and the
target feature Fj are the input of a context network that produces a
residual cost volume. The final cost volume is obtained by adding
the initial and residual cost volumes.

1. Depth Cost Volume

We discuss the construction and regularization of the
cost volume used in the multi-body depth estimation branch
of our multi-body plane sweep network.

1.1. Construction

In this section, we provide a visual understanding of how
the 4D depth cost volume is built in our multi-body depth
estimation branch from an image pair α = (Ii, Ij) involv-
ing two rigidly moving objects βk and βh. As shown in
Fig. 1, for each virtual plane at depth dl, we concatenate the
target image feature Fj and the source feature F̃γ

il warped
through the homography induced by the plane at dl and its
associated camera motion [R̂α

γ , t̂
α
γ] referring to the generic

object βγ . In Fig. 1, the motions [R̂α
k , t̂

α
k] (in blue) and

[R̂α
h , t̂

α
h] (in pink) are assigned cyclically to each of the L

depth planes, meaning that d1, d3, d5, . . . are assigned to
the k-th motion and d2, d4, d6, . . . are assigned to the h-
th motion. As each CNN feature is of size C × W × H,
by concatenating the features along the first dimension (C),
we obtain a total of L feature blocks of size 2C × W × H.
Finally, we pack the L concatenated feature blocks and ar-
range them into a 4D cost volume of size 2C×L×W×H,
as shown in Fig. 1.

1

L = 64 L = 96

L1-inv Sc-inv L1-rel L1-inv Sc-inv L1-rel

all frames 0.178 0.194 0.179 0.167 0.190 0.164
2 motions only 0.162 0.181 0.152 0.158 0.179 0.148
3 motions only 0.201 0.212 0.192 0.182 0.201 0.179

Table 1: Depth evaluation in Multi-body Unstructured. We
consider a varying number of motions M and of virtual planes
L. For 2 motions only we observe a mean performance up-lift
of 2.11% across all metrics going from L = 64 to L = 96,
whereas for 3 motions only we observe a mean performance up-lift
of 7.72%. By using 4 input frames from consecutive sequences,
our method attains 13.1% better depth estimation performance,
whereas [16] improves by 12.4%.

1.2. Regularization

As described, in Sec. 4.3.1 of the main manuscript, regu-
larizing the cost volume is fundamental to cope with imper-
fect latent feature matching, which is especially common in
image regions with uniform pixel intensity. In this section,
we provide further details about our regularization strategy
and, specifically, we describe the context network used to
perform edge-preserving filtering, whose main steps are il-
lustrated in Fig. 2. As described in the main manuscript, we
obtain an initial 3D cost volume (Initial CV) of dimension
L × W × H by applying a sequence of 3D convolutions to
the 4D cost volume of dimension 2C × L× W × H. Then,
we apply edge-preserving filtering to the initial 3D cost vol-
ume by employing a context network inspired by [9] to im-
prove depth estimation. The context network takes as input
a single slice c̃l of the initial 3D cost volume and the target
image feature Fj and returns the corresponding refined cost
volume slice cl. The edge-preserving filtering step is per-
formed for each cost slice c̃l, l ∈ 1 . . . L to obtain a residual
cost volume (Residual CV) that is then added to the initial
cost volume to obtain the final cost volume (Final CV). All
cost volume slices c̃l are processed with shared weights of
the context network. The context network consists of seven
convolutional layers with 3× 3 filters, each with a different
receptive field (1,2,3,8,16,1, and 1).

The cost volume is finally upsampled to the original size
of the RGB images, which have dimension 3×4W×4H, via
bilinear interpolation to then regress pixel-wise depth maps
of the target image Ij .

2. Algorithmic and Implementation Details

In this section, we report details regarding the deep neu-
ral networks used in our implementation. Hyper-parameters
and training details are also specified. We also report the re-
quired training time on our system.

2.1. Hyperparameters: L and M

In this section, we provide an alternative visualization
of the results reported in Tab. 3 of the main manuscript to
support the claim made in Sec. 5.4 that the number of mo-
tions M and the number of virtual 3D depth planes L have
a significant impact on depth estimation accuracy. In Tab. 1,
we report results obtained by our method on the Multi-body
Unstructured dataset by varying the parameters of our depth
estimation module. Specifically, we vary the number L of
virtual 3D depth planes and consider L = 64 and L = 96,
with the latter used in our final implementation. We eval-
uate our method for varying values of L by considering
3 different configurations: i) all frames in the dataset, ii)
frames with 2 motions exactly, iii) frames with 3 motions
exactly. Results show that increasing the number of depth
planes L is more beneficial when considering only frames
with 3 motions, whereas, in case of 2 motions, we observed
more modest improvements in accuracy. When considering
2 motions only, we observe a mean performance uplift on
the depth evaluation metrics of 2.11%, whereas when con-
sidering 3 motions the improvement is more substantial at
7.72%. We attribute these differences to the way the 4D
depth cost volume is built in plane sweep depth estimation
architectures. Our multi-body plane sweep assigns a maxi-
mum number of L/M depth planes to each rigid motion in
the scene for feature warping. As the number of motions
increases, the fewer depth planes are assigned to each rigid
motion, resulting in a direct impact in accuracy as shown in
Tab. 1.

2.2. Optical Flow Fine-Tuning

For all experiments, the optical flow is trained on syn-
thetic scenes from [15], except for KITTI Depth, where, for
a fair comparison, we follow the same fine-tuning procedure
as in Wang et al. [14]. Other scenes do not require fine-
tuning, nor additional computational and labelling costs,
as our joint depth and pose network can refine less accu-
rate initial camera poses, as studied in DeepSfM [16]. On
domain-specific datasets, fine-tuning can yield an improve-
ment, e.g., 1.7% better on the metric δ1 on KITTI Depth.

2.3. Other parameters

Essential Matrix. In our framework, we compute ini-
tial relative camera poses from essential matrices computed
from dense optical flow matches using the 5-point algorithm
embedded in a RANSAC framework for robustness. Sim-
ilarly to [14], we set the inlier error threshold τ = 0.0001
and the number of iterations θ = 5 for KITTI Depth and
θ = 20 for static datasets MVS, Scenes11, SUN3D and
multi-body datasets ETH3D and Multi-body Unstructured.

Depth and Pose Estimation Network. For KITTI Depth,
we adopt 128 3D virtual planes in our depth estimation

Figure 3: Multi-body Unstructured Extract. Three view pairs extracted from our proposed dataset for illustration purposes. The dataset
contains indoor sequences that depict varied scenarios in which objects of several different sizes move in the scene.

module for each detected motion. For all other datasets,
this is set to 96. We set dmin = 0.5 the distance between
successive virtual depth planes in MVS, Scenes11, SUN3D,
ETH3D and Multi-body Unstructured. Instead, for KITTI
Depth we set dmin = 1.0.

Loss Function Weights. For training, the loss function is:
L = λrLrot + λtLtrans + λdLdepth, with weights λr = 0.8,
λt = 0.1 and λd = 0.1 balanced for the optimal trade-off
between depth and camera pose according to [16].

2.4. Network Selection

In our framework, we use the optical flow network
DICL-Flow [15] for initial up-to-scale camera pose estima-
tion. Our novel depth estimation network builds upon the
original architecture of DPSNet [9] with the addition of our
original multi-body plane sweep algorithm for depth cost
volume construction. Finally, we use the monocular depth
estimation network AdaBins [5] with pre-trained weights on
the KITTI and the NYUv2 datasets provided by the authors.

2.5. Timings

As in [14], the depth module is the main bottleneck, thus
adding a traditional motion segmentation step affects infer-
ence times only marginally. In KITTI, [14] takes 0.68 ms
and our method 0.79 ms: 067 0.05 (flow) + 0.21 (Pose +
Motion Segmentation) + 0.53 (Depth).

3. The Multi-body Unstructured dataset

In this section, we describe the proposed Multi-body Un-
structured dataset introduced in Sec. 5.1 for depth and cam-
era pose evaluation in the multi-body setting. The dataset
comprises 21 multi-body scenes of indoor environments for
a total of 42 image frames, six of which are illustrated in
Fig. 3 for reference. Frames contain either 2 or 3 moving
objects. The images are acquired using a Kinect v1 cam-
era with a resolution of 640 × 480. Depth maps are also
640 × 480 and are expressed in millimeters from the cam-
era viewpoint. Although not critical to multi-view stereo
performance, we calibrate our sensor with the MATLAB
R2021b Camera Calibration app included in the Computer
Vision toolbox using 20 shots of a 10×7 checkerboard pat-

tern. We obtain the following calibration matrix K:

K =

589.18 0 321.15
0 589.75 235.55
0 0 1

 (1)

Ground truth camera poses are obtained using the state-
of-the-art RGB-D SLAM software [7] from video se-
quences of approximately 10 seconds. As discussed in the
main manuscript, this software fuses visual information and
data provided by the Kinect IMU sensor to provide very
accurate camera poses. We extract two frames from each
video sequence by considering pairs of frames with fairly
large camera baselines and significant object movements.

In this Supplementary Material we include sequences
used for the evaluation of ours and competing methods. The
dataset is organized similarly to the static sequences from
DeMoN [13] and uses the same format introduced in DP-
SNet and DeepSfM [9, 16] to make testing easier. We de-
scribe the format of our dataset as follows. Each sequence
in the dataset is numbered, e.g. 00001, 00002, . . ., and con-
tains two RGB images, 0000.jpg and 0001.jpg, and their
respective ground truth depths, 0000.npy and 0001.npy.

Fig. 4 shows a larger version of Fig. 5 in the main pa-
per, which includes images, ground truth depth maps and
depth estimation results from our method and DeepSfM
[16]. Fig. 4 also includes results from Wang et al. [14],
which were omitted from the main paper due to space re-
strictions.

The dataset folder in the .zip file contains the sequences
used for testing in the aforementioned format.

4. Depth Metrics

In this section, we define the metrics used in the main
manuscript for depth evaluation. For KITTI Depth, we
adopt the metrics in [6]. Given an estimated depth map
D and its corresponding ground truth Dgt, y is a pixel be-
longing to D and y∗ is a pixel at the same coordinates of y
belonging to Dgt. Specifically, we consider the depth Ab-
solute Relative difference (Abs Rel):

Abs Rel =
1

|D|
∑
y∈D

|y − y∗|/y∗, (2)

MVS Scenes11 SUN3D

Depth Pose Depth Pose Depth Pose

Method L1-inv Sc-inv L1-rel Rerr terr L1-inv Sc-inv L1-rel Rerr terr L1-inv Sc-inv L1-rel Rerr terr

Base-SIFT 0.056 0.309 0.361 21.180 60.517 0.051 0.900 1.027 6.179 56.650 0.029 0.290 0.286 7.702 41.825
Base-Matlab - - - 10.843 32.736 - - - 0.917 14.639 - - - 5.920 32.298
COLMAP [11] - - 0.384 7.961 23.469 - - 0.625 4.834 10.682 - - 0.623 4.235 15.956

Ours (M = 1) 0.016 0.107 0.068 2.538 4.538 0.005 0.099 0.058 0.321 3.649 0.011 0.084 0.061 1.470 12.018
Ours (M = 2) 0.019 0.121 0.073 2.681 7.340 0.007 0.102 0.069 0.401 4.619 0.013 0.092 0.071 1.625 13.402
Ours (M = 3) 0.025 0.132 0.075 2.892 9.530 0.009 0.124 0.078 0.542 5.782 0.014 0.095 0.079 1.769 15.231
Ours (M = 4) 0.026 0.134 0.076 2.931 9.741 0.009 0.128 0.081 0.571 5.803 0.016 0.107 0.084 1.830 15.904

Table 2: Depth and pose evaluation on MVS, Scenes 11, SUN3D. Base-SIFT and Base-Matlab come from [13]. For all metrics, lower is
better. Best results are in bold.

OursDeepSfM Wang et al.Reference images

M
ul
ti-
B
od
y
U
ns
tru
ct
ur
ed

E
TH
3D

Ground-truth
Figure 4: Qualitative comparisons on ETH3D and Multi-body Unstructured. We compare our method against DeepSfM [16] and
Wang et al. [14], which was omitted from the comparison in the main paper due to space restrictions. The yellow boxes highlight the
moving objects in the scene that are successfully reconstructed by our method but not by its competitors.

the depth Squared Relative difference (Sq Rel):

Sq Rel =
1

|D|
∑
y∈D

||y − y∗||2/y∗, (3)

the Root Mean Square Error (RMSE):

RMSE =

√
1

|D|
∑
y∈D

||y − y∗||2, (4)

the log Root Mean Square Error (RMSElog):

RMSElog =

√
1

|D|
∑
y∈D

||log(y)− log(y∗)||2, (5)

and, finally, the threshold accuracy δi, i.e., the % of y such
that:

max(
y

y∗
,
y∗

y
) = δ < thr, (6)

where thr = 1.25 for δ1, thr = 1.252 for δ2, and thr =
1.253 for δ3.

For all other datasets, we consider the metrics in [13],
i.e., the scale-invariant depth error (sc-inv):

sc-inv =

√
1

|D|
∑
y∈D

(y − y∗)2 − 1

|D|2
(
∑
y∈D

y − y∗)2,

(7)

the L1 relative error (L1-rel), which is equivalent in its for-
mulation to the aforementioned Abs Rel, and the inverse L1
error (L1-inv):

L1-inv =
1

|D|
∑
y∈D

| 1
y∗

− 1

y
|. (8)

5. Additional Experiments

Our method is primarily designed to work on scenes
with rigidly moving objects and sparse unstructured im-
ages. Nonetheless, we found it interesting to investigate
the behavior of our framework when operating under sub-
optimal conditions based on these assumptions. After hav-
ing demonstrated that our approach outperforms traditional
methods on static scenes, in Sec. 5.2, we examine what hap-
pens in the presence of articulated motions, and in Sec. 5.3,
we compare our approach to dense methods that either ben-
efit from small baselines between image pairs or exploit
video temporal information.

5.1. Static Evaluation against Traditional Baselines

As mentioned in Sec. 5.2 of the main manuscript, our
multi-body framework outperforms traditional baselines
even in static scenes. In this regard, Tab. 2 compares our
method against static SfM pipelines on the single-body
MVS, Scenes11 and SUN3D datasets. Specifically, we
consider the Base-SIFT and Base-MATLAB reported in
[13], which estimate depth and camera poses by SIFT fea-
tures and KLT tracking correspondences respectively, and
COLMAP [11], a well known SfM pipeline. It can be appre-
ciated that our methods produces significantly more accu-
rate depth and camera pose in all metrics for all the datasets.

5.2. Dealing with Articulated Motions

We performed some qualitative experiments on the ar-
ticulated ”arm” scene from the Hopkins-155 dataset [12]
which consists of µ = 3 dominant motions in the scene,
where β1 is the static background and chest of the person,
β2 is the moving arm, and β3 is the chessboard object that
moves independently with respect to the arm holding it. The
results, in Fig. 5, are promising and, as stated in Sec. 5.4 of
the main manuscript, our method can reconstruct articulated
motions provided that an adequate number of motions M is
considered.

We compare the results of our method against the state-
of-the-art DeepSfM [16]. DeepSfM, which works under
the assumption that the scene is static, reconstructs only the
static background and person β1 and produces depth maps
with artifacts in the image region covered by the arm β2 and
the chessboard object β3. However, our method can recon-
struct β2, highlighted in the red box, in the M = 2 config-
uration and both β2 and β3, highlighted in the yellow box,

in the M = 3 configuration. Our method can thus recon-
struct articulated motions, provided that a sufficient number
of motions is considered.

As discussed in Sec. 5.4 of the main manuscript, the up-
per limit on the number of rigid motions M affects the num-
ber of depth planes allocated to each of the {βk}Mk=1 objects.
When considering scenes with many moving bodies or ar-
ticulated motions, it is thus necessary to increase the num-
ber of virtual depth planes L to preserve accuracy in depth
estimation, with the main drawback of slightly increased
inference times. Specifically, on our test system consisting
of 2 NVIDIA A6000 GPUs, inference takes approximately
2.31 seconds with M = 2 and 2.52 seconds with M = 3.

5.3. Dealing with Dense Image Sequences

Our method is designed to cope primarily with un-
structured images without assuming temporal coherence.
Nonetheless, it is interesting to compare against methods
that work on video streams or with small baselines for op-
timal performance. To this end, we evaluate our method
on the KITTI VO dataset [8], which contains 10 video se-
quences with ground truth camera poses. As in [14], in our
experiments we consider the frames from the left camera
in sequences ”09” and ”10” for a fair comparison. Most
frames in these sequences depict a scene without moving
objects, thus we also consider a subset of these sequences to
evaluate our method and other state-of-the-art camera pose
estimation approaches in the multi-body setting. Specif-
ically, we consider two splits: i) the full-length videos,
namely Seq. 09 (all) and Seq. 10 (all), ii) a subset of the
video frames in which dynamic objects appear, namely Seq.
09 (MB) and Seq. 10 (MB). The total number of frames con-
sidered for multi-body camera pose evaluation is 102.

As in [17], we measure the pose estimation accuracy on
relative translational error terr, expressed in percentage, and
relative rotational error rerr, in deg /100m. The predicted
trajectories are aligned to the ground truth via least square
optimization as in [14].

Tab. 3 shows the results attained by our method, SfM-
Learner [17], CCNet [10] and Wang et al. [14], which have
been introduced in the main manuscript, on the aforemen-
tioned sequences. Our method outperforms SfMLearner
and CCNet by a significant margin on all the considered
sequences. Compared to Wang et al. [14], our method at-
tains worse performance by 6.9% on average on the entire
Seq. 09 (all) and Seq. 10 (all), but performs better in the
multi-body sub-sequences Seq. 09 (MB) and Seq. 10 (MB)
by 4.2% on average.

As expected, as the majority of frames in Seq. 09 (all)
and Seq. 10 (all) depict a scene with a single motion,
some multi-view methods operating under the static scene
assumption achieve more accurate results. As discussed in
the main manuscript, our method is configured to handle

Ours (3 motions)Ours (2 motions)DeepSfMImage

Figure 5: Qualitative evaluation on Hopkins-155. We compare our method against DeepSfM [16] on the ”arm” sequence from Hopkins-
155. Our method is configured to handle either M = 2 or M = 3 rigid motions in the scene. DeepSfM cannot reconstruct the rigidly
moving objects β2 (red box) and β3 (yellow box). Instead, our method can reconstruct β2 when M = 2 and both β2 and β3 when M = 3.

Seq. 09 (all) Seq. 09 (MB) Seq. 10 (all) Seq. 10 (MB)

Method terr rerr terr rerr terr rerr terr rerr

SfMLearner [17] 8.28 3.07 8.97 3.51 12.20 2.96 13.04 3.84
CCNet [10] 6.92 1.77 - - 7.97 3.11 - -
Wang et al. [14] 1.70 0.48 2.04 0.61 1.49 0.55 1.76 0.68
Ours 1.81 0.52 1.98 0.59 1.57 0.59 1.69 0.64

Table 3: Pose evaluation on KITTI VO. We consider the full
sequences ”09” and ”10” (Seq. 09 (all) and Seq. 10 (all)) as well
as a subset of the frames of the aforementioned sequences in which
dynamic objects appear (Seq. 09 (MB) and Seq. 10 (MB)). For all
metrics, lower is better. Best results in bold.

up to µ = 3 motions, which results in outlying essential
matrices that may impact camera pose estimation. Instead,
in the challenging multi-body setting, our method achieves
significantly more accurate results than its competitors in
camera pose estimation. This validates our claim that, by
segmenting the motions in the scene before estimating es-
sential matrices, our method is extremely robust to moving
objects when regressing relative camera poses.

6. Code

We publicly provide the implementation in Python and
PyTorch of our multi-body plane-sweep depth estimation
network at https://github.com/andreadalcin/
MultiBodySfM. In our implementation, we use the fol-
lowing open source code: i) AdaBins for monocular depth
estimation [5], ii) DICL-Flow [2] for optical flow, iii) multi-
frame motion segmentation [1], iv) DPSNet [3] depth esti-
mation network, v) DeepSfM [4] pose estimation network.

References
[1] https://github.com/federica-arrigoni/

ICCV_19. 6
[2] https://github.com/jytime/DICL-Flow. 6
[3] https://github.com/sunghoonim/DPSNet. 6
[4] https://github.com/weixk2015/DeepSFM. 6
[5] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.

Adabins: Depth estimation using adaptive bins. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4009–4018, 2021. 3, 6

[6] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. Advances in neural information processing systems,
27, 2014. 3

[7] Felix Endres, Jürgen Hess, Jürgen Sturm, Daniel Cremers,
and Wolfram Burgard. 3-d mapping with an rgb-d camera.
IEEE transactions on robotics, 30(1):177–187, 2013. 3

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE conference on computer vision and pat-
tern recognition, pages 3354–3361. IEEE, 2012. 5

[9] Sunghoon Im, Hae-Gon Jeon, Stephen Lin, and In So
Kweon. Dpsnet: End-to-end deep plane sweep stereo. arXiv
preprint arXiv:1905.00538, 2019. 2, 3

[10] Anurag Ranjan, Varun Jampani, Lukas Balles, Kihwan Kim,
Deqing Sun, Jonas Wulff, and Michael J Black. Competitive
collaboration: Joint unsupervised learning of depth, camera
motion, optical flow and motion segmentation. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 12240–12249, 2019. 5, 6

[11] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 4, 5

[12] Roberto Tron and René Vidal. A benchmark for the com-
parison of 3-d motion segmentation algorithms. In 2007
IEEE conference on computer vision and pattern recogni-
tion, pages 1–8. IEEE, 2007. 5

[13] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Niko-
laus Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas
Brox. Demon: Depth and motion network for learning
monocular stereo. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5038–5047,
2017. 3, 4, 5

[14] Jianyuan Wang, Yiran Zhong, Yuchao Dai, Stan Birchfield,
Kaihao Zhang, Nikolai Smolyanskiy, and Hongdong Li.
Deep two-view structure-from-motion revisited. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8953–8962, 2021. 2, 3, 4, 5, 6

[15] Jianyuan Wang, Yiran Zhong, Yuchao Dai, Kaihao Zhang,
Pan Ji, and Hongdong Li. Displacement-invariant matching
cost learning for accurate optical flow estimation. Advances

https://github.com/andreadalcin/MultiBodySfM
https://github.com/andreadalcin/MultiBodySfM
https://github.com/federica-arrigoni/ICCV_19
https://github.com/federica-arrigoni/ICCV_19
https://github.com/jytime/DICL-Flow
https://github.com/sunghoonim/DPSNet
https://github.com/weixk2015/DeepSFM

in Neural Information Processing Systems, 33:15220–15231,
2020. 2, 3

[16] Xingkui Wei, Yinda Zhang, Zhuwen Li, Yanwei Fu, and Xi-
angyang Xue. Deepsfm: Structure from motion via deep
bundle adjustment. In European conference on computer vi-
sion, pages 230–247. Springer, 2020. 2, 3, 4, 5, 6

[17] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
Lowe. Unsupervised learning of depth and ego-motion from
video. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1851–1858, 2017. 5, 6

