
Kernel QuantTree (Supplementary Material)

1 Introduction

This document provides additional material omitted from the main article due to space limitations.
Section 2 reports the proofs of the theoretical results supporting the Kernel QuantTree (KQT) algo-
rithm, namely, the independence of the test statistic from the stationary distribution (Theorem 1)
and the roto-translational invariance of KQT (Theorem 2). Then, Section 3 illustrates additional
experimental settings that complete the empirical analysis of the KQT algorithm. In particular, we
test the normality of the employed real-world datasets (Section 3.1), investigate the performance on
high-dimensional datasets (Section 3.2), compare the performance of the proposed centroid selection
strategies (Section 3.3), and report the complete results of the experiments from the main article
(Section 3.4).

2 Theoretical Results

In this section, we report the proofs of the theorems introduced in Section 5 of the main article. To
make this section self-contained and improve the overall readability, we recall some definitions that
were already introduced in the article.

2.1 Controlling the False Alarm Rate

The Generalized QuantTree (GQT) histogram h = {(Sk, π̂k)} partitions the input space Rd such that
the probability π̂k of a stationary sample x ∼ ϕ0 to fall in bin Sk is close to a target probability πk

provided as an input parameter. During testing, GQT monitors batches W of ν samples by computing
a test statistic Th whose value only depends on the number of samples of W falling in each bin. Then,
the test statistic is compared against a detection threshold τ ∈ R, and a change is detected when

Th(W ) > τ. (1)

A peculiarity of GQT is that each bin SK is defined as a subset of the sublevel set of a measurable
kernel function fk : Rd → R. In this section, we prove Theorem 5.1 of the main article, which we
recall here:

Theorem 1. Let h = {(Sk, π̂k)}Kk=1 be a Generalized QuantTree histogram constructed using mea-
surable functions fk : Rd → R ∀k. Let Th be a statistic defined over batches W such that Th(W ) only
depends on the number of samples y1, . . . , yK of W falling in the bins of h. Then, the distribution of
Th over stationary batches W ∼ ϕ0 depends only on the batch size ν, the number of training points N
and target probabilities {πk}k.

Theorem 1 implies that the distribution of Th computed over stationary batches by a GQT is
independent of ϕ0, d or {fk}, thus allowing us to empirically estimate its distribution and compute a
threshold τ such that the False Positive Rate (FPR) achieved by GQT is controlled. The threshold
computation strategy is presented in Section 5.2 of the main article. Theorem 1 is a generalization
of Theorem 1 from [Boracchi et al., 2018] and its proof follows the same structure based on three
propositions. Here, we prove the first of these propositions:
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Proposition 1. Let x1,x2, . . . ,xM be i.i.d. realizations of a continuous random vector X defined
over D ⊂ Rd. Let f : Rd → R be a measurable function, and let Z = f(X). We denote with z(1) ≤
z(2) ≤ · · · ≤ z(M) the sorted images of {xj} through f . For any L ∈ {1, 2, . . . ,M}, we define the
sublevel sets

Qf,L := {x ∈ D : f(x) ≤ z(L)}. (2)

Then, the random variable p = PX(Qf,L) is distributed as Beta(L,M − L+ 1).

Proof. We prove the proposition by showing that p is an order statistic of the uniform distribution,
which in turn follows a Beta distribution [Lehmann et al., 2005]. Since f is a measurable function for
the considered probability space and X is a continuous random variable (r.v.) in Rd, by the properties
of continuous r.v. [Papoulis and Pillai, 2002], we have that Z = f(X) is also a continuous r.v. in R.
Then, we define U = FZ(Z), where FZ is the cdf of Z. Since FZ is monotonically non-decreasing, we
can also define the inverse cdf as:

F−1
Z (t) = inf {z ∈ R | FZ(z) ≥ t}. (3)

Then, we have that

FU (u) = PU (U ≤ u) = PZ(FZ(Z) ≤ u) =

= PZ(Z ≤ F−1
Z (u)) = FZ(F

−1
Z (u)) = u,

(4)

hence U is a uniform random variable, since its cumulative density function is the identity. Recall
that we assumed that X is defined over D, i.e., PX(R \ D) = 0. Then, exploiting (4), we can express
p as follows:

p = PX(Qf,L) = PX(x ∈ D | f(x) ≤ z(L)) =

= PZ(z ∈ R | z ≤ z(L)) =

= PU (u ∈ [0, 1] | u ≤ u(L)) = u(L),

(5)

where we define u(L) = FZ(z(L)). From (5), we have that p is the L-th order statistic ofM samplings of
the uniform distribution, and its distribution is Beta(L, M−L+1) [Balakrishnan and Rao, 1998].

We refer the reader to [Boracchi et al., 2018] for a thorough description of the derivation of the
proof of Theorem 1 from Proposition 1.

2.2 Centroid Selection and Invariance to Roto-Translation

Kernel QuantTree (KQT) defines a partition of the input space by iteratively splitting it in bins Sk

that match a target probability, as shown in Figure 2 of the main article. The KQT bins are defined
as subsets of sublevel sets of the adopted measurable kernel functions fk. We report here the formal
definition of the KQT histogram bins:

S1 = {x ∈ Rd | f1(x) ≤ q1}
Sk = {x ∈

⋂
j<k Sj | fk(x) ≤ qk} for k < K

SK = Rd \
⋃

j<K Sj

, (6)

where Sj denotes the complement of Sj in Rd, and qk is the split value computed as a quantile of the
training samples projected via fk.

Section 4.2 of the main article illustrates the kernel functions fk : Rd → R adopted by KQT, which
are defined as distances from a selected centroid ck ∈ TR:

fk(x) = (x− ck)
⊺A(x− ck), (7)
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where A ∈ Rd×d is the kernel matrix, which determines the employed distance. In our experiments, we
construct KQT using the Euclidean, the Mahalanobis, and the Weighted Mahalanobis [Tipping, 1999]
distances. The corresponding kernel matrices are A = Id for the Euclidean distance, A = cov[TR]−1

for the Mahalanobis distance and

A =

∑M
m=1 ρm · im(x, c) · C−1

m∑M
m=1 ρm · im(x, c)

(8)

for the Weighted Mahalanobis distance, where µm, Cm, and ρm denote the mean, covariance matrix,
and mixing probability of the m-th Gaussian component of a GMM fitted to TR, and the term
im(x, c) approximates the integral over the path from x to c with respect to the measure induced by
the Gaussian Mixture Model (GMM). We refer the reader to [Tipping, 1999] for an explanation of the
rationale behind this distance.

2.2.1 Selecting Centroids by Maximizing the Information Gain

In Section 4.3 of the paper, we propose a centroid selection strategy that consists in maximizing the
information gain introduced by the split that divides Xk−1 in Xk and Xk = Xk−1 \ Xk, namely:

ck = argmax
c∈Xk−1

I[c] = argmax
c∈Xk−1

{
H(Xk−1)−

∣∣Xk

∣∣H(Xk) + |Xk|H(Xk)

|Xk−1|

}
, (9)

whereH(B) is the entropy of a set of points B ⊂ Rd, which we compute by its Gaussian approximation,
that is

H(B) = (1/2) log
(
(2πe)d det(cov[B])

)
, (10)

where e is Euler’s number. This approximation is only used to ease the computation of H(B) for
centroid selection purposes, and does not influence the non-parametric nature of KQT. The expression
in (10) can be reformulated:

H(B) =
d

2
(log(2π) + 1) + H̃(B) (11)

where H̃(B) = logdet (cov[B]). This gives rise to an optimization problem equivalent to (9), where
the centroid is selected by

ck = argmin
c∈Xk−1

{
H̃(X k) + βH̃(Xk)

}
, (12)

where β is a constant that can be derived by (9) through algebraic manipulation. Solving this min-
imization problem is computationally less demanding than the original maximization, thus lowering
the computational burden of such centroid selection strategy.

2.2.2 Invariance to roto-translations

In Section 5.3 of the main article, we state that KQT is invariant under roto-translations when the
employed kernel function is either the Euclidean, Mahalanobis or Weighted Mahalanobis distance.
Here, we prove it together with an intermediate result. In the following, we define a roto-translation
Φ : Rd → Rd as

Φ(x) = R(x− µ), (13)

where R ∈ SO(d) is the rotation matrix and µ ∈ Rd is the shift vector. Moreover, we denote as
Φ(B) = {Φ(x) | x ∈ B} the image of a set B ⊂ Rd. From basic calculus, it is easy to show that the
covariance of a set B ⊂ Rd after roto-translation Φ factorizes as

cov[Φ(B)] = R cov[B]R⊺. (14)
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Moreover, in our discussion, we will denote as D : Rd → Rd the distance employed by KQT when
no preprocessing is employed, while we denote as D′ the same distance when data are preprocessed
by a roto-translation Φ. D and D′ coincide when we employ the Euclidean distance, where A is
simply the indentity matrix. However, the kernel matrices for the Mahalanobis and Weighted Maha-
lanobis distances depend on the training set TR, thus change when we transform it to TR′ = Φ(TR).
Nevertheless, all the considered distances are invariant under roto-translation, namely it holds that

D(x,y) = D′ (Φ(x),Φ(y)) (15)

for any x,y ∈ Rd. The identity in (15) can be derived from algebraic manipulation of the definition
of the adopted distances and considering (14).

Theorem 5.5 of the main article, which we report here, states that the histograms h = {(Sk, π̂k)}
and h′ = {(S′

k, π̂
′
k)}, respectively constructed by KQT with and without preprocessing TR by Φ, are

equivalent.

Theorem 2. Let Φ : Rd → Rd be a roto-translation. Let h = {(Sk, π̂k)} and h′ = {(S′
k, π̂

′
k)} be the

KQT histograms constructed from the training sets TR ⊂ Rd and TR′ = Φ(TR), where the employed
kernel function is either the Euclidean, Mahalanobis or Weighted Mahalanobis distance. Then, we
have that S′

k = Φ(Sk) and π̂′
k = π̂k for k = 1 . . . ,K. In particular, for any batch W and W ′ = Φ(W ),

we have that Th(W ) = Th′(W ′).

Theorem 2 proves that, for specific choices of kernel functions, the value of the test statistic
computed over a batch W of data does not change if we employ a roto-translation-based preprocessing.
As such, KQT does not require preprocessing by PCA, which is sometimes necessary for QT to achieve
good detection performance. To prove the theorem, we first prove an intermediate result regarding
the centroid selection:

Lemma 1 (Information Gain). Let Xk−1 and X ′
k−1 = Φ(Xk−1) be the set of points used to construct

the KQT histogram bins Sk and S′
k, respectively. Then, the centroid selection by maximizing the

information gain as in (9) results in centroids ck and c′k = Φ(ck).

Proof. As showed in Section 2.2.1, maximizing (9) is equivalent to minimizing (12). Let c ∈ Xk−1 be
an available training sample, then there exists c′ = Φ(c) ∈ X ′

k−1. If we assume that X ′
k is the set of

training samples falling in S′
k when we use c as a centroid, we have that

X ′
k = {x′ ∈ X ′

k−1 | D′(x′, c′) ≤ q′k} =

= {Φ(x) | x ∈ Xk−1, D
′(Φ(x),Φ(c)) ≤ q′k} =

= {Φ(x) | x ∈ Xk−1, D(x, c) ≤ qk} =

= Φ({x ∈ Xk−1 | D(x, c) ≤ qk}) = Φ(Xk),

(16)

where we used (15) to substitute q′k with qk. Analogously, we have that X ′
k = Φ(X k). Then, from

(12), we have that

H̃(X ′
k) = logdet (cov[X ′

k]) =

= logdet (R cov[Xk]R
⊺) =

= logdet (cov[Xk]) + 2 logdet (R) = H̃(Xk) + γ,

(17)

where γ is a constant which depends only on R. In (17), we used the factorization (14) and the fact
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that R is orthogonal. The same relation holds for X ′
k, and we can finally prove that

c′k = argmin
c∈X ′

k−1

{
H̃(X ′

k) + βH̃(X ′
k)
}
=

= Φ

(
argmin
c∈Xk−1

{
H̃(X k) + βH̃(Xk) + γ(1 + β)

})
=

= Φ

(
argmin
c∈Xk−1

{
H̃(X k) + βH̃(Xk)

})
= Φ(ck).

(18)

Lemma 2 (Gini Index). Let Xk−1 and X ′
k−1 = Φ(Xk−1) be the set of points used to construct the

KQT histogram bins Sk and S′
k, respectively. Then, the centroid selection by minimizing the Gini

index in results in centroids ck and c′k = Φ(ck).

Proof. It can be shown by simple algebraic manipulation of the definition of Gini index.

Lemma 1 and Lemma 2 ensure that the construction of the histograms h and h′ will maintain the
correspondance through Φ of all their elements, including the selected centroids. We can now prove
Theorem 2.

Proof of Theorem 2. Here, we show by induction that every bin S′
k of h′ is the result of the roto-

translation of the corresponding bin Sk of h. First, we have that X ′
0 = TR′ = Φ(TR) = Φ(X0) by

definition. Then, for k = 1, Lemma 1 and 2 state that c′1 = Φ(c1). Moreover,

S′
1 =

{
x′ ∈ Rd | D′(x′, c′1) ≤ q′1

}
=

=
{
Φ(x) | x ∈ Rd, D′(Φ(x), c′1) ≤ q′1

}
=

=
{
Φ(x) | x ∈ Rd, D(x, c1) ≤ q1

}
= Φ(S1).

(19)

In the same manner, we prove that

X ′
1 = {x′ ∈ X ′

0 | D′(x′, c′1) > q′1} =

= {Φ(x) | x ∈ X0, D(x, c1) > q′1} = Φ(X1),
(20)

and X ′
1 = Φ(X 1).

Now, suppose that ∀j < k we have that c′j = Φ(cj), S
′
j = Φ(Sj) and X ′

j = Φ(Xj). Then, we have

that x ∈
⋂

j<k Sj ⇐⇒ x′ = Φ(x) ∈
⋂

j<k S
′
j , and, with the same derivation as in the case k = 1,

S′
k =

{
x′ ∈

⋂
j<k

S′
j | D

′(x′, c′k) ≤ qk

}
=

= Φ
({

x ∈
⋂
j<k

Sj | D(x, ck) ≤ qk)
})

= Φ(Sk).
(21)

and also X ′
k = Φ(Xk). In conclusion, we proved that S′

k = Φ(Sk) for ∀k = 1, . . . ,K. In particular, we
conclude that

x ∈ Sk ⇐⇒ D(x, cj) > qj ∀j < k ∧ D(x, ck) ≤ qk ⇐⇒
⇐⇒ D′(Φ(x), c′j) > qj ∀j < k ∧ D′(Φ(x), c′k) ≤ qk ⇐⇒
⇐⇒ Φ(x) ∈ S′

k,

(22)

and, consequently, the number of samples from any batch W ⊂ Rd falling in the Sk is the same as
the number of samples of W ′ = Φ(W ) falling in S′

k. Then, we have that π̂k = π̂′
k and Th(W ) =

Th′(W ′).
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3 More Experiments and Discussion

This section extends the experimental evaluation of KQT from Section 6 of the main article to cor-
roborate the findings discussed there. First, we investigate the real-world datasets employed in our
experiments, proving that these do not follow a Gaussian distribution. Then, we perform additional
experiments on high-dimensional data to investigate the control of the FPR in this challenging sce-
nario. Finally, we extend the results from the main article by comparing the proposed centroid
selection strategies and reporting the complete results for both the low- and high-ratio settings.

3.1 Remarks about the real-world datasets

In Section 6.1 of the main article, we introduce the real-world datasets that are used in our ex-
periments. The INSECTS dataset [Souza et al., 2020] is a benchmark for concept-drift detection
algorithms and comprises data describing the wing-beat frequency of six species of insects at different
temperatures. The other datasets are from the UCI Machine Learning Repository [Dua and Graff,
2017] and from [Dal Pozzolo et al., 2017], and comprise data following a unique distribution, thus
require the introduction of artificial distribution changes for our experiments. We standardize these
datasets and add a negligible amount of noise η ∼ N(0, σ) to each component to prevent the many
repeated values from harming the histogram construction. Table 1 lists all the datasets and reports
their dimension d and the level σ of noise applied to their components.

Since data in the synthetic settings are drawn from Gaussian distributions, one could argue that
KQT provided with the Mahalanobis or Weighted Mahalanobis kernels have an advantage over the
alternatives. However, this is not true for the real-world datasets considered in our experiments,
which are far from Gaussian. This claim is empirically supported by the low detection performance
of SPLL, which is itself based on a GMM. To confirm this intuition, we also run the Shapiro-Wilk
normality test [Shapiro and Wilk, 1965], an Hypothesis Test used to determine whether a population
{xi}ni=1 ⊂ R is drawn from a univariate Gaussian distribution. If the p-values associated to the HT
is lower than 0.05, than we can conclude that the population is not normally distributed. Since the
marginals of a multivariate Gaussian distribution are univariate Gaussian distributions, we show that
the real-world datasets introduced in Section 6.1 of the main article are not drawn from multivariate
Gaussians by showing that their covariates are not. For this purpose, we extract a subset of n = 4096
samples from the real-world datasets and perform the Shapiro-Wilk test on each of their covariates.
Table 1 reports the p-values yielded by the test, averaged over the covariates and over 250 iteration
of the test performed over different subsets. The p-values obtained in these tests are in the range of
10−20, thus confirming that the real-world datasets employed in our experiments are not drawn from
multivariate Gaussian distributions.

Table 1: List of the real-world datasets employed in the experiments. For each dataset, we report
the dimension d, the noise level σ and the average p-value of the Shapiro-Wilk test computed on the
marginals.

Dataset Name d σ p-value Reference

El Nino Southern Oscillation nino 5 10−3 3.3× 10−3 [Dua and Graff, 2017]
Physicochemical Properties of PTS protein 9 − 7.5× 10−8 [Dua and Graff, 2017]
ForestCovertype I spruce 10 10−1 2.5× 10−9 [Dua and Graff, 2017]
ForestCovertype II lodgepole 10 10−1 1.8× 10−8 [Dua and Graff, 2017]
Credit Card Fraud Detection credit 28 10−3 9.9× 10−8 [Dal Pozzolo et al., 2017]
Insects’ Flying Behavior INSECTS 33 − < 10−16 [Souza et al., 2020]
Sensorless Drive Diagnosis sensorless 48 10−3 4.9× 10−8 [Dua and Graff, 2017]
MiniBooNE Particle Identification particle 50 10−3 8.5× 10−3 [Dua and Graff, 2017]
UNSW Swarm Behavior swarm 2400 − 1.8× 10−9 [Dua and Graff, 2017]
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3.2 Curse of dimensionality

In this section, we investigate the ability of KQT to control the FPR as the data dimension d increases.
Our experiments (Section 6.4 of the main article) have shown that the Kernel QuantTree with the
Weighted Mahalanobis distance deviates from the desired FPR when the data dimension grows. As
discussed in the article, this deviation is due to the challenge of fitting a Gaussian Mixture Model
(GMM) to high-dimensional data. To analyze the impact of the dimensionality on Kernel QuantTree,
we perform experiments in three synthetic settings with d ∈ {4, 8, 16, 32, 64, 128}. In these settings,
denoted as unimodal, bimodal, and trimodal, the stationary distribution ϕ0 is defined as a GMM with 1,
2, and 3 Gaussian components, respectively. Then, we use the CCM framework [Alippi et al., 2017] to
generate a post-change distribution by applying a roto-translation to each Gaussian component of ϕ0

such that the Kullback-Leibler distance between these and the three resulting post-change components
is fixed to 1. We perform each experiment twice, one with N = 4096 training samples and the other
with N = 16384, to show that when a large training set is available the limitation of the KQT with
Weighted Mahalanobis is avoidable.

Table 2 reports the FPR achieved by KQT adopting different distances in the unimodal, bimodal
and trimodal settings for all the considered dimensions d and training set sizes N . In all experiments
we construct a KQT histogram with K = 16 bins, we set the detection thresholds to yield an FPR
α = 5%, and we test KQT on 5000 stationary batches with ν = 128 samples. In the experiment
with N = 4096 (left columns), we notice that when d increases, the FPR achieved by KQT when
using the Mahalanobis and Weighted Mahalanobis distances deviates further from the target value.
In contrast, when we train KQT on N = 16384 samples (right columns), the deviation from the target
FPR is significantly reduced. To further corroborate our hypothesis that the issue is in the GMM
fitting, we compute the average condition number of the covariance matrices of the GMM components
yielded when using KQT with the Weighted Mahalanobis distance. These results show that, in the
high-dimensional datasets, using a larger training set yields covariance matrices with smaller condition
numbers.

3.3 Comparing the centroid selection strategies

In the main article, we propose two strategies for the centroid selection, namely, maximizing the
information gain introduced by splitting Xk−1 in Xk and X k and minimizing the Gini index of the
distances between the centroid and the training samples in Xk−1. In Table 1 of the article, we
report the average FPR and AUC achieved by KQT using the maximization of the information
gain as a centroid selection strategy. Here, Table 3 reports the results achieved by KQT with the
Euclidean, Mahalanobis, and Weighted Mahalanobis distance for both strategies and proves that
their performance is comparable in every experimental setting.

3.4 Complete experimental results

In this section, we report the complete results of the high- and low-ratio experiments presented in
Section 6 of the main article. For each result, we include the corresponding confidence interval.

Table 5 reports the FPR and AUC achieved by the methods presented in Section 6.3 of the main
article in the high-ratio setting, namely when ν = 128 and K = 16. As already discussed in the paper,
QuantTree, Kernel QuantTree and EIKM achieve an empirical FPR close to the target α = 5% in most
experiments. In contrast, SPLL and PCA-SPLL mostly exceed the target and Density Tree largely
overshoots it. However, the KQT with the Weighted Mahalanobis distance does not control the FPR
accurately when d increases, and we speculate that this is due to the GMM underlying the definition
of distance. This known limitation is discussed in Section 6.4 of the main article and investigated in
Section 3.2 of this document.

As for the AUC, KQT with the Weighted Mahalanobis distances outperforms the alternatives in
most settings. At the bottom of Table 5, we report the ranking of each method computed from the
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Table 2: Comparison between the FPR achieved by KQT using the Euclidean, Mahalanobis, and
Weighted Mahalanobis distances in the synthetic settings for various dimensions d and training set
sizes N . In parenthesis, the average condition numbers of the covariance matrices of the GMM used
by KQT with the Weighted Mahalanobis distance. The underlined values indicate an FPR above the
target of 5%.

KQT(Euclidean) KQT(Mahalanobis) KQT(Weighted Mahalanobis)
N=4096 N=16384 N=4096 N=16384 N=4096 N=16384

d = 4 4.88% - 4.77% 4.84% 4.79% (20.1) 4.85% (16.3)

u
n
im

o
d
a
l

d = 8 4.83% - 4.81% 4.86% 4.71% (32.1) 4.83% (37.7)
d = 16 4.81% - 4.81% 4.89% 4.88% (99.5) 4.79% (67.7)
d = 32 4.84% - 4.95% 4.88% 4.99% (150.6) 4.81% (123.6)
d = 64 4.84% - 5.80% 4.95% 5.81% (315.2) 4.87% (223.8)
d = 128 4.91% - 16.52% 5.31% 77.74% (344.0) 5.45% (307.0)

d = 4 4.83% - 4.76% 4.88% 4.77% (12.9) 4.89% (13.7)

b
im

o
d
a
l

d = 8 4.88% - 4.86% 4.87% 4.79% (40.0) 4.84% (36.3)
d = 16 4.83% - 4.88% 4.82% 4.88% (68.3) 4.87% (90.3)
d = 32 4.86% - 4.95% 4.86% 5.36% (177.2) 4.83% (120.4)
d = 64 4.89% - 5.66% 4.86% 5.70% (253.9) 5.03% (220.3)
d = 128 4.84% - 15.44% 5.32% 76.60% (276.9) 5.46% (244.7)

d = 4 4.72% - 4.86% 4.85% 4.82% (24.9) 4.84% (16.1)

trim
o
d
a
l

d = 8 4.84% - 4.79% 4.82% 4.83% (31.7) 4.80% (38.2)
d = 16 4.85% - 4.85% 4.80% 4.86% (66.1) 4.83% (59.9)
d = 32 4.81% - 4.91% 4.84% 5.13% (108.7) 4.86% (120.7)
d = 64 4.93% - 5.67% 4.87% 5.53% (209.4) 5.01% (176.9)
d = 128 4.81% - 15.86% 5.37% 77.49% (258.1) 5.47% (214.2)

AUC, together with the p-value of the Nemenyi post-hoc statistic, which proves that the advantage
of the best-performing method is statistically significant. In the main article, we also discuss the
performance of QuantTree, which shows how the preprocessing by PCA decreases the detection per-
formance in some cases. Remarkably, the KQT monitoring is invariant under roto-translations (see
Section 5.3 of the main article) and surpasses QuantTree independently of the application of the PCA
preprocessing.

Table 4 reports the FPR and AUC achieved by the considered methods in the low-ratio setting,
namely when ν = 64 and K = 32. The results of this experiment are overall in line with the high-ratio
setting. However, as we speculate in Section 6.3 of the main article, histogram can better model a data
distribution when the expected number of points per bin ν/K is large. This low-ratio setting confirms
our speculation, as the considered methods achieve an AUC lower than in the high-ratio experiment
on most datasets. However, KQT with the Weighted Mahalanobis distance still achieves the best
AUC with a statistically significant advantage over the alternatives, as demonstrated by the Nemenyi
post-hoc test. Moreover, the Pearson test statistic is discrete and in the low-ratio setting assumes
fewer distinct values. Thus, it is more challenging to set detection thresholds and the results show
that the empirical FPR of QuantTree and Kernel QuantTree is slightly lower than in the high-ratio
experiment.
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Table 3: Comparison between the detection performance achieved by KQT with the Euclidean, Ma-
halanobis and Weighted Mahalanobis distances, when selecting the centroids by maximization of the
Information Gain (left) and minimization of the Gini Index (right), in the high-ratio setting (K = 16,
ν = 128 points). The table reports the achieved FPR (top) and AUC (bottom). In parenthesis the
standard deviation.

Information Gain Gini Index
Euclidean Mahalanobis Weighted Maha. Euclidean Mahalanobis Weighted Maha.

unimodal 4.86% (0.47%) 4.82% (0.45%) 4.83% (0.48%) 4.83% (0.47%) 4.81% (0.48%) 4.83% (0.49%)
bimodal 4.80% (0.46%) 4.81% (0.44%) 4.80% (0.45%) 4.81% (0.47%) 4.84% (0.46%) 4.83% (0.46%)
nino 5.00% (0.53%) 5.02% (0.53%) 5.01% (0.54%) 5.02% (0.55%) 5.06% (0.54%) 5.02% (0.54%)

protein 4.97% (0.52%) 4.98% (0.54%) 5.03% (0.55%) 4.99% (0.54%) 5.03% (0.56%) 5.06% (0.53%)
spruce 4.82% (0.47%) 4.84% (0.49%) 4.90% (0.47%) 4.84% (0.49%) 4.85% (0.48%) 4.88% (0.49%)

lodgepole 4.85% (0.49%) 4.80% (0.47%) 4.90% (0.50%) 4.84% (0.50%) 4.82% (0.49%) 4.93% (0.51%)
credit 4.89% (0.48%) 4.85% (0.46%) 5.06% (0.56%) 4.89% (0.50%) 4.90% (0.52%) 5.10% (0.61%)

insects (1 → 2) 4.91% (0.50%) 4.93% (0.52%) 5.19% (0.64%) 4.90% (0.49%) 4.92% (0.54%) 5.19% (0.61%)
insects (2 → 3) 4.92% (0.52%) 4.96% (0.52%) 5.25% (0.62%) 4.88% (0.50%) 4.93% (0.52%) 5.24% (0.63%)
insects (3 → 4) 4.90% (0.52%) 4.88% (0.53%) 5.22% (0.64%) 4.91% (0.55%) 4.92% (0.53%) 5.24% (0.64%)
insects (4 → 5) 4.91% (0.51%) 4.92% (0.54%) 5.25% (0.65%) 4.92% (0.52%) 4.95% (0.49%) 5.28% (0.66%)
insects (5 → 6) 4.90% (0.56%) 4.92% (0.53%) 5.26% (0.72%) 4.90% (0.55%) 4.91% (0.57%) 5.29% (0.71%)

sensorless 4.82% (0.49%) 5.01% (0.56%) 7.42% (1.61%) 4.87% (0.48%) 4.98% (0.58%) 7.54% (1.56%)
particle 4.81% (0.46%) 4.94% (0.52%) 5.80% (1.02%) 4.84% (0.48%) 4.93% (0.52%) 5.86% (1.00%)

unimodal 0.946 (0.105) 0.993 (0.016) 0.994 (0.013) 0.946 (0.103) 0.994 (0.015) 0.994 (0.014)
bimodal 0.904 (0.118) 0.954 (0.060) 0.968 (0.042) 0.903 (0.119) 0.955 (0.056) 0.970 (0.039)
nino 0.607 (0.072) 0.904 (0.138) 0.922 (0.122) 0.609 (0.071) 0.903 (0.139) 0.922 (0.122)

protein 0.617 (0.074) 0.993 (0.035) 0.995 (0.027) 0.615 (0.074) 0.993 (0.030) 0.994 (0.030)
spruce 0.601 (0.066) 1.000 (0.000) 1.000 (0.000) 0.600 (0.068) 1.000 (0.000) 1.000 (0.000)

lodgepole 0.654 (0.099) 1.000 (0.000) 1.000 (0.000) 0.653 (0.099) 1.000 (0.000) 1.000 (0.000)
credit 0.602 (0.053) 0.780 (0.146) 1.000 (0.000) 0.605 (0.055) 0.787 (0.141) 1.000 (0.000)

insects (1 → 2) 0.962 (0.035) 0.972 (0.039) 0.993 (0.019) 0.961 (0.038) 0.970 (0.037) 0.994 (0.015)
insects (2 → 3) 1.000 (0.001) 1.000 (0.000) 1.000 (0.000) 1.000 (0.001) 1.000 (0.000) 1.000 (0.000)
insects (3 → 4) 0.904 (0.054) 0.942 (0.049) 0.990 (0.024) 0.903 (0.058) 0.946 (0.044) 0.989 (0.025)
insects (4 → 5) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
insects (5 → 6) 0.985 (0.016) 0.992 (0.008) 1.000 (0.000) 0.986 (0.014) 0.991 (0.009) 1.000 (0.001)

sensorless 0.542 (0.027) 1.000 (0.000) 1.000 (0.000) 0.543 (0.026) 1.000 (0.000) 1.000 (0.000)
particle 0.555 (0.030) 0.976 (0.051) 0.985 (0.039) 0.556 (0.032) 0.977 (0.051) 0.985 (0.042)
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Table 4: FPR (top) and AUC (bottom) achieved by the considered methods in the high-ratio setting,
namely when histogram-based methods define K = 32 bins and the monitored batches contain ν = 64
points. In parenthesis, the width of the 95%-confidence interval of the results.

QT QT KQT KQT KQT EIkM SPLL(C=3) SPLL(C=3) DT DT
(PCA) (Euclidean) (Mahalanobis) (Weighted Maha.) (PCA) (PCA)

unimodal 4.29% (0.34%) 4.27% (0.32%) 4.30% (0.32%) 4.30% (0.34%) 4.28% (0.33%) 4.91% (0.44%) 6.10% (0.66%) 7.24% (1.03%) 7.08% (1.01%) 7.06% (1.00%)
bimodal 4.31% (0.32%) 4.27% (0.32%) 4.29% (0.33%) 4.32% (0.33%) 4.29% (0.33%) 4.91% (0.44%) 6.29% (0.79%) 7.57% (1.26%) 6.99% (1.00%) 6.92% (0.97%)
nino 5.01% (0.38%) 5.18% (0.38%) 5.23% (0.37%) 5.18% (0.38%) 5.21% (0.38%) 4.91% (0.48%) 7.28% (1.16%) 9.60% (1.75%) 6.77% (0.98%) 6.86% (1.09%)

protein 4.98% (0.38%) 5.13% (0.39%) 5.17% (0.39%) 5.19% (0.40%) 5.21% (0.43%) 4.92% (0.47%) 15.38% (3.01%) 10.74% (2.28%) 6.81% (0.98%) 6.73% (1.08%)
spruce 4.26% (0.33%) 4.29% (0.32%) 4.30% (0.32%) 4.29% (0.33%) 4.29% (0.34%) 4.85% (0.45%) 13.42% (3.15%) 13.64% (3.18%) 6.76% (0.99%) 6.89% (1.08%)

lodgepole 4.27% (0.32%) 4.27% (0.34%) 4.29% (0.35%) 4.30% (0.36%) 4.31% (0.34%) 4.93% (0.52%) 12.57% (3.45%) 12.73% (3.46%) 6.89% (1.00%) 6.74% (1.06%)
credit 4.34% (0.39%) 4.46% (0.46%) 4.39% (0.43%) 4.38% (0.42%) 4.47% (0.44%) 4.91% (0.61%) 11.88% (2.16%) 23.23% (3.66%) 6.74% (1.04%) 6.75% (1.02%)

insects (1 → 2) 4.69% (0.47%) 4.84% (0.57%) 4.84% (0.58%) 4.84% (0.56%) 4.97% (0.59%) 4.91% (0.45%) 6.73% (1.63%) 8.05% (1.95%) 6.86% (1.04%) 6.77% (1.10%)
insects (2 → 3) 4.73% (0.50%) 4.87% (0.59%) 4.85% (0.56%) 4.86% (0.60%) 5.04% (0.61%) 4.90% (0.45%) 6.67% (1.51%) 8.02% (1.77%) 6.83% (1.03%) 6.77% (1.04%)
insects (3 → 4) 4.72% (0.49%) 4.84% (0.56%) 4.85% (0.58%) 4.84% (0.58%) 5.02% (0.60%) 4.93% (0.48%) 7.29% (1.75%) 8.71% (2.03%) 6.80% (1.07%) 6.75% (1.03%)
insects (4 → 5) 4.69% (0.50%) 4.84% (0.58%) 4.82% (0.57%) 4.83% (0.60%) 4.99% (0.64%) 4.90% (0.44%) 6.56% (1.55%) 7.89% (1.87%) 6.83% (1.03%) 6.71% (1.03%)
insects (5 → 6) 4.77% (0.53%) 4.90% (0.56%) 4.90% (0.56%) 4.89% (0.58%) 5.07% (0.60%) 4.86% (0.43%) 7.18% (1.72%) 8.09% (1.89%) 6.77% (1.04%) 6.76% (1.00%)

sensorless 4.29% (0.35%) 4.43% (0.39%) 4.30% (0.34%) 4.35% (0.36%) 5.32% (0.65%) 4.94% (0.49%) 4.93% (1.19%) 4.29% (0.71%) 6.53% (1.06%) 6.67% (1.07%)
particle 4.28% (0.32%) 4.32% (0.36%) 4.30% (0.35%) 4.33% (0.35%) 4.71% (0.46%) 4.86% (0.50%) 6.92% (1.52%) 8.80% (1.96%) 6.70% (1.12%) 6.78% (1.12%)

unimodal 0.883 (0.101) 0.936 (0.059) 0.881 (0.115) 0.957 (0.031) 0.957 (0.031) 0.779 (0.157) 0.975 (0.016) 0.972 (0.047) 0.676 (0.148) 0.712 (0.174)
bimodal 0.796 (0.109) 0.825 (0.102) 0.821 (0.112) 0.868 (0.075) 0.885 (0.062) 0.709 (0.130) 0.859 (0.132) 0.845 (0.154) 0.636 (0.106) 0.652 (0.122)
nino 0.736 (0.143) 0.804 (0.170) 0.555 (0.042) 0.809 (0.173) 0.830 (0.163) 0.511 (0.012) 0.739 (0.176) 0.771 (0.191) 0.630 (0.111) 0.545 (0.048)

protein 0.848 (0.104) 0.980 (0.055) 0.582 (0.048) 0.985 (0.050) 0.991 (0.035) 0.508 (0.009) 0.906 (0.118) 0.945 (0.098) 0.638 (0.117) 0.599 (0.081)
spruce 1.000 (0.003) 1.000 (0.000) 0.590 (0.060) 1.000 (0.000) 1.000 (0.000) 0.504 (0.005) 1.000 (0.002) 1.000 (0.002) 1.000 (0.001) 1.000 (0.001)

lodgepole 1.000 (0.001) 1.000 (0.001) 0.639 (0.085) 1.000 (0.000) 1.000 (0.000) 0.506 (0.006) 1.000 (0.002) 1.000 (0.002) 1.000 (0.000) 1.000 (0.000)
credit 0.611 (0.043) 0.813 (0.144) 0.550 (0.021) 0.685 (0.137) 1.000 (0.000) 0.504 (0.005) 0.565 (0.060) 0.624 (0.108) 0.603 (0.051) 0.739 (0.116)

insects (1 → 2) 0.976 (0.022) 0.887 (0.054) 0.902 (0.041) 0.967 (0.025) 0.959 (0.037) 0.698 (0.057) 0.733 (0.033) 0.786 (0.031) 1.000 (0.000) 0.999 (0.002)
insects (2 → 3) 0.968 (0.031) 0.981 (0.018) 0.994 (0.005) 0.999 (0.001) 1.000 (0.001) 0.895 (0.052) 1.000 (0.000) 0.999 (0.000) 0.987 (0.008) 0.996 (0.009)
insects (3 → 4) 0.915 (0.045) 0.804 (0.068) 0.821 (0.046) 0.909 (0.036) 0.940 (0.051) 0.688 (0.066) 0.691 (0.021) 0.687 (0.023) 0.995 (0.003) 0.987 (0.007)
insects (4 → 5) 0.989 (0.015) 0.991 (0.015) 0.998 (0.003) 1.000 (0.001) 1.000 (0.000) 0.878 (0.071) 1.000 (0.000) 1.000 (0.000) 0.999 (0.001) 0.994 (0.010)
insects (5 → 6) 0.974 (0.017) 0.890 (0.044) 0.922 (0.023) 0.961 (0.019) 0.982 (0.011) 0.860 (0.051) 0.932 (0.007) 0.933 (0.008) 0.997 (0.001) 0.996 (0.002)

sensorless 0.832 (0.112) 0.999 (0.008) 0.523 (0.013) 1.000 (0.000) 1.000 (0.000) 0.501 (0.003) 1.000 (0.000) 1.000 (0.000) 0.715 (0.139) 0.582 (0.083)
particle 0.860 (0.129) 0.876 (0.107) 0.530 (0.015) 0.922 (0.101) 0.941 (0.089) 0.503 (0.004) 0.786 (0.143) 0.861 (0.127) 0.706 (0.143) 0.526 (0.035)

Average Ranking 5.32 4.96 7.28 3.78 2.96 9.54 5.26 4.97 5.33 5.60
Nemenyi p-value < 10−16 < 10−16 < 10−16 < 10−16 - < 10−16 < 10−16 < 10−16 < 10−16 < 10−16

Table 5: FPR (top) and AUC (bottom) achieved by the considered methods in the high-ratio setting,
namely when histogram-based methods defineK = 16 bins and the monitored batches contain ν = 128
points. In parenthesis, the width of the 95%-confidence interval of the results.

QT QT KQT KQT KQT EIkM SPLL(C=3) SPLL(C=3) DT DT
(PCA) (Euclidean) (Mahalanobis) (Weighted Maha.) (PCA) (PCA)

unimodal 4.83% (0.48%) 4.81% (0.46%) 4.86% (0.47%) 4.82% (0.45%) 4.83% (0.48%) 4.82% (0.53%) 5.46% (0.75%) 5.92% (1.04%) 7.84% (1.16%) 7.75% (1.17%)
bimodal 4.80% (0.45%) 4.81% (0.46%) 4.80% (0.46%) 4.81% (0.44%) 4.80% (0.45%) 4.82% (0.51%) 5.53% (0.75%) 6.02% (1.06%) 7.65% (1.20%) 7.62% (1.09%)
nino 5.04% (0.49%) 4.99% (0.50%) 5.00% (0.53%) 5.02% (0.53%) 5.01% (0.54%) 4.83% (0.55%) 6.14% (1.21%) 7.69% (2.05%) 7.55% (1.20%) 7.57% (1.16%)

protein 4.97% (0.50%) 4.98% (0.56%) 4.97% (0.52%) 4.98% (0.54%) 5.03% (0.55%) 4.88% (0.61%) 13.15% (3.54%) 8.42% (2.33%) 7.65% (1.25%) 7.64% (1.25%)
spruce 4.81% (0.50%) 4.83% (0.48%) 4.82% (0.47%) 4.84% (0.49%) 4.90% (0.47%) 4.86% (0.59%) 11.43% (3.93%) 11.56% (3.97%) 7.56% (1.21%) 7.57% (1.16%)

lodgepole 4.83% (0.47%) 4.82% (0.50%) 4.85% (0.49%) 4.80% (0.47%) 4.90% (0.50%) 4.92% (0.57%) 10.78% (4.64%) 10.89% (4.68%) 7.60% (1.14%) 7.58% (1.12%)
credit 4.83% (0.47%) 4.96% (0.54%) 4.89% (0.48%) 4.85% (0.46%) 5.06% (0.56%) 4.96% (0.68%) 8.67% (2.26%) 16.06% (3.63%) 7.63% (1.15%) 7.59% (1.23%)

insects (1 → 2) 4.92% (0.50%) 4.93% (0.51%) 4.91% (0.50%) 4.93% (0.52%) 5.19% (0.64%) 4.93% (0.63%) 5.90% (2.04%) 6.48% (2.15%) 7.57% (1.16%) 7.60% (1.20%)
insects (2 → 3) 4.93% (0.53%) 4.91% (0.54%) 4.92% (0.52%) 4.96% (0.52%) 5.25% (0.62%) 4.96% (0.65%) 5.54% (1.85%) 6.16% (1.96%) 7.60% (1.19%) 7.59% (1.23%)
insects (3 → 4) 4.92% (0.48%) 4.89% (0.52%) 4.90% (0.52%) 4.88% (0.53%) 5.22% (0.64%) 4.89% (0.58%) 6.09% (1.99%) 6.69% (2.11%) 7.59% (1.19%) 7.54% (1.17%)
insects (4 → 5) 4.92% (0.50%) 4.95% (0.52%) 4.91% (0.51%) 4.92% (0.54%) 5.25% (0.65%) 4.91% (0.61%) 5.48% (1.76%) 6.01% (1.84%) 7.63% (1.24%) 7.56% (1.17%)
insects (5 → 6) 4.91% (0.54%) 4.90% (0.54%) 4.90% (0.56%) 4.92% (0.53%) 5.26% (0.72%) 4.90% (0.64%) 5.86% (2.05%) 6.19% (2.11%) 7.61% (1.22%) 7.63% (1.24%)

sensorless 4.84% (0.50%) 5.01% (0.55%) 4.82% (0.49%) 5.01% (0.56%) 7.42% (1.61%) 4.93% (0.61%) 4.33% (1.03%) 4.83% (0.76%) 7.55% (1.19%) 7.58% (1.22%)
particle 4.85% (0.50%) 4.87% (0.51%) 4.81% (0.46%) 4.94% (0.52%) 5.80% (1.02%) 4.84% (0.61%) 5.93% (2.01%) 6.07% (2.05%) 7.52% (1.10%) 7.60% (1.19%)

unimodal 0.957 (0.079) 0.976 (0.057) 0.946 (0.105) 0.993 (0.016) 0.994 (0.013) 0.874 (0.154) 0.996 (0.006) 0.989 (0.040) 0.786 (0.167) 0.806 (0.190)
bimodal 0.900 (0.110) 0.930 (0.090) 0.904 (0.118) 0.954 (0.060) 0.968 (0.042) 0.821 (0.158) 0.915 (0.126) 0.895 (0.164) 0.751 (0.155) 0.767 (0.160)
nino 0.845 (0.143) 0.905 (0.135) 0.607 (0.072) 0.904 (0.138) 0.922 (0.122) 0.528 (0.029) 0.816 (0.172) 0.841 (0.183) 0.726 (0.152) 0.582 (0.081)

protein 0.899 (0.104) 0.985 (0.051) 0.617 (0.074) 0.993 (0.035) 0.995 (0.027) 0.514 (0.015) 0.918 (0.118) 0.954 (0.093) 0.704 (0.148) 0.595 (0.085)
spruce 0.999 (0.014) 1.000 (0.000) 0.601 (0.066) 1.000 (0.000) 1.000 (0.000) 0.507 (0.007) 1.000 (0.000) 1.000 (0.000) 1.000 (0.002) 1.000 (0.002)

lodgepole 1.000 (0.000) 1.000 (0.000) 0.654 (0.099) 1.000 (0.000) 1.000 (0.000) 0.511 (0.016) 1.000 (0.002) 1.000 (0.002) 1.000 (0.000) 1.000 (0.000)
credit 0.698 (0.079) 0.867 (0.127) 0.602 (0.053) 0.780 (0.146) 1.000 (0.000) 0.508 (0.011) 0.597 (0.085) 0.660 (0.132) 0.695 (0.091) 0.820 (0.131)

insects (1 → 2) 0.998 (0.005) 0.962 (0.048) 0.962 (0.035) 0.972 (0.039) 0.993 (0.019) 0.836 (0.071) 0.810 (0.035) 0.866 (0.029) 1.000 (0.000) 1.000 (0.000)
insects (2 → 3) 0.993 (0.017) 0.995 (0.012) 1.000 (0.001) 1.000 (0.000) 1.000 (0.000) 0.962 (0.014) 1.000 (0.000) 1.000 (0.000) 0.999 (0.002) 1.000 (0.001)
insects (3 → 4) 0.983 (0.029) 0.897 (0.078) 0.904 (0.054) 0.942 (0.049) 0.990 (0.024) 0.835 (0.084) 0.753 (0.025) 0.745 (0.028) 1.000 (0.000) 1.000 (0.001)
insects (4 → 5) 0.998 (0.008) 0.997 (0.008) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.950 (0.021) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.999 (0.004)
insects (5 → 6) 0.999 (0.003) 0.971 (0.033) 0.985 (0.016) 0.992 (0.008) 1.000 (0.000) 0.963 (0.017) 0.979 (0.004) 0.979 (0.005) 1.000 (0.000) 1.000 (0.000)

sensorless 0.862 (0.120) 1.000 (0.004) 0.542 (0.027) 1.000 (0.000) 1.000 (0.000) 0.502 (0.003) 1.000 (0.000) 1.000 (0.000) 0.738 (0.179) 0.595 (0.104)
particle 0.886 (0.116) 0.931 (0.090) 0.555 (0.030) 0.976 (0.051) 0.985 (0.039) 0.506 (0.006) 0.838 (0.135) 0.901 (0.112) 0.798 (0.140) 0.542 (0.054)

Average Ranking 5.24 4.93 7.08 3.82 2.98 9.37 5.57 5.34 5.11 5.56
Nemenyi p-value < 10−16 < 10−16 < 10−16 < 10−16 - < 10−16 < 10−16 < 10−16 < 10−16 < 10−16
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