
Self-Similarity Block for Deep Image Denoising

Edoardo Peretti1, Diego Stucchi1, Diego Carrera2, and Giacomo Boracchi1

1 Politecnico di Milano, DEIB, Milano, Italy {name.surname}@polimi.it
2 STMicroelectronics, Agrate Brianza, Italy {name.surname}@st.com

Abstract. Non-Local Self-Similarity (NLSS) is a widely exploited prior
in image denoising algorithms. The first deep Convolutional Neural Net-
works (CNNs) for image denoising ignored NLSS and were made of
a sequence of convolutional layers trained to suppress noise. The first
denoising CNNs leveraging NLSS prior were performing non-learnable
operations outside the network. Then, pre-defined similarity measures
were introduced and finally learnable, but scalar, similarity scores were
adopted inside the network. We propose the Self-Similarity Block (SSB),
a novel differentiable building block for CNN denoisers to promote the
NLSS prior. The SSB is trained in an end-to-end manner within con-
volutional layers and learns a multivariate similarity score to improve
image denoising by combining similar vectors in an activation map. We
test SSB on additive white Gaussian noise suppression, and we show it
is particularly beneficial when the noise level is high. Remarkably, SSB
is mostly effective in image regions presenting repeated patterns, which
most benefit from the NLSS prior.

1 Introduction

Digital sensors are affected by photon counting, thermal, and quantization noise,
which needs to be suppressed to provide visually-pleasant images. As a matter of
fact, denoising is a fundamental step in almost every image processing pipeline
[25], since noise can affect subsequent processing. During the last few decades,
image denoising algorithms heavily relied on statistical modeling of images and
carefully crafted signal processing techniques to promote priors such as spar-
sity and Non-Local Self-Similarity (NLSS) [3,1]. The NLSS of natural images
suggests that most small patches contain patterns that are repeated across the
same image, possibly at non-adjacent locations. Recently, deep-learning-based
methods adopted Convolutional Neural Networks (CNNs) to solve the denoising
problem by directly learning a sophisticated denoising function from a dataset
of noise-free images corrupted by artificially added noise. However, while sev-
eral classic methods exploit the NLSS prior, most CNN denoisers act locally as
DnCNN [26], even when they have a large receptive field.

Recent research has focused on designing new building blocks and training
procedures enforcing traditional priors in deep denoisers. Traditional non-local
operations used to promote NLSS, e.g., block matching, are not differentiable
and must be performed outside the CNN [11], yielding sub-optimal performance.



2 E. Peretti et al.

The few differentiable non-local blocks that can be employed inside a CNN rely
on scalar hand-crafted similarity measures [17] or are based on the attention
mechanism [22], which is defined over the entire feature, while NLSS is typically
exploited relatively to a search neighborhood.

We propose the Self-Similarity Block (SSB), a novel differentiable block pro-
moting NLSS in deep denoisers. In practice, the SSB exploits the similarity of
activation vectors from different spatial locations in the same activation map to
perform denoising. To this purpose, the SSB uses an entirely learnable multi-
variate similarity score in a search neighborhood, computed as a series of 1× 1
convolutions mixing the information from different locations. Our SSB can be
easily included after any layer of a CNN, as it does not modify the dimension of
the input activation map. In particular, the SSB can be trained with the whole
network or fine-tuned in a pre-trained network to boost its denoising perfor-
mance. In this regard, we design Self-Similarity Networks (SSN), which consist
of a sequence of convolutional blocks as in DnCNN [26], interleaved by SSBs.

Our experiments confirm that inserting an SSB in denoising CNNs improves
their performance. Moreover, SSN achieves comparable performance with respect
to state-of-the-art methods based on comparable convolutional architectures, in-
cluding deep denoisers exploiting the NLSS prior, while outperforms them on
high noise levels. The source code is available at https://github.com/edpere/SSN.

2 Related Work

Many image priors are exploited in denoising [4,30,19,18,16], being NLSS one
of the most popular. Usually, similarity scores are computed over non-adjacent
patches, and then used to average pixel intensities (NLM [1]), in collaborative
filtering in transform domain (BM3D [3]), and in low-rank approximation [6].

Here, we focus on deep CNN denoisers trained on clean-noisy image pairs.
These comprise RED [14], which is a convolutional encoder-decoder architec-
ture, and DnCNN [26], which is a stack of convolutions, batch normalizations
[8] and ReLU activations. FFDNet [27] extended DnCNN by introducing a noise
level map as input and a reversible downscaling operator. The first attempts to
leverage the NLSS prior in CNN denoisers consisted in enlarging the receptive
fields. However, stacking more layers [14] or inserting downscaling operators [27]
does not significantly increase the effective receptive field [13] of CNN denoisers,
which explains why very deep architectures do not yield a significantly better
denoising [20]. Therefore, several methods [11,24,10], inspired by BM3D [3], in-
troduced block matching for grouping similar patches as a pre-processing step
before CNN filtering. For example, NN3D [2] combines a local CNN denoiser
with a traditional non-local filter in an iterative manner. In all this methods the
non-local operations are predefined and not learned.

Interestingly, recent works investigate differentiable layers promoting the
NLSS within activation maps, to enable end-to-end training alongside the net-
work. N3Net [17] proposes a differentiable relaxation of KNN, and then con-
catenates similar features in activation maps. One of the most relevant attempt

https://github.com/edpere/SSN


Self-Similarity Block for Deep Image Denoising 3

to leverage NLSS within activation maps are the nonlocal networks [22], which
implement the attention mechanism in images, drawing a parallel with NLM.
However, this is a global operation which was not originally proposed for im-
age restoration but for visual recognition tasks. This non local-block was later
adapted to image denoising both in a recurrent [12] and in a sophisticated feed-
forward [28] architecture comprising multiple branches. This approach can be
generalized by graph neural networks [21].

All these non-local blocks operate on activation maps using a scalar similarity
measure, like the Euclidean one. Remarkably, our proposed SSB learns a multi-
variate similarity score directly on training data, capturing different aspects of
the similarity embedded in the activation vectors, and improving convolutional
denoisers, as shown in our experiments.

3 Problem Formulation

We consider grayscale image denoising where the noisy image z is defined over
a finite grid X ⊂ Z2 and described as follows:

z(x) = y(x) + η(x) ∀x ∈ X, (1)

where y is the clean image, η(·) ∼ N (0, σ2) is the additive white Gaussian noise
(AWGN), and σ is the noise standard deviation. An image denoiser Dθ, depend-
ing on the set of parameters θ ∈ Θ, is a map that provides an estimate ŷ = Dθ(z)
of the noise-free image y. We consider Dθ to be a CNN trained in a supervised
manner, from a training set {(yj , zj)}j of clean-noisy image pairs. Remarkably,
AWGN denoisers can handle different noise models by variance stabilizing trans-
forms [5], and the extension to color images is trivial when operating with CNNs.

4 Proposed Method

In this section, we present the Self-Similarity Block (SSB), a differentiable layer
for CNN denoisers designed to exploit the NLSS prior. Traditional algorithms ex-
ploit the NLSS prior to estimate each reference patch by combining information
from similar patches within a search neighborhood. As in [22], our intuition is to
leverage NLSS among activation vectors of the same activation map returned by
a convolutional layer. More specifically, we consider an activation vector v ∈ Rd

obtained by stacking all the values along the d channels from an activation map
at a given spatial location. Each activation vector can be interpreted as a learned
embedding of the corresponding region in the input image.

The SSB estimates the similarity among pairs of activation vectors in a search
region of the same activation map through a trainable multivariate similarity
score. This similarity is used to guide the filtering of the activation vectors and
to compute the weights for the final average. To improve denoising performance,
we adopt SSB within a residual mapping. This is custom in CNN denoisers [26],
and in practice forces SSB to learn the noise realization to be removed from



4 E. Peretti et al.

each input activation map. Therefore, our SSB can be easily inserted in any pre-
trained CNN denoiser since i) it takes any 3D tensor as input and outputs one
of the same size and ii) it can be initialized as the identity map to be fine-tuned.

In Section 4.1, we illustrate the differentiable multivariate similarity score
adopted by the SSB, and in Section 4.2, we describe the implementation of the
proposed end-to-end learnable layer. Finally, in Section 4.3, we present the Self-
Similarity Network (SSN), a customizable CNN combining DnCNN and SSBs.

4.1 Non-Local Filtering Guided by Vector Similarities

Let v ∈ Rd be a reference activation vector computed from a noisy image z
at a specific convolutional layer. We perform denoising by a learnable residual
mapping Φ promoting the NLSS as follows

v̂ = v − Φ
(
v | {vk}Mk=1

)
, (2)

where {vk}k ⊂ Rd are M vectors in a search neighborhood of v from the same
activation map. Since we adopt residual learning, the goal of Φ is to estimate
the noise realization affecting v, then subtracted to obtain a noise-free estimate
v̂. We define

Φ
(
v | {vk}Mk=1

)
= A

M∑
k=1

(
αkr

k
)
, (3)

where {rk}k ⊂ Rd are neighbor contributions, each depending on a single ac-
tivation vector belonging to the search neighborhood, A ∈ Rd×d is a learnable
weight matrix, and the weights {αk}k ⊂ R define the contribution of each rk,
based on the similarity score between v and vk.

We define the similarity score sk ∈ Rn between two activation vectors v and
vk as a multivariate weighted combination of the two, namely:

sk = ReLU
(
Rv +Nvk

)
, (4)

where R,N ∈ Rn×d are learnable matrices defining two linear embeddings, that
are independent of the reference v or the neighbor vk. Since these operations
are linear, we introduce non-linearity with a ReLU function. After training, we
expect each component of sk to capture some form of similarity between v and
vk, as a deep learning alternative of the patch distance of NLM. Then, we use
sk to guide the computation of a neighbor contribution rk, which is defined by
extracting relevant information from a neighbor vk and the similarity sk. More
precisely, we compute rk ∈ Rd as

rk = ReLU
(
Pvk +Qsk

)
, (5)

where P ∈ Rd×d and Q ∈ Rd×n are learnable linear embedding matrices, and we
introduce non-linearity by the ReLU function. To conclude, each rk contributes
to the final residual in (3) by a weight αk that depends on the similarity sk

between v and vk. More precisely, we define the weights {αk}k ⊂ R in (3) as



Self-Similarity Block for Deep Image Denoising 5

W

H

d

1
1

d

n filters R

W

H

n

Reference
mapping

1
1

d

n filters N

W

H

n

Neighbor
mapping

Shift 1

B
N
+
R
eL

U

Shift M

B
N
+
R
eL

U

Rv
Nv1

NvM

Similarity sub-block (4)

d

W

H

n

Similarity
Scores

Shift 1

s1

d

W

H

n

Shift M

sM

1
1

n+d

d filters Q,P

B
N
+
R
eL

U
B
N
+
R
eL

U

Neighbor contributions sub-block (5)

W

H Weights

r1
α1

W

H
rM

αM

W

H

d

Averaging sub-block (3)

1
1

d

d filters A

Φ(v)

W

H

d

v̂

Convolution

Addition

Element-wise multiplication

{αk}k are computed as in (6)

(a) The proposed Self-Similarity Block (SSB)

z

D
n
C
N
N

6

S
S
B

D
n
C
N
N

6

S
S
B

D
n
C
N
N

6

ŷ

(b) Self-Similarity Network (SSN)

Fig. 1: (a) The Self-Similarity Block (SSB) exploits the NLSS prior for denoising
by residual computation. It comprises three sub-blocks: i) similarity sub-block,
that computes the scores {sk}k, ii) neighbor contributions sub-block, which com-
putes {rk}k, and iii) averaging sub-block, aggregating all the neighbor contri-
butions. SSB is employed with a skip connection to perform residual learning.
(b) A Self-Similarity Network (SSN) consisting of 6-layer DnCNNs interleaved
by SSBs.

the inner product of the similarity scores {sk}k against a shared learnable vector
h ∈ Rn, normalizing the results with the Softmax:

αk = Softmax
(
h · s1, h · s2, . . . , h · sM

)
k
, (6)

such that weights sum to 1. Finally, the residual computed as in (3) is subtracted
from the input vector v as in (2).

4.2 Self-Similarity Block

Here, we illustrate the architecture of the SSB, which implements the denois-
ing procedure described in Section 4.1. In particular, similarly to the search
neighborhood adopted by NLM [1], for each reference vector v, we define the
neighbors {vk}Mk=1 as theM vectors in a (2Ω+1)×(2Ω+1) grid centered around



6 E. Peretti et al.

v separated by a stride w, where Ω is the half-neighborhood size. Moreover, we
implement the matrix-by-vector multiplications of the linear embeddings in (3),
(4) and (5) as layers of 1× 1 convolutions against the rows of the corresponding
matrices A,R,N, P,Q. As shown in Figure 1a, SSB is made of three sub-blocks:
a similarity sub-block implementing (4), a neighbor contributions sub-block im-
plementing (5) and an averaging sub-block implementing (3).

The similarity sub-block (Figure 1a, left) computes the similarity scores {sk}k
(4) for all the reference/neighbor vector pairs. Noting that all the activation vec-
tors vk are, in turn, references and neighbors for other references, we decompose
the similarity computation in two branches. One is responsible for the compu-
tation of Rv for all v in the activation map, while the other computes Nvk. We
shift the input data to line up each neighbor vk with the reference. Therefore,
we consider M shift branches and compute all the similarity scores {sk}k at
once by summing two properly shifted outputs of the branches. After the sum,
we apply the Batch Normalization (BN) and the ReLU activation, which inserts
non-linearity in an otherwise linear computation.

The neighbor contributions sub-block (Figure 1a, center) computes the neigh-
bor contributions {rk}k for every reference/neighbor vector pairs. The sum in
(5) is computed by concatenating the similarity scores and the shifted neighbors
and then performing d 1×1 convolutions. Again, we apply the BN and the ReLU
to the results of this operation.

The averaging sub-block (Figure 1a, right) combines the neighbor contribu-
tions in a weighted sum. We compute the weights {αk}k as in (6) and apply
them to the contributions through a component-wise multiplication. The results
are then summed up and convolved against the d rows of A, as in (3) to yield
the final residuals Φ(v) for every v in the activation map. Finally, the residuals
are subtracted from the input of the block via a skip connection.

We remark that inserting an SSB in a CNN does not significantly increase
the number of trainable parameters, which are the matrices R,N,Q ∈ Rn×d,
P ∈ Rd×d and A ∈ Rn×n and the vector h ∈ Rn, for a total of n2+ d2+3nd+n
parameters. However, the number of operations increases significantly because
of the M shifts performed to compute the similarity scores.

4.3 Network Architecture

We design the Self-Similarity Network (SSN) as a customizable denoising CNN
architecture based on DnCNN [26] and our SSB. The architecture of SSN is
reported in Figure 1b and consists of instances of DnCNN interleaved by SSBs.
Remarkably, the SSB takes a tensor of arbitrary size as input and returns an
output of the same size. For this reason, it can be seamlessly inserted between
layers of any CNN to leverage the NLSS. Moreover, if initialized as the iden-
tity transformation by setting A = 0, the SSB can be fine-tuned in pre-trained
denoising networks to improve the denoising performance.

We denote by DnCNND a DnCNN of depthD, which consists of 1 Conv+ReLU
followed by (D−2) Conv+BN+ReLU layers and 1 Conv layer. Then, we denote
by mSSND a denoising CNN consisting of m instances of DnCNND interleaved



Self-Similarity Block for Deep Image Denoising 7

by m−1 instances of SSB. Figure 1b represents the 3SSN6 model that we adopt
in our experiments, which consists of 3×DnCNN6 + 2×SSB. We point out that
large SSN architectures are difficult to train, and a careful hyperparameter se-
lection is needed to obtain satisfactory results. Moreover, the running time for
an inference with 3SSN6 is about 7.5 times that of the baseline DnCNN18.

4.4 Differences with Non-Local Neural Networks

The proposed solution shares the same rationale underpinning the Non-Local
Block (NLB) in [22], since they are both inspired by NLM [1] principles. This
section therefore discusses the main differences between the two, while the ex-
perimental comparison is in Section 5.3. NLB is defined as

v̂i =
1

C

∑
j

f(vi,vj)g(vj), (7)

where f computes a scalar similarity between two activation vectors, and g
is a linear embedding. In practice, NLB estimates each latent vector v̂i by a
weighted average of the embedded features g(vj) from the whole input, where
the weights are the scalar similarities f(vi,vj) representing the attention. The
primary difference with SSB is that this computes a multivariate similarity score
sk (represented in pink in Figure 1a, center). Moreover, the use of scores is
different as sk is mixed with the corresponding latent feature vector vk and
then averaged with learned weights αk in the averaging sub-block (Figure 1a,
right). Our experiments in Section 5.2 shows that a multivariate similarity scores
improves the denoising performance. Another difference is that SSB operates on
a search neighbor, considering all the activation vectors belonging to a spatial
neighborhood using a stride. Instead, the NLB considers all the activation vectors
in the activation maps. This is a viable approach only for small maps (used in
high-level tasks addressed in [22]), but it is computationally intractable in dense
regression tasks like image restoration. In our experiments, we test a modified
version of NLB that compares references only with activation vectors within
a fixed-size search neighborhood, as in [12]. This version, which we denote as
NLBr, considers all the activation vectors in the neighborhood without a stride.
We additionally include a strided alternative, denoted NLBr+. Our experiments
demonstrate that stride, which we also employ in SSB, is beneficial and that
SSB outperforms both the improved variants of NLB at high noise levels.

5 Experiments

We analyze the effectiveness of the SSB in grayscale image denoising. First, we
present the datasets, figures of merit, and competing methods employed in our
experiments (Section 5.1). Then, we investigate how the configuration of SSN
influences the denoising performance (Section 5.2) and compare a selected SSN
against state-of-the-art CNN denoisers (Section 5.3).



8 E. Peretti et al.

Table 1: Denoising performance of 2SSN9 for different values of half-
neighborhood size Ω and stride w. These parameters determine the number of
activation vectors M used by the SSB.

(Ω, w) (2,2) (4,2) (6,2) (5,5) (10,5) (15,5)

PSNR 30.15 30.19 30.25 30.18 30.30 30.38
SSIM 0.887 0.888 0.888 0.888 0.891 0.894

M 9 25 49 9 25 49

Table 2: Denoising performance of 2SSN9 for different dimensions n of the simi-
larity score. Adopting a multivariate similarity boosts the denoising performance.

n 1 2 4 8 16 32 64 128

PSNR 30.131 30.134 30.197 30.285 30.358 30.368 30.375 30.374
SSIM 0.886 0.886 0.889 0.891 0.893 0.893 0.894 0.893

5.1 Experimental Settings

Our experiments tackle the denoising problem with σ ∈ {25, 50, 70} by training
a distinct model for each noise level. We train all models on 80 × 80 patches
randomly cropped from BSD400 [15], corrupted with Gaussian noise with fixed
variance σ2. As test sets, we adopt Set12, BSD68 [15], and Urban100 [7]. Training
and testing images are strictly disjoint. We assess the denoising performance by
the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity (SSIM)
index [23]. We consider the following methods in our experiments.

SSN: The architecture of an SSN consists of instances of DnCNN interleaved
by SSBs. Figure 1b reports the architecture of the SSN that we use in the main
experiment. We set the number of filters n in the similarity sub-block (Figure 1a)
as the number d of channels of the input. We train each SSN for 40 epochs using
the Adam optimizer [9] with a mini-batch size of 16 and a weight decay factor
of 10−6 on all convolutional weights except for those of SSB. We use a learning
rate of 10−4 for the first 20 epochs, and then we divide it by 10 every 10 epochs.
For a fair comparison, we adopt the ℓ2 loss, which most deep denoisers use even
though it is not the best choice for image restoration models [29].

Competing methods: We compare SSN against a traditional denoising algo-
rithm (BM3D [3]) and the following deep denoisers: DnCNN [26], NN3D [2] and
N3Net [17]. Since SSB aims to improve the denoising performance of CNN de-
noisers, we do not include recurrent networks or complex, branching, and compu-
tationally expensive convolutional or graph architectures. Furthermore, we train
surrogates of SSN, replacing the proposed SSB with NLB [22]. We consider
the setup and the results from [17] for all the methods. All the learning-based
methods share the same training set as SSN and adopt comparable training
procedures.



Self-Similarity Block for Deep Image Denoising 9

Table 3: Denoising performance of SSN for different configurations.

Model Description PSNR SSIM # Params

DnCNN18 1×DnCNN18 29.9917 0.885 594 113
DnCNN20 1×DnCNN20 30.0051 0.884 668 225
2SSN9 2×DnCNN9 + 1×SSB 30.3750 0.894 627 202
3SSN6 3×DnCNN6 + 2×SSB 30.4238 0.895 660 291
4SSN5 4×DnCNN5 + 3×SSB 30.4120 0.893 767 492

5.2 Assessing Different SSN Architectures

Many parameters affect the effectiveness of SSN, like the number of neighborsM ,
their distance to the reference, the dimension n of the similarity scores, and the
number of SSBs employed by the network. Here, we compare the performance
achieved by different configurations of SSN over Urban100 with σ = 25.

The first experiment considers the 2SSN9, which contains a single SSB, with
different values of half-neighborhood size Ω and stride w. Table 1 reports the
number of neighbors M , and the PSNR and SSIM achieved by the SSN for
various configurations of Ω and w. The results show that increasing M leads
to better denoising performance because we have more chances to find similar
vectors. Moreover, for a fixed M , considering a larger search neighborhood (i.e.,
a larger stride) is beneficial. In the following, we set Ω = 15 and w = 5, which
corresponds to a 31× 31 search region containing M = 49 activation vectors.

The second experiment assesses the importance of adopting a multivariate
similarity score. To this end, we train several instances of 2SSN9 varying the
parameter n, which defines the number of components of sk. With n = 1, the
similarity of SSB is scalar and resembles the attention of NLB [22]. Table 2 shows
a steady performance improvement when using multivariate similarity metrics,
up to n = 16. Further increase of n yields a marginal performance boost.

Finally, we evaluate the denoising performance of SSN when increasing the
number of SSB instances. Precisely, we consider SSNs with 1, 2, or 3 SSBs
compared with two baselines DnCNN18 and DnCNN20 having the same num-
ber of convolutional layers. Table 3 shows that a single SSB already improves
the denoising performance with respect to the DnCNN architecture, and a sec-
ond block grants further improvement. However, when adding a third SSB, the
network training becomes particularly difficult and more unstable, leading to
a small decrease of the denoising performance. In the following, we adopt the
3SSN6 architecture, depicted in Figure 1b.

5.3 Comparison against State-of-the-Art

In this section, we compare the denoising performance of 3SSN6 (Figure 1b)
against the competing methods in Section 5.1. To fairly compare our method
with NLB, we train similar architectures, where we replace our SSB with a NLBr
or NLBr+ (defined in Section 4.4). The strided version NLBr+ adopts a selection



10 E. Peretti et al.

Table 4: Denoising performance (PSNR) achieved by the considered methods on
three datasets. The best results are in bold.

σ BM3D DnCNN NN3D N3Net NLBr NLBr+ SSN (ours)

Set12
25 29.96 30.44 30.45 30.55 30.51 30.61 30.64
50 26.70 27.19 27.24 27.43 27.43 27.41 27.46
70 25.21 25.56 25.61 25.90 25.71 25.82 25.92

BSD68
25 28.56 29.23 29.19 29.30 29.30 29.36 29.37
50 25.63 26.23 26.19 26.39 26.31 26.40 26.42
70 24.46 24.85 24.89 25.14 25.04 25.08 25.16

Urban100
25 29.71 29.97 30.09 30.19 30.19 30.40 30.42
50 25.95 26.28 26.47 26.82 26.56 26.83 26.92
70 24.27 24.36 24.53 25.15 24.73 25.02 25.24

of neighbors similar to SSB. Both NLBr and NLBr+ consider the same number
of activation vectors of our 3SSB6 (i.e., M = 49).

Table 4 reports the PSNR achieved by the considered methods on the test
sets corrupted by noise of standard deviation σ ∈ {25, 50, 75}. The results for
the competing methods are from [17]. SSN outperforms the competitors on all
datasets and noise levels. In particular, the improvement is more significant on
Urban100, whose images present many repeated patterns and structures, sug-
gesting that our SSB effectively promotes NLSS. Our SSN significantly outper-
forms the NLBr implemented as in [22]. In contrast, SSN achieves performance
equivalent to NLBr+ for low σ, while we observe a significant improvement for
high noise levels. This suggests that relying on a multivariate similarity becomes
beneficial when the degradation is strong. More generally, exploiting the NLSS
prior is beneficial to image denoising. Indeed SSN, N3Net, and NLB consistently
outperform DnCNN, which in turn achieves a higher average PSNR than BM3D,
demonstrating the effectiveness of deep learning methods. To gain further in-
sights into the effect of NLSS, Figure 2 reports two denoised versions of a detail
from Barbara (Set12), presenting a repeated fabric pattern. This example shows
that SSN successfully recovers the fabric pattern also in low-contrast regions
where DnCNN fails, demonstrating the effectiveness of our SSB at exploiting
the NLSS of this texture.

6 Conclusions

We present SSB, a novel building block promoting the NLSS in CNN denoisers.
Inspired by NLM, our block aggregates neighbor contributions from a search
neighborhood, using weights that depend on the similarities with neighbors.
The patch embedding, the multivariate similarity score, and the mixing function
are learned during training. We show that SSB improves the performance of a
baseline on AWGN suppression, particularly when σ is high.



Self-Similarity Block for Deep Image Denoising 11

(a) Clean
(PSNR/SSIM)

(b) Noisy σ = 70
(12.26 / 0.315)

(c) DnCNN
(20.42 / 0.609)

(d) SSN (ours)
(21.77 / 0.759)

Fig. 2: Detail of Barbara denoised by DnCNN and SSN. Our method recovers
repeated patterns also in low-contrast regions.

Future work comprises training models for blind denoising, extending SSB
to RGB images, which typically require adjustments in the network hyperpa-
rameters, as in [27]. Moreover, we will investigate the application of multi-head
attention to image restoration, leveraging the connection between self-similarity
and attention. Finally, we will address the computational efficiency problem by
exploring alternative implementations to reduce the running time of SSB.

Acknowledgments We gratefully acknowledge the support of NVIDIA Corpo-
ration with the four RTX A6000 GPUs granted through the Applied Research
Accelerator Program to Politecnico di Milano.

References

1. Buades, A., Coll, B., Morel, J.: A non-local algorithm for image denoising. In:
Proceedings of CVPR. vol. 2, pp. 60–65. IEEE (2005)

2. Cruz, C., Foi, A., Katkovnik, V., Egiazarian, K.: Nonlocality-reinforced convolu-
tional neural networks for image denoising. IEEE Signal Processing Letters 25(8),
1216–1220 (2018)

3. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d
transform-domain collaborative filtering. IEEE TIP 16(8), 2080–2095 (2007)

4. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations
over learned dictionaries. IEEE TIP 15(12), 3736–3745 (2006)

5. Foi, A.: Clipped noisy images: Heteroskedastic modeling and practical denoising.
Signal Processing 89(12), 2609–2629 (2009)

6. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with
application to image denoising. In: Proceedings of CVPR. pp. 2862–2869 (2014)

7. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed
self-exemplars. In: Proceedings of CVPR. pp. 5197–5206. IEEE (2015)

8. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: Proceedings of ICML. pp. 448–456. PMLR
(2015)



12 E. Peretti et al.

9. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

10. Lefkimmiatis, S.: Non-local color image denoising with convolutional neural net-
works. In: Proceedings of CVPR. pp. 3587–3596. IEEE (2017)

11. Lefkimmiatis, S.: Universal denoising networks: a novel cnn architecture for image
denoising. In: Proceedings of the CVPR. pp. 3204–3213. IEEE (2018)

12. Liu, D., Wen, B., Fan, Y., Loy, C.C., Huang, T.S.: Non-local recurrent network for
image restoration. Advances in NeurIPS 31 (2018)

13. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field
in deep convolutional neural networks. Advances in NeurIPS 29 (2016)

14. Mao, X., Shen, C., Yang, Y.: Image restoration using very deep convolutional
encoder-decoder networks with symmetric skip connections. Advances in NeurIPS
29 (2016)

15. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: Proceedings of ICCV. vol. 2, pp. 416–423. IEEE (2001)

16. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.
IEEE TPAMI 12(7), 629–639 (1990)

17. Plötz, T., Roth, S.: Neural nearest neighbors networks. Advances in NeurIPS 31
(2018)

18. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using
scale mixtures of gaussians in the wavelet domain. IEEE TIP 12(11), 1338–1351
(2003)

19. Roth, S., Black, M.J.: Fields of experts: A framework for learning image priors. In:
Proceedings of CVPR. vol. 2, pp. 860–867. IEEE (2005)

20. Tai, Y., Yang, J., Liu, X., Xu, C.: Memnet: A persistent memory network for image
restoration. In: Proceedings of ICCV. pp. 4539–4547. IEEE (2017)

21. Valsesia, D., Fracastoro, G., Magli, E.: Deep graph-convolutional image denoising.
IEEE TIP 29, 8226–8237 (2020)

22. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Pro-
ceedings of CVPR. pp. 7794–7803. IEEE (2018)

23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)

24. Yang, D., Sun, J.: BM3D-Net: A convolutional neural network for transform-
domain collaborative filtering. IEEE Signal Processing Letters 25(1), 55–59 (2017)

25. Zhang, K., Li, Y., Zuo, W., Zhang, L., Van Gool, L., Timofte, R.: Plug-and-play
image restoration with deep denoiser prior. IEEE TPAMI (2021)

26. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE TIP 26(7), 3142–3155
(2017)

27. Zhang, K., Zuo, W., Zhang, L.: Ffdnet: Toward a fast and flexible solution for
cnn-based image denoising. IEEE TIp 27(9), 4608–4622 (2018)

28. Zhang, Y., Li, K., Zhong, B., Fu, Y.: Residual non-local attention networks for
image restoration. In: International Conference on Learning Representations (2019)

29. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with
neural networks. IEEE TCI 3(1), 47–57 (2016)

30. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole
image restoration. In: Proceedings of ICCV. pp. 479–486. IEEE (2011)


	Self-Similarity Block for Deep Image Denoising

