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Abstract
We present Kernel QuantTree (KQT), a non-
parametric change detection algorithm that moni-
tors multivariate data through a histogram. KQT
constructs a nonlinear partition of the input space
that matches pre-defined target probabilities and
specifically promotes compact bins adhering to
the data distribution, resulting in a powerful de-
tection algorithm. We prove two key theoretical
advantages of KQT: i) statistics defined over the
KQT histogram do not depend on the stationary
data distribution ϕ0, so detection thresholds can
be set a priori to control false positive rate, and
ii) thanks to the kernel functions adopted, the
KQT monitoring scheme is invariant to the roto-
translation of the input data. Consequently, KQT
does not require any preprocessing step like PCA.
Our experiments show that KQT achieves supe-
rior detection power than non-parametric state-of-
the-art change detection methods, and can reliably
control the false positive rate.

1. Introduction
Change Detection (CD) is the problem of detecting distri-
bution changes ϕ0 → ϕ1 in a datastream, namely detecting
when the data-generating process drifts from a stationary
distribution ϕ0 towards an unknown post-change distribu-
tion ϕ1. Here, we address the problem of batch-wise CD,
where data are analyzed in fixed-size batches that, under
normal conditions, contain samples drawn from ϕ0. The
timely detection of distribution changes and the control
over the false alarm rate are fundamental problems that
have been widely explored in both the Machine Learning
(Gama et al., 2014) and Statistical Process Control (Bas-
seville et al., 1993) literature. Among the many applications
of change-detection algorithms, we mention fault detection
(Tartakovsky et al., 2006), financial monitoring (Ross et al.,
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2011), cryptographic attacks (Frittoli et al., 2020), and qual-
ity control (Hawkins et al., 2003).

Most CD algorithms consist of three major ingredients: i)
a model ϕ̂0 describing stationary data, which is usually
learned from a training set, ii) a statistical test, where a test
statistic T is computed to assess the consistency of incoming
data to ϕ̂0, and iii) a decision rule on T to establish whether
a change has occurred. In many real-world multivariate
scenarios, estimating a density model for the stationary data
is often unfeasible. Therefore, non-parametric methods that
describe stationary data by flexible models are preferred.
Unfortunately, most non-parametric statistics are based on
ranking (Ross & Adams, 2012) and can only be applied
to univariate data. In Section 3, we overview the few non-
parametric solutions to monitor multivariate datastreams.
A relevant example is QuantTree (QT) (Boracchi et al.,
2018), a change detection algorithm based on a histogram
partitioning of the input space, which is supported by sound
theoretical results. In particular, QT allows to operate at a
controlled false alarm rate without knowing ϕ0 nor resorting
to bootstrap to estimate detection thresholds.

A fundamental limitation of QT is that splits are defined
along the axis, as in Figure 1(a), resulting in a partitioning
that does not always adhere to the input distribution. To
mitigate this problem, a preprocessing stage is typically
introduced to align the split directions to the principal com-
ponents of the training set, as shown in Figure 1(b). While
this procedure is often beneficial, we observe (Section 6)
that it can worsen the detection performance in some unpre-
dictable cases. Moreover, many bins in Figure 1(a)(b) have
non-finite volumes, which can lead to poor estimation of
bin probabilities.

In this paper, we introduce Kernel QuantTree (KQT), a non-
parametric and multivariate CD algorithm that constructs
histogram bins via measurable kernel functions, resulting
in a powerful CD test. In contrast with the QT algorithm,
which constructs bins by axis-aligned splits, KQT partitions
the space in K−1 compact bins defined by kernel functions
evaluated on the training data. An additional bin, denoted as
the residual bin, is non-compact and gathers all the points
that do not fall in any other bin. Figure 1(c)-(d)-(e) shows
that the KQT bins are compact subsets of the domain. Our
intuition is that compact bins increase the flexibility when
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(a)

QuantTree (w/o PCA)

(b)

QuantTree (w/ PCA)

(c)

KQT (Euclidean)

(d)

KQT (Mahalanobis)

(e)

KQT (Weighted Mahalanobis)

Figure 1. QuantTree generates bins as intersection of hyperplanes, performing cuts along the axis (a). After a preprocessing through
PCA, the cuts are oriented along the principal directions (b). Kernel QuantTree generates bins that are subsets of d-dimensional spheres
according to the underlying kernel functions, namely the Euclidean (c), Mahalanobis (d) and Weighted Mahalanobis (e) distances.

modeling ϕ0 by fitting a histogram h to training data. More-
over, estimating the bin probabilities under ϕ0, which are
fundamental to compute the test statistic Th, is less accurate
on non-compact bins.

In Section 5, we prove that KQT features two theoretical
properties that have significant implications in change detec-
tion. First, the distribution of the test statistic Th computed
from a KQT histogram h does not depend on the stationary
distribution ϕ0. Consequently, detection thresholds τ can be
set a priori as in QT, without knowing ϕ0. Second, the mon-
itoring performed by KQT using specific kernel functions is
not influenced by preprocessing based on roto-translations,
including alignment to principal components. Thanks to
these properties, KQT outperforms state-of-the-art alterna-
tives on a broad experimental testbed illustrated in Section
6. In particular, KQT achieves better detection performance
than the alternatives independently of preprocessing steps
based on roto-translations.

In summary, these are our main contributions:

i) We present Kernel QuantTree, a non-parametric CD
method based on a histogram where bins are defined
by kernel functions. KQT achieves state-of-the-art
detection performance on multivariate datastreams;

ii) We prove that statistics defined over the KQT his-
tograms do not depend on ϕ0, but only on few KQT
parameters. This enables control of the FPR by thresh-
olds τ set a priori, via Monte Carlo simulations;

iii) We prove that the monitoring performed by KQT is
independent of any preprocessing by roto-translations.

2. Problem Formulation
We address the problem of change detection in batch-wise
monitoring settings, where stationary data are realizations
of a random vector X with unknown probability density
function ϕ0. We assume that a training set of stationary
samples TR = {x1, . . . ,xN} ⊂ Rd is provided, and that

incoming data are processed in batches W of ν ∈ N samples
each. We denote as W ∼ ϕ0 when all the samples in the
batch W are drawn from ϕ0.

Our goal is to design a CD algorithm that: i) detects distribu-
tion changes in incoming batches, and ii) controls the False
Positive Rate (FPR), namely the probability of mistakenly
detecting a change in stationary data. We formulate this CD
problem as a Hypothesis Test to establish whether W ∼ ϕ0

(null hypothesis) or W ∼ ϕ1 ̸= ϕ0, where ϕ1 is the un-
known post-change distribution. We pursue the mainstream
approach of computing a test statistic T on each batch W
and detecting a change when

T (W ) > τ, (1)

where τ ∈ R is the threshold that we set to control the FPR.

For the sake of simplicity, we assume that a batch W is ei-
ther drawn from ϕ0 or from a different unknown distribution
ϕ1 ̸= ϕ0. However, CD algorithms can in principle detect
batches drawn from a mixture of ϕ0 and ϕ1, even though
the detection power is expected to be lower in this case.

3. Related Work
Change detection in multivariate datastreams is a challeng-
ing problem, which can be significantly simplified when ϕ0

belongs to a known parametric family since the model ϕ̂0

is obtained by estimating its parameters. The most popu-
lar solutions pursuing this approach consist in monitoring
the likelihood of incoming data with respect to ϕ̂0 fitted
on TR. Viable options for ϕ̂0 are Gaussian process (Saatçi
et al., 2010), Gaussian Mixtures (Kuncheva, 2011) or kernel
density estimators (Krempl, 2011). In (Kuncheva, 2011)
and (Kuncheva & Faithfull, 2013), the Semiparametric Log-
Likelihood (SPLL) algorithm fits a Gaussian Mixture Model
(GMM) to TR and compares incoming batches with batches
from TR by a likelihood test. Moreover, in SPLL, it is not
possible to set a priori the detection threshold to control the
FPR, as the distribution of the test statistic depends on ϕ0.
Moreover, adopting a GMM to approximate ϕ0 might not
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always fit real-world data, as demonstrated by our experi-
ments on high-dimensional datasets.

There are only a few recent multivariate methods that per-
form non-parametric change detection, namely, that assume
that ϕ0 and ϕ1 are unknown. Among these, we focus on
histogram-based algorithms, since these are non-parametric
by design and can efficiently process datastreams in batches.
As such, histogram-based algorithms represent very practi-
cal solutions to monitor multivariate datastreams. Density
Tree (Criminisi et al., 2012) constructs a space partitioning
by iteratively splitting regions to maximize an information-
gain metric. In this case, the distribution of the test statistic
depends on ϕ0, thus detection thresholds need to be set by
bootstrap on TR. Equal Intensity K-means (EIKM) (Liu
et al., 2020) divides the input space using K-means cluster-
ing, resulting in bins that yield an equal probability under ϕ0.
EIKM is designed to handle multimodal distributions, e.g.,
Gaussian Mixtures, and the detection thresholds are given
by asymptotic approximations of the Pearson test statistic.
QuantTree (Boracchi et al., 2018) defines a partitioning S
of the input space in K bins by axis-aligned cuts. The the-
oretical properties of QT guarantee that the distribution of
test statistics defined over bin probabilities does not depend
on ϕ0, which allows to set detection thresholds a priori,
with synthetically generated data through a very efficient
scheme. The splits are performed such that the probability
of a stationary sample to fall in each bin is close to a set
of target probabilities {πk} provided as input parameters.
Since the data splits are limited to the axis directions, the
bins in QT require a preprocessing stage whose outcome, in
terms of detection power, is uncertain, as demonstrated in
our experiments (Section 6). KQT preserves the properties
of QT in terms of setting detection thresholds and FPR con-
trol, and overcomes QT limitation by constructing compact
bins that are not affected by roto-translations, thus better
approximate the probability measure of each bin under ϕ0.

4. Kernel QuantTree
We present Kernel QuantTree (KQT)1, a CD algorithm that
solves a major limitation of QuantTree (QT) while gener-
alizing and extending its theoretical guarantees. The KQT
histogram is constructed by iteratively splitting the input
space Rd into K bins {Sk} such that the probability of a
stationary sample x ∼ ϕ0 to fall in Sk is close to a target
probability πk, which are provided as input parameters. The
peculiarity of KQT is that each bin Sk for k < K is de-
fined by a measurable kernel function fk : Rd → R and a
split value qk ∈ R, and corresponds to a compact set in Rd.
We denote as Generalized QuantTree (GQT) partitioning
the resulting histogram h = {(Sk, π̂k)}Kk=1, which yields a
partition of the input space Rd, where π̂k is the empirical

1Code available at github.com/diegocarrera89/quantTree.

Rd

S1 = {x ∈ Rd | f1(x) ≤ q1}

S2 = {x ∈ Rd \ S1 | f2(x) ≤ q2}. . .

SK−1 = {x ∈ Rd\⋃j<K−1 Sj | f1(x) ≤ qK−1}
SK

Figure 2. The Generalized QuantTree histogram is a binary split-
ting tree where splits isolate leaves, i.e. bins of the histogram.

probability of x ∼ ϕ0 to fall in Sk.

As illustrated in Figure 2, a GQT partitioning corresponds
to an extremely imbalanced binary tree, where each split
isolates a leaf, corresponding to a bin Sk. In what fol-
lows (Section 4.1 and 4.2), we illustrate in detail the GQT
partitioning scheme, providing a few examples of kernel
functions. In Section 5, we demonstrate that the distribution
of any test statistic Th defined over a GQT partitioning does
not depend on ϕ0, extending the theoretical results from QT.
This property enables setting the detection threshold τ in
(1) a priori by Monte Carlo simulations.

The monitoring scheme by KQT operates as follows. Given
an input batch W containing ν test samples, we compute the
test statistic Th(W ) and detect changes when this exceeds
the threshold τ . While the theoretical properties of KQT
hold for all the statistics that only depend on {yk}, the
numbers of samples in W falling in bins {Sk}, we consider
the Pearson χ2 statistic (Lehmann et al., 2005):

Th(W ) = Th(y1, y2, . . . , yK) =

K∑

k=1

(yk − νπk)
2

νπk
, (2)

where {πk} are the target bin probabilities. In Section 5.3,
we also prove that under some mild assumption on the kernel
function fk, this monitoring scheme becomes independent
of any roto-translation applied to the data, including the
PCA preprocessing. Finally, in Section 4.4, we analyze the
computational complexity of KQT both at the training and
monitoring stages.

4.1. Generalized QuantTree (GQT) Partitioning

The two elements defining each bin in a GQT are: i) a
measurable function fk : Rd → R mapping multivariate
data to a single dimension and ii) a split value qk ∈ R,
chosen to match the target probability πk. Algorithm 1
illustrates the GQT histogram construction, which requires
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Algorithm 1 Construction of the GQT histogram
1: Input: training set TR = {xi}Ni=1 ⊂ Rd, target proba-

bilities {πk}Kk=1

2: Output: GQT histogram h = {(Sk, π̂k)}Kk=1

3: Set X 0 = TR
4: for k = 1, . . . ,K − 1 do
5: Compute π̃k = πk(1−

∑
j<k πj)

−1

6: Compute {fk(xi)} for xi ∈ X k−1

7: Set qk as the π̃k-quantile of {fk(xi)}
8: Sk = {x ∈ ⋂

j<k Sj | fk(x) ≤ qk}
9: X k = {x ∈ X k−1 | fk(x) > qk}

10: end for
11: SK = Rd \⋃j<K Sj

as input a training set TR and the target probabilities {πk}.
The rationale underpinning the space partitioning of KQT
is to iteratively construct bins by selecting sublevel sets of
the kernel functions fk. In particular, S1 is defined as the
sublevel set of f1 with respect to the split value q1:

S1 = {x ∈ Rd | f1(x) ≤ q1} . (3)

The other bins Sk, 1 < k < K are obtained by isolating
sublevel sets from the space that is not yet assigned to a bin

Sk = {x ∈
⋂

j<k

Sj | fk(x) ≤ qk} for k < K, (4)

where Sj denotes the complement of Sj in Rd. The last bin,
SK = Rd \⋃j<K Sj , is the residual bin, which contains
all the points that do not fall in the previous bins.

The split values qk are defined at each iteration by first
identifying the set X k ⊂ TR which contains the training
points that do not fall in any bin {Sj | j < k}. In the
beginning, no training samples have been assigned to a bin,
thus, we set X 0 = TR and N0 = |TR| (line 3). At the k-th
step, we first the percentage of points of X k−1 that must
fall in Sk to meet the target probability πk (line 5), which
we denote as:

π̃k = πk

(
1−

∑

j<k

πj

)−1

, (5)

such that Sk contains πkN = π̃k |Xk−1| points. Then, we
evaluate fk on all the samples in X k−1 (line 6), and compute
the split value qk as the π̃k-quantile of the projected samples
{fk(x),x ∈ X k−1} (line 7). Finally, we define Sk as in
(4) (line 8), and we update the set of points X k that will
be used to construct the next bin (line 9). The process
results in the GQT histogram h = {(Sk, π̂k)}Kk=1, where
π̂k is the percentage of training points that fall in Sk and
approximates the probability of x ∼ ϕ0 to fall in Sk.

The GQT extends the partitioning scheme underpinning QT,
which corresponds to using linear split functions:

fk(x) = ±1 · Pjx, (6)

where Pj is the projection over a randomly selected com-
ponent j and ±1 randomly introduces a sign flip for the
projection. In the next section, we present specific measur-
able functions fk that we employ in KQT.

4.2. Employed Kernel Functions in KQT

We define the kernel functions fk : Rd → R as distances
from a centroid ck ∈ TR, selected from the training set:

fk(x) = (x− ck)
TA(x− ck), (7)

where A ∈ Rd×d is the kernel matrix, which induces a
distance measure in Rd. In particular, the bins {Sk} in (4)
are subsets of d-dimensional spheres centered in {ck} and
having radii {qk}, where the distances are measured with
respect to the metric induced by A. Since spheres in Rd are
compact sets, all the bins Sk of a KQT, but the residual SK ,
are compact and have a finite volume.

Here, we construct KQT using the Euclidean, the Maha-
lanobis, and the Weighted Mahalanobis (Tipping, 1999)
distances, whose bins are illustrated in Figure 1. We ob-
tain the Euclidean distance by setting A = Id, namely, the
d-dimensional identity matrix, resulting in isotropic bins.
Figure 1(c) shows that these bins poorly fit the data dis-
tribution. We obtain the Mahalanobis distance by setting
A = Σ−1, where Σ ∈ Rd×d is the sample covariance matrix
of TR, and in this case, the bins are anisotropic. Figure 1(d)
also shows that bins are elongated towards the directions
with larger variance, resulting in a better fit to the data. How-
ever, these bins poorly approximate TR when this exhibits
multiple clusters, since multiple bins might span different
clusters. To promote bins containing samples from a single
cluster, we adopt the Weighted Mahalanobis distance and
fit a Gaussian Mixture of M components to TR, and then
assign a larger distance to points that belong to different
components of the GMM. In KQT, we use M = 4 compo-
nents, and the Weighted Mahalanobis kernel matrix is then
defined as:

A(x) =

∑M
m=1 ρm · im(x, c) · C−1

m∑M
m=1 ρm · im(x, c)

, (8)

where µm, Cm, and ρm denote the mean, covariance matrix,
and mixing probability of the m-th Gaussian, respectively.
The matrix A in (8) represents a weighted average of the
inverse covariance matrices of the GMM components. As in
(Tipping, 1999), the weights are proportional to the mixing
probabilities ρm and im(x, c), which is a computationally-
tractable approximation of the distance between the point x
and the bin centroid c.
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In the following, we discuss the centroid selection strategy
employed in KQT.

4.3. Centroid Selection

The criteria to select the centroids {ck} from TR is key in
KQT, as this determines both the spatial location of the bin
Sk and the split value qk associated with the kernel function
fk. Therefore, we select the centroid in TR by optimizing a
partition-quality metric I , namely,

ck = argmax
c∈Xk−1

I[c], (9)

where X k−1 are the training samples used to construct Sk,
and I[c] denotes the value of the metric when we select c
as a centroid. In KQT, we consider two centroid selection
strategies: i) maximizing the information gain associated
with the split and ii) minimizing the Gini index of the dis-
tances to the centroid. For computational reasons, when
Xk−1 is large, we restrict the search space to a subset of
randomly sampled potential centroids {c} ⊂ Xk−1.

The information gain (Mitchell, 1997) measures the de-
crease in the overall entropy H after a split in the data and
is typically used to assess the split quality in a data set, for
example by Density Tree (Criminisi et al., 2012). The best
split lowers the data entropy, maximizing the information
gain. In KQT, we compute the information gain yielded by
the split that divides X k−1 into X k and X k = X k−1 \X k.
In particular, we can compute the entropy H(B) of a set of
points B using the Gaussian approximation:

H(B) = (1/2) log
(
(2πe)d det(cov[B])

)
. (10)

where cov[B] represents the sample covariance matrix com-
puted over B. The information gain associated with the
centroid c is defined as

I[c] = |Xk−1|H(Xk−1)− (
∣∣Xk

∣∣H(Xk) + |Xk|H(Xk)).
(11)

In the supplementary material, we discuss the simplifica-
tions we introduced to lower the computational burden of
assessing (11) for multiple potential centroids, like the Gaus-
sian approximation of H , which does not influence the non-
parametric nature of KQT.

The Gini index (Gini, 1912) measures the level of uniformity
in an empirical distribution and takes values between 0
(perfect equality) and 1 (maximum inequality). In KQT,
we use the Gini index to prevent the selection of centroids
in low-density regions. Specifically, we compute the Gini
index of the distances between the training samples and the
centroid as

I[c] =

∑
i,j |fk(xi)− fk(xj)|
2 |Xk−1|

∑
i fk(xi)

. (12)

We select the centroid that minimizes (12) to promote bins
that cover densely populated regions of the input space.

4.4. Computational Remarks

In terms of computation cost, the training of a KQT com-
prises i) the projection of TR by fk, whose cost depends on
the specific kernel function, ii) the computation of the split
value, which costs O(N), and iii) the centroid selection. The
cost of computing the Euclidean distance is O(d), while the
Mahalanobis costs O(d2) and the Weighted Mahalanobis
costs O(Md2), where M is the number of Gaussian compo-
nents fitted to TR. The cost of computing the information
gain is dominated by the computation of the determinant
in (10), which costs O(d3) while computing the Gini index
only requires the distances between the training samples and
the centroids, already computed to define Sk. Overall, the
cost of the index computation is multiplied by the number
of centroids T tested during the selection procedure by (9).
Therefore, an upper bound for the cost of KQT construction
is O(KT (N + MNd2 + d3)) when using the Weighted
Mahalanobis distance and the information gain. During
monitoring, the only operation performed is the projection
by fk of the samples of a batch W , resulting in a cost of
O(νKMd2) in case of the Weighted Mahalanobis distance.

Table 1 reports the complexity of all the methods considered
in our experiments, showing that KQT with the Weighted
Mahalanobis distance is most computationally demanding,
both in terms of training and inference. However, the experi-
ments discussed in Section 6 prove that this cost is balanced
by superior detection performance.

Table 1. Comparison of the computational complexity of KQT and
the other considered methods, where M is the number of Gaussian
components employed by KQT with the Weighted Mahalanobis
distance, and R is the number of splits of Density Tree.

Method Training Cost Inference Cost

KQT (Weighted Maha.) O(KT (N +MNd2 + d3)) O(νKMd2)
QuantTree O(KN logN) O(νK)
EIKM O(K2N logN) O(νK)
SPLL O(Nd2) O(νd2)
Density Tree O(KRd3) O(νK)

5. Theoretical Guarantees
This section illustrates the theoretical properties of KQT
and is organized as follows. In Section 5.1, we prove that
the distribution of the test statistic computed by GQT over
stationary data is independent of ϕ0, hence generalizing the
main result of QT from (Boracchi et al., 2018) to a more
extensive set of histogram-based monitoring schemes, in-
cluding KQT. Then, in Section 5.2, we show how to exploit
this result to compute detection thresholds by Monte Carlo
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simulations such that the empirical FPR matches any tar-
get value α. Finally, in Section 5.3, we prove that KQT is
invariant to roto-translations of the data when we use the
kernel functions in Section 4.2.

5.1. Generalization of the QT Independence Theorem

The following result implies that the distribution of a test
statistic like (2) computed over stationary batches by a GQT
is independent of ϕ0, the input dimension d and the em-
ployed functions fk. Thus, such distribution can be empir-
ically computed via Monte Carlo simulations and used in
any monitoring scenario as long as {πk}k, the training set
size N , and the batch size ν are fixed.

Theorem 5.1. Let h = {(Sk, π̂k)}Kk=1 be a Generalized
QuantTree histogram constructed using measurable func-
tions fk : Rd → R, ∀k. Let Th be a statistic defined over
batches W such that Th(W ) only depends on the number of
samples y1, . . . , yK of W falling in the bins of h. Then, the
distribution of Th over stationary batches W ∼ ϕ0 depends
only on the batch size ν, the number of training points N
and target probabilities {πk}k.

The proof of Theorem 5.1 follows three propositions as the
proof of Theorem 1 in (Boracchi et al., 2018), which we
generalize to a broader set of partitioning schemes. The first
proposition states that the probability of a point drawn from
the stationary distribution ϕ0 to fall in any bin of a GQT
histogram follows a Beta distribution.

Proposition 5.2. Let x1,x2, . . . ,xM be i.i.d. realizations
of a continuous random vector X defined over D ⊂ Rd. Let
f : Rd → R be a measurable function, and let Z = f(X).
We denote with z(1) ≤ z(2) ≤ · · · ≤ z(M) the sorted images
of {xj} through f . For any L ∈ {1, 2, . . . ,M}, we define
the sublevel sets

Qf,L := {x ∈ D : f(x) ≤ z(L)}. (13)

Then, the random variable p = PX(Qf,L) is distributed as
Beta(L,M − L+ 1).

The proof of Proposition 5.2 is reported in the supple-
mentary material. In the following, we denote the prob-
ability of a stationary point x ∼ ϕ0 to fall in bin k as
pk = Pϕ0

(x ∈ Sk). Moreover, we denote as p̃k = Pϕ0
(x ∈

Sk | x /∈ ⋃
j<k Sj) the probability of x to fall in Sk and not

in any of the previous bins.

Proposition 5.3. For a Generalized QuantTree histogram,
the following relation holds:

pk = p̃k ·
(
1−

∑

j<k

pj

)
= p̃k

∏

j<k

(
1− p̃j

)
. (14)

Proposition 5.4. For a Generalized QuantTree histogram,
the random variables {p̃k} are independent.

The proofs of Propositions 5.3 and 5.4 are equivalent to
the proofs of the Proposition 2 and 3 for QT (Boracchi
et al., 2018). Finally, the proof of Theorem 5.1 follows from
Propositions 5.2-5.3-5.4 and from the following facts: i)
the employed statistic (2) only depends on the number of
samples falling in each bin {yk}, and ii) when the batch is
drawn from ϕ0, the vector [y1, . . . , yK ] is a realization of a
Multinomial distribution of parameters (ν, p1, . . . , pK).

5.2. Threshold Computation for FPR Control

From Theorem 5.1, it follows that in GQT we can compute
a detection threshold τ = τ(α) yielding an FPR α when
used as in (1) for any test statistic Th that only depends
on {yk}. For this purpose, we estimate by Monte Carlo
simulations the empirical distribution of Th on stationary
batches. Interestingly, (Frittoli et al., 2022) prove that the
empirical distribution of N samples drawn from ϕ0 in a
QT histogram follows a Dirichlet distribution of parameters
{π1N, . . . , πK−1N, πKN + 1}, where {πk} are the target
probabilities used for constructing the histogram. Since the
projection function does not influence the proof in (Frittoli
et al., 2022), the same result holds for GQT. Moreover,
the distribution of a batch W ∼ ϕ0 in the histogram bins
follows a Multinomial distribution. Thus, we can efficiently
simulate the construction of a GQT and compute the values
Th over W ∼ ϕ0 by Monte Carlo simulations, such that τ
is the (1− α)-quantile of the resulting distribution.

Remarkably, the distribution of the test statistic does not
depend on the employed kernel functions {fk}. Therefore,
we can use the same detection thresholds for any GQT that
uses any measurable function fk. Moreover, these detection
thresholds also work for QT, which is a special case of GQT
that uses (6).

5.3. Roto-Translation Invariance of KQT

In this section, we prove that KQT is invariant under roto-
translations when the employed kernel function is either the
Euclidean, Mahalanobis or Weighted Mahalanobis distance.
We denote a roto-translation as Φ : Rd → Rd, and the
image of a set B ⊂ Rd as Φ(B) = {Φ(x) | x ∈ B}.
The following theorem states that the two KQT histograms
h = {(Sk, π̂k)} and h′ = {(S′

k, π̂
′
k)}, constructed with and

without preprocessing by Φ, respectively, are equivalent.

Theorem 5.5. Let Φ : Rd → Rd be a roto-translation.
Let h = {(Sk, π̂k)} and h′ = {(S′

k, π̂
′
k)} be the KQT

histograms constructed from the training sets TR ⊂ Rd

and TR′ = Φ(TR), where the kernel function is either
the Euclidean, Mahalanobis or Weighted Mahalanobis dis-
tance. Then, we have that S′

k = Φ(Sk) and π̂′
k = π̂k for

k = 1 . . . ,K. In particular, for any batch W , if we compute
W ′ = Φ(W ), we have that Th(W ) = Th′(W ′).
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Theorem 5.5 proves that, for the considered kernel functions,
the value of the test statistic computed over a batch W of
data does not change when we employ a roto-translation
Φ for preprocessing, including PCA, that is sometimes re-
quired for QT to achieve good detection performance. The
proof of Theorem 5.5 is reported in the supplementary ma-
terial and relies on the fact that the construction of the
two histograms uses the same points (up to Φ), namely
X ′

k = Φ(X k), to define each bin. In particular, we need to
prove that our centroid selection strategy results in the same
centroid (up to Φ) for Sk and S′

k:

Lemma 5.6. Let X k−1 and X ′
k−1 = Φ(X k−1) be the set

of points used to construct the KQT histogram bins Sk and
S′
k, respectively. Then, the centroid selection by (9) results

in centroids ck and c′k = Φ(ck).

In the supplementary material, we prove this lemma, and we
use it in the proof of Theorem 5.5 to show by induction that
Sk = S′

k for every k. Consequently, every batch W will
result in the same value of test statistic because if a point
x ∈ W falls in Sk, then Φ(x) ∈ W ′ will fall in S′

k.

6. Experiments
In this section, we validate KQT through several experi-
ments, proving that KQT i) reaches detection performance
that are statistically superior than state-of-the-art algorithms,
and ii) can accurately control the FPR.

6.1. Datasets

We present the synthetic and real-world datasets that we
employ in our experiments.

In each experiment, we consider TR made of N = 4096
points sampled without replacement by ϕ0. During testing,
we randomly sample 5000 batches of ν samples from ϕ0

and 5000 batches of ν samples from ϕ1 to robustly assess
detection performance.

Synthetic. We consider two synthetic settings with d = 4,
the unimodal and the bimodal. In the unimodal setting, the
stationary distribution ϕ0 is a 0-mean Gaussian with a ran-
dom covariance matrix. The post-change distribution ϕ1

is obtained by roto-translation using the CCM framework
(Alippi et al., 2017), such that the Kullback-Leibler distance
between ϕ0 and ϕ1 is 1. In the bimodal setting, ϕ0 is a
Gaussian mixture of two slightly-overlapping components,
and ϕ1 is again generated by a roto-translation of each com-
ponent of ϕ0 computed using CCM. In the supplementary
material, we discuss the same experiment performed with
d ∈ {4, 8, 16, 32, 64, 128}.

INSECTS. The INSECTS dataset (Souza et al., 2020) con-
tains feature vectors (d = 33) extracted from sensor mea-
surements describing the wing-beat frequency of six (anno-

tated) species of flying insects. This dataset contains real
changes caused by temperature modifications that affect the
insects’ flying behavior. We set up the change detection
experiment such that ϕ0 describes measurements acquired
at a temperature, and the change ϕ0 → ϕ1 corresponds to a
temperature change. We denote as i → i+1 the considered
temperature changes, with i ∈ {1, 2, 3, 4, 5}.

UCI. We employ real-world datasets from the UCI Ma-
chine Learning Repository (Dua & Graff, 2017) and from
(Dal Pozzolo et al., 2017), with dimensions ranging from
d = 5 to d = 50, reported in Table 2. We standardize these
datasets and add a negligible amount of noise η ∼ N(0, σ)
to each component to prevent the many repeated values
from harming the histogram construction. The values of
σ for each dataset are reported in the supplementary mate-
rial. These datasets contain no distribution changes, thus
stationary samples are drawn by sampling the dataset. We
generate a post-change distribution ϕ1 by shifting stationary
data in a random direction with a magnitude proportional to
the variance of each component.

Swarm. The Swarm Behavior classification dataset from
the UCI Machine Learning Repository (Dua & Graff, 2017)
comprises high-dimensional data (d = 2400) describing
the motion of large groups of animals, which are labeled as
flocking or not-flocking. We define the stationary distribu-
tion ϕ0 as the distribution of data describing flocking groups
of animals. In contrast, the post-change distribution ϕ1 is
defined by data corresponding to non-flocking animals.

High-dimensional datasets represent a challenging scenario
for change detection algorithms, especially when they re-
quire estimating a density model. Therefore, these al-
gorithms typically employ dimensionality-reduction tech-
niques to map data to lower dimensions (Thudumu et al.,
2020). To show that high-dimensional problems can be
tackled by KQT upon employing such techniques, in our
experiments we apply a PCA-based preprocessing step, re-
taining the 32 components explaining the most variance in
the data.

6.2. Figures of Merit

We assess the performance of CD algorithms with two stan-
dard figures of merit, FPR and AUC. We set the detection
thresholds in our experiments to yield an empirical FPR of
α = 5%. To compare the detection power, we rank the algo-
rithms according to their AUC, and we report their average
rank (Demšar, 2006) over all the datasets and over 500 runs
of each experiment. Moreover, we report the p-values of
the Nemenyi post-hoc test (Nemenyi, 1963), comparing the
AUCs of each method against the best-performing one. In
Table 2, we mark in bold the largest AUC achieved over each
dataset. We also underline values when the Nemenyi test
confirms that the difference with the second best-performing
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Table 2. FPR/AUC achieved by the considered methods with K = 16 bins and batches of ν = 128 points. We report the average ranking
with respect to the AUC and the p-value of the Nemenyi test. For each dataset, we mark in bold the AUCs of the best-performing method,
and underline them when found to be significantly different from the second best-performing.

QT QT KQT KQT KQT EIkM SPLL PCA-SPLL DT DT
d (w/o PCA) (w/ PCA) (Euclidean) (Mahalanobis) (Weighted Maha.) (C=3) (C=3) (w/o PCA) (w/ PCA)

unimodal 4 4.83%/ 0.96 4.81%/ 0.98 4.86%/ 0.95 4.82%/ 0.99 4.83%/ 0.99 4.82%/ 0.87 5.46%/ 1.00 5.92%/ 0.99 7.84%/ 0.79 7.75%/ 0.81
bimodal 4 4.80%/ 0.90 4.81%/ 0.93 4.80%/ 0.90 4.81%/ 0.95 4.80%/ 0.97 4.82%/ 0.82 5.53%/ 0.92 6.02%/ 0.90 7.65%/ 0.75 7.62%/ 0.77

nino 5 5.04%/ 0.84 4.99%/ 0.91 5.00%/ 0.61 5.02%/ 0.90 5.01%/ 0.92 4.83%/ 0.53 6.14%/ 0.82 7.69%/ 0.84 7.55%/ 0.73 7.57%/ 0.58
protein 9 4.97%/ 0.90 4.98%/ 0.98 4.97%/ 0.62 4.98%/ 0.99 5.03%/ 0.99 4.88%/ 0.51 13.15%/ 0.92 8.42%/ 0.95 7.65%/ 0.70 7.64%/ 0.59
spruce 10 4.81%/ 1.00 4.83%/ 1.00 4.82%/ 0.60 4.84%/ 1.00 4.90%/ 1.00 4.86%/ 0.51 11.43%/ 1.00 11.56%/ 1.00 7.56%/ 1.00 7.57%/ 1.00

lodgepole 10 4.83%/ 1.00 4.82%/ 1.00 4.85%/ 0.65 4.80%/ 1.00 4.90%/ 1.00 4.92%/ 0.51 10.78%/ 1.00 10.89%/ 1.00 7.60%/ 1.00 7.58%/ 1.00
credit 28 4.83%/ 0.70 4.96%/ 0.87 4.89%/ 0.60 4.85%/ 0.78 5.06%/ 1.00 4.96%/ 0.51 8.67%/ 0.60 16.06%/ 0.66 7.63%/ 0.69 7.59%/ 0.82

insects (1 → 2) 33 4.92%/ 1.00 4.93%/ 0.96 4.91%/ 0.96 4.93%/ 0.97 5.19%/ 0.99 4.93%/ 0.84 5.90%/ 0.81 6.48%/ 0.87 7.57%/ 1.00 7.60%/ 1.00
insects (2 → 3) 33 4.93%/ 0.99 4.91%/ 1.00 4.92%/ 1.00 4.96%/ 1.00 5.25%/ 1.00 4.96%/ 0.96 5.54%/ 1.00 6.16%/ 1.00 7.60%/ 1.00 7.59%/ 1.00
insects (3 → 4) 33 4.92%/ 0.98 4.89%/ 0.90 4.90%/ 0.90 4.88%/ 0.94 5.22%/ 0.99 4.89%/ 0.83 6.09%/ 0.75 6.69%/ 0.74 7.59%/ 1.00 7.54%/ 1.00
insects (4 → 5) 33 4.92%/ 1.00 4.95%/ 1.00 4.91%/ 1.00 4.92%/ 1.00 5.25%/ 1.00 4.91%/ 0.95 5.48%/ 1.00 6.01%/ 1.00 7.63%/ 1.00 7.56%/ 1.00
insects (5 → 6) 33 4.91%/ 1.00 4.90%/ 0.97 4.90%/ 0.98 4.92%/ 0.99 5.26%/ 1.00 4.90%/ 0.96 5.86%/ 0.98 6.19%/ 0.98 7.61%/ 1.00 7.63%/ 1.00

sensorless 48 4.84%/ 0.86 5.01%/ 1.00 4.82%/ 0.54 5.01%/ 1.00 7.42%/ 1.00 4.93%/ 0.50 4.33%/ 1.00 4.83%/ 1.00 7.55%/ 0.74 7.58%/ 0.60
particle 50 4.85%/ 0.89 4.87%/ 0.93 4.81%/ 0.55 4.94%/ 0.98 5.80%/ 0.99 4.84%/ 0.51 5.93%/ 0.84 6.07%/ 0.90 7.52%/ 0.80 7.60%/ 0.54

Average Ranking 5.24 4.93 7.08 3.82 2.98 9.37 5.57 5.34 5.11 5.56
Nemenyi p-value < 10−16 < 10−16 < 10−16 < 10−16 - < 10−16 < 10−16 < 10−16 < 10−16 < 10−16

method is statistically significant. Confidence intervals are
reported in the supplementary material.

6.3. Methods

We configure all the histogram-based methods to partition
the space in K bins with uniform target probabilities πk =
1
K , as advised by (Boracchi et al., 2018). The number of
bins K and the batch size ν must be chosen to guarantee
that batches contain enough samples for a stable measure
of these target probabilities. In particular, since histograms
approximate the probability of a point falling in a bin by the
number of training samples per batch that falls in each bin,
we expect that a larger number of points per bin (i.e., the
ratio ν/K) yield better detection performance. We confirm
this by considering two settings: the high-ratio setting (K =
16, ν = 128) and the low-ratio one (K = 32, ν = 64).

QuantTree. QuantTree (Boracchi et al., 2018) uses a his-
togram to monitor incoming batches while controlling the
FPR. Bins are constructed with axis-oriented splits along
random components, and the changes are detected by the
Pearson statistic. Detection thresholds are computed via
Monte Carlo simulations. We test QT with and without
PCA preprocessing of the data.

Equal Intensity K-Means (EIKM). EIKM (Liu et al.,
2020) constructs a histogram with K bins using a K-means
clustering to guarantee an equal proportion of stationary
data in each bin. EIKM uses the Pearson statistic and its
asymptotic approximation to set the detection thresholds.

Semiparametric Log-Likelihood (SPLL). SPLL
(Kuncheva, 2011) models the stationary distribution ϕ0 as
a Gaussian Mixture Model (GMM) and suggests fitting
C = 3 components. During inference, the test statistic
associated with a batch W is computed by an upper bound
of the log-likelihood of its samples. Since SPLL comes

without a threshold computation strategy, we employ
Welch’s t-test (Welch, 1947) to detect batches whose
average SPLL is statistically different from the training set.

PCA-SPLL. Presented in (Kuncheva & Faithfull, 2013),
PCA-SPLL extends SPLL by transforming data through the
PCA and monitoring by SPLL only the components with
the lowest variance. Here, we keep up to 5% of the variance
and fit C = 3 Gaussians.

Density Tree. Inspired by (Criminisi et al., 2012), the
bins of Density Tree minimize the entropy after each split.
Density Tree employs the Pearson test statistic, and sets
the detection threshold via bootstrapping over a portion of
training data. We test Density Tree with and without PCA
preprocessing of the data.

6.4. Results and Discussion

Table 2 reports the FPR and AUC achieved by all the con-
sidered methods in the high-ratio setting, averaged over 500
runs. Here, we only report the performance of KQT maxi-
mizing the information gain (11) to select centroids. In the
supplementary material, we also report the results for the
low-ratio and a comparison showing that minimizing the
Gini index (12) leads to comparable performance.

Table 3. FPR and AUC achieved by QuantTree and Kernel Quant-
Tree on the Swarm dataset processed by a PCA to retain d = 32
components. In parenthesis, the standard deviation of the results.

FPR AUC

QuantTree 4.61% (1.65%) 1.00 (0.00)
KQT (Euclidean) 4.53% (1.63%) 1.00 (0.00)
KQT (Mahalanobis) 4.50% (1.58%) 1.00 (0.00)
KQT (Weighted Maha.) 4.61% (1.67%) 1.00 (0.00)

In most experiments, the empirical FPR achieved by KQT is
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close to the target α = 5% for all the considered kernel func-
tions. However, the KQT with the Weighted Mahalanobis
distance struggles to control the FPR when d is large. This
is a known limitation of high-dimensional settings, where
the estimated GMM might be poorly conditioned when TR
is not sufficiently large. Therefore, when the GMM fit from
TR yields Gaussians having covariances with large condi-
tion numbers, it is convenient to use KQT with the Maha-
lanobis distance. This latter, in fact, can control the FPR and
usually achieves comparable detection performance with
the Weighted Mahalanobis distance.

To further investigate how the dimension d influences the
detection performance of KQT, we run another experi-
ment where we train KQT on synthetic data with d ∈
{4, 8, 16, 32, 64, 128} and with N ∈ {4096, 16384}. The
results reported in the supplementary material prove that the
FPR control worsens when d increases, but also that using
large training sets heavily mitigates this problem. More-
over, this issue can be avoided by employing dimension-
ality reduction techniques on high-dimensional data. To
this purpose, we run an experiment on the Swarm dataset
(d = 2400) preprocessed by a PCA transformation that re-
tains only the first 32 principal components. Table 3 shows
that thanks to this preprocessing, KQT can seamlessly oper-
ate without incurring the loss of FPR control observed on
some UCI datasets. The large AUC achieved by all the meth-
ods on this dataset proves that classes are very far apart, and
we argue that a similar situation would have happened if we
had artificially added a change (which would not correspond
to a real-world problem) to offset each component. In fact,
even a small perturbation would result in a very apparent
change. This is probably the reason why change detection
benchmarks are of lower dimensions (e.g., INSECTS d=33).

As for the other methods, QT and EIKM accurately control
the FPR. In contrast, SPLL and PCA-SPLL mostly exceed
the target, and we speculate that the distribution of the SPLL
test statistic does not satisfy the t-test assumptions. Finally,
Density Tree largely overshoots the target FPR, being unable
to learn a detection threshold from bootstrapping.

KQT with the Weighted Mahalanobis and the Mahalanobis
distance represent the best and second-best method in terms
of AUC, mostly outperforming the alternatives in most set-
tings. In particular, the advantage over the third-ranked
method (QT w/ PCA) is considerable, and the p-values of
the Nemenyi post-hoc test show that the advantage of KQT
is also statistically significant. However, when using the
Euclidean distance on real-world data, the performance of
KQT worsens because its anisotropic bins cannot model
the intricate data distributions of real data. As for the other
methods, SPLL performs well over the synthetic datasets
but fails over the INSECTS and UCI, achieving significantly
low performance on the latter. Instead, PCA-SPLL mainly

improves the performance of SPLL, even though it cannot
compete with the top-performing methods. Finally, Density
Tree mostly achieves low detection performance, except on
the INSECTS dataset, where it surpasses the other methods.

Our experiments show that preprocessing by PCA is in
general beneficial for QT, as the average rank of QT w/PCA
is lower than QT w/o PCA. However, in some settings, QT
w/o PCA performs better. In contrast, KQT achieves the
best AUC independently of the PCA preprocessing, thanks
to the invariance to roto-translation proved in Section 5.3,
and Density Tree is also not affected by the PCA.

The supplementary material reports the detection results in
the low-ratio setting (K = 32, ν = 64). Overall, the results
conform to those in the high-ratio setting and confirm that
a larger expected number of points per bin improves the
detection performance for all the methods. For the same
reason, QT and KQT achieve lower FPR in the low-ratio
setting than in the high-ratio, since the Pearson statistic
assumes fewer distinct values. Thus, while still controlling
the FPR, this results in a slightly lower percentage of false
alarms. The KQT with the Weighted Mahalanobis distance
achieves the highest AUC in the low-ratio setting, with a
statistically significant advantage over the competitors.

We conclude by remarking that data in the INSECTS and
UCI datasets are not drawn from multivariate Gaussian dis-
tributions, as suggested by the low performance achieved
by SPLL, which is based on a GMM. To confirm this, we
run the Shapiro-Wilk normality test on the marginals of our
real-world data, showing that these are not univariate Gaus-
sians. In the supplementary material, we report the p-values
of these tests, which are in the range of 10−20.

7. Conclusions
In this paper we presented KQT, a non-parametric multi-
variate change detection method for batch-wise monitoring.
KQT constructs a space partitioning via kernel functions,
resulting in bins which are compact and lead to superior
detection power. We compare our method to several state-
of-the-art approaches for CD, achieving the best results in
terms of detection power and false positives control. Future
work includes integrating KQT in a sequential monitoring
scheme, where data are processed in a continuous stream.
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