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Abstract—Data-driven models trained in an end-to-end man-
ner can reliably detect events within optical signals. Unfortu-
nately, event detection models poorly generalize when monitoring
signals collected from devices with different acquisition proce-
dures. We overcome this limitation by presenting a novel domain
adaptation solution for event detection networks that enables
inference across multiple types of devices. Rather than training
a black-box detection network, we decouple event localization
and classification tasks. Localization is performed by the Interval
Proposal Algorithm (IPA), which leverages signal processing tech-
niques to localize candidate events and derive context features.
These events are then standardized and fed to a feature extractor
to obtain morphological features. By combining domain-specific
context features with domain-invariant morphological features,
the classifier achieves good generalization capabilities through
different domains. Our method can successfully detect events in
OTDR traces achieving a mAP@0.5 of 75.33% on traces from
the source domain and generalizing well (mAP@0.5 of 69.27%)
on traces from the target domain, despite being trained solely
from the source domain.

Index Terms—otdr, domain adaptation, event-detection.

I. INTRODUCTION

The success of machine learning models is closely tied
to the availability of large amounts of data. Unfortunately,
in some applications, acquiring new data is costly, and data
scarcity undermines the application of such techniques.

A notable example comes from the monitoring of fiber
optics, where optical signals are analyzed to guarantee the
quality of transmissions. In particular, Optical Time Domain
Reflectometer (OTDR) devices [11] are used to monitor the
status of fiber links. These devices inject a short laser pulse
at one end of a fiber link and measure the backscattered and
reflected light. This process results in an OTDR trace, i.e., a
graphical representation of the optical power as a function of
the distance along the fiber.

Automatic event-detection networks simultaneously localize
and classify event signatures in OTDR traces to identify the
presence of specific impairments along the fiber, such as a bad
connector or a broken fiber, which require triggering corrective
actions. Specifically, [12] solves the event-detection problem
by leveraging a 1D Faster R-CNN. Despite its accuracy, this
approach is limited to operating on OTDR traces acquired with
the very same type of device used for collecting the training
set, and falls short when applied to traces acquired by other
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Fig. 1: On the left-hand side, a fiber link with two connectors. The PASS-
THROUGH event signatures on the right-hand side generated by devices of
type α and β show substantial differences both in terms of the number of
samples and power intensity.

types of devices. In fact, the acquisition technology heavily
influences the event shapes.

An example of this issue is depicted in Fig. 1 representing
two types of OTDR devices, α and β, connected to the same
fiber link. The resulting traces present two bumps correspond-
ing to two physical connectors along the fiber link (depicted
in yellow). Despite representing the same fiber span, the two
OTDR traces are extremely different in magnitude and scaling.
In particular, the events (two bumps) from β appear smaller
and much shrank, as a result of the lower sampling frequency
of device β in that region. These differences are caused by
the physical configuration of the OTDR devices acquiring the
signal. Therefore, an event detection network trained in an end-
to-end manner on OTDR traces acquired by device α (source
domain) could not extract relevant features to detect events
acquired by device β (target domain).

The lack of feature invariance across devices hinders the
portability of the event detection network from α to β. As
a matter of fact, these models must be trained using data
specific for each type of device, limiting their applicability
and requiring time-consuming data preparation.

We address this limitation as a Domain Adaptation (DA)
problem. First, we show that event-detection networks relying
on end-to-end training have little flexibility for adaptation
without training data from the target domain. Therefore, we
design a novel event-detection network that is easier to adapt
when the device changes.

Inspired by the R-CNN architecture [7], we rely on expert-
driven algorithms to localize the events leveraging their mor-
phology. In particular, our Interval Proposal Algorithm (IPA)
exploits signal processing techniques and robust fitting meth-
ods to obtain a sequence of candidate events with their context



features, representing domain-specific information such as
their power intensity and position along the OTDR trace.

Then, to perform event classification, we standardize the
events, and train a feature extractor fθ to obtain morphological
features that focus exclusively on the shape of the events
regardless of their context. These domain-invariant morpholog-
ical features are concatenated with the domain-specific context
features computed by the IPA and fed to the classifier K
to predict the event type. The combination of context and
morphological features enables accurate prediction and allows
our method to be successfully used across devices. On the
contrary, the 1D Faster R-CNN, like other black-box models
trained end-to-end, disregards expert-driven knowledge, and is
unable to work across different devices.

Quantitative experiments on real-world traces obtained from
two types of OTDR devices by Cisco, termed Mystique (device
α) and Sirius (device β), demonstrate that our method attains
a mAP@0.5 of 75.33% on traces from device α, where the 1D
Faster R-CNN reaches 69.27%. When we employ our method
on traces from device β, we get 64.93% without any form
of fine-tuning. In contrast, the 1D Faster R-CNN is unable to
detect events. These results confirm that our framework can
be successfully employed to yield an OTDR event-detection
network that is portable across different devices.

A. Related Work

Domain Adaptation (DA) is a well-studied problem and sev-
eral methods have been proposed. A stream of research learns
domain-invariant feature representations. Specifically, [6] adds
a domain classifier to the feature extractor using a gradient
reversal layer. This ensures that the feature distributions of
the two domains are made similar. Another line of research
performs domain mapping using a Generative Adversarial Net-
work (GAN). For example, [1] adapts source-domain data to
appear as if drawn from the target domain. A context similar to
ours is discussed in [3], where domain adaptation is performed
on ECG heartbeats. All these approaches require target-domain
data at training time, even unlabelled. In contrast, we assume
no data from the target domain is available at training time.

A different strategy proposed in [9] involves replacing the
mean and standard deviation of the Batch Normalization layers
by recalculating them during inference. This method however
requires modifying the network during inference, which is not
always a viable option in an industrial scenario and for devices
that are meant to operate stand-alone. In contrast, we only
apply a pre-processing of the input trace by leveraging expert
knowledge, and a standardization of candidate events before
classification.

Inspired by [2], where DA is performed by decoupling the
image content from its style, we separate the morphology of
the OTDR events from the context information to ease their
recognition and improve the detection performance.

II. PROBLEM FORMULATION

An OTDR trace is represented as a sequence of n samples
T = {(x1, p1), (x2, p2), ..., (xn, pn)}, where pi ∈ R is the

(a) Face-Plate (b) Pass-Through (c) Fiber-Cut (d) Fiber-End

Fig. 2: Instances of OTDR events in the training set.

reflection loss (in dBm) measured at distance xi ∈ R (in km)
from the fiber’s beginning. A trace T may contain multiple
events, each one described by a triplet e = (y, xs, xe), where
xs and xe are the start and end points of the portion of the
trace containing the event of class y. We assume to have a
fully labeled training set TRS = {(Tj , Ej) , j = 1, . . . , N},
containing N traces from the source domain DS , where
Ej = {ei}

Mj

i=1 is the set of events in trace Tj . We consider
two OTDR devices, α and β, each implementing different
sampling and post-processing techniques, resulting in traces
belonging to source domain DS and target domain DT ,
respectively. In particular, events collected from domain DT

might have different power intensities and widths, and an
event-detection network trained on traces from DS might
be unable to generalize to events from DT . Due to limited
data availability, fine-tuning a model specifically for the target
domain DT is not feasible.

Our objective is to design a method trained exclusively
on domain DS that can automatically detect all events in a
trace T , regardless of whether they originate from DS or DT .
We formulate this as a Domain Adaptation (DA) problem,
meaning we aim to compensate for the shift between training
and test data distribution.

In our study, we consider four types of basic events, which
are reported in Fig. 2:

• FACE-PLATE denotes the fiber start and determines the
location at which the OTDR tool injects its pulses.

• PASS-THROUGH denotes the mechanical conjunction of
two fiber links.

• FIBER-END denotes the endpoint of the fiber link.
• FIBER-CUT denotes the abrupt termination of the fiber

induced by a cut.
As customary in detection networks, we include also the NO-
EVENT label to discard regions that do not contain an event.

III. PROPOSED METHOD

Our proposed method (depicted in Figure 3) decouples event
localization and classification, enabling the standardization
of candidate events to learn domain-invariant features. Fur-
thermore, we combine context information about the event’s
location within the trace to improve classification accuracy.

The input OTDR trace is first fed to the Interval Proposal
Algorithm (IPA) to obtain a collection of candidate events with
their corresponding context features (Sec. III-A). Next, we
standardize (Sec. III-B) the events that are then passed through
the Feature Extractor fθ to extract morphological features and
concatenated with the context features. Finally, we input the
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Fig. 3: Overview of the proposed architecture.

concatenated feature vector into the classifier K to predict
the corresponding event labels. The network architecture and
training phases are described in Sec. III-C, while Sec. III-D
contains the implementation details.

A. Interval Proposal Algorithm

The Interval Proposal Algorithm analyzes the trace T to
identify tentative events ei, extracting variable-size intervals
(xs

i , x
e
i ). Specifically, the Interval Proposal Algorithm (IPA)

performs two main steps.
Peak detection. The IPA detects a set of peak locations

xi ∈ P that will be the candidate events. To achieve this, we
detect the local maxima M in the detrended trace, obtained
by fitting a linear trend using MSAC [4]. To be more robust
to noise and avoid detecting too low peaks in dense regions,
this stage first identifies high peaks Ph, while the second stage
identifies low peaks P l. High peaks Ph = {xi ∈ M : ρ(xi) ≥
H} are detected as local maxima with prominence ρ(xi)
larger or equal than the device-specific threshold H , where
the prominence ρ(·) measures how much the peak stands out
with respect to the neighboring peaks. Conversely, low peaks
P l = {xi ∈ M : L ≤ ρ(xi) < H and∀xk ̸= xi, |xi−xk| > d}
are those local maxima with prominence between L and H ,
and d samples apart from each other. The set of candidate
peaks is obtained as P = Ph ∪ P l.

Interval estimation. As depicted in Fig 4, for each detected
peak xi ∈ P , the IPA crops two windows of size w to the left
and right of the peak, i.e., W l

i = {xi−1 − w, . . . , xi−1} and
W r

i = {xi+1, . . . , xi+1 +w}. When another peak falls inside
one of the windows, the cropping is limited to its position.
Each window W l

i and W r
i is used to fit a trend line, thus

obtaining two polynomials, νl and νr, describing the regions
around the event. The left limit xs

i of the interval is taken
as the right-most inlier1 of νl, and the right limit xe

i of the
interval is taken as the left-most inlier of νr. A margin can be
added to better accommodate the tails of the event.

For each candidate event window (xs
i , x

e
i ), the IPA extracts

the context features zC , i.e., the minimum, average, and max-
imum power within the localized event window, as well as the
location of the peak xi expressed in km. Moreover, considering
the relative position of events within the trace can be beneficial
for classification, as certain events commonly occur at specific
positions. Therefore, inspired by the Transformer architecture
[13], we leverage also the cosine-based positional encoding,

1An inlier is a sample that lies closer to the model than a threshold ε.
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Fig. 4: Interval estimation.

which is included into zC . Finally, the IPA returns the tentative
event-window intervals (xs

i , x
e
i ) and the context features.

B. Event Standardization

Event standardization is key to obtain features that are
invariant across devices and hence focusing on the morphology
of the events. To addresses the differences in event width from
the different domains, we resize the variable-sized candidate
events ei localized by the IPA to a fixed-size window of
w samples. Furthermore, to address the variation in power
intensity observed across different types of devices, each event
is normalized within the [−1, 1] range. The standardized events
are denoted with ẽi and are then fed to the feature extractor
to obtain the morphological features. This stage is crucial for
enabling the model to generalize effectively across domains.

C. Network Architecture and Training

Our feature extractor, denoted by fθ, draws inspiration
from the ResNet [8] architecture. It includes 28 convolutional
layers, a receptive field of 446, and only 372 352 parameters.
The model operates on normalized event windows of size w.
To improve generalization on events with significant width
variability, we leverage resampling as a form of data aug-
mentation. Specifically, we interpolate the event samples to
generate windows up to 50% longer or shorter. When an event
is down-sampled, padding is applied to preserve the window-
size. Conversely, when an event is up-sampled, we crop it.

Training is performed exclusively on data from the source
domain DS . It is divided into two phases. In the first phase,
a feature extractor fθ is concatenated to an auxiliary linear
classifier K0 for training. The classifier K0 allows the feature
extractor to learn useful representations of the input data and
is discarded at the end of this phase. The feature extractor is
said to extract morphological features zM because it is trained
on standardized windows that focus on the shape of the events.



In the second phase, depicted in Fig 3, the feature extractor
is frozen, and the classifier K is trained on top of it. The
classifier K takes as input both the morphological features
zM extracted by the feature extractor fθ and the context
features zC extracted by the IPA. By combining morphological
and context features, classifier K leverages both the intrinsic
event shape and context-related information to produce a
more informative feature representation, ultimately leading to
improved performance of the classifier.

D. Implementation Details

A preprocessing stage is performed on the entire trace
before event detection, which involves clipping the portions
of the trace where the signal drops below a certain threshold,
as regions with very low power contain only noise. In addition,
padding is applied to both the left and right borders to center
events at the edges of the trace. As regard the prominence
values used in peak detection, we set L = 0.3 for traces in
DS , while L = 0.1 for traces in DT where events appear
much smaller. Due to their physical interpretation, it is easy
to tune the higher prominence value H and the inlier threshold
ε for MSAC, which have been set to H = 2.0 and ε = 0.1dB,
respectively.

IV. EXPERIMENTS

To validate the performance of our method, we perform
two experiments. First, we assess the quality of the Interval
Proposal Algorithm. Then, we evaluate the entire detection
pipeline against the 1D Faster R-CNN [12], with receptive
field 278 and trained with a learning rate of 10−3.

A. Dataset

The dataset of OTDR traces used to validate our method has
been acquired in Cisco facilities over long spans of optical
fiber, where optical events have been generated by different
devices connected at different locations along the fiber link.
Overall, 915 traces have been collected from the Mystique
device (α), which constitutes the source domain DS , and 31
traces from the Sirius device (β), which constitutes target
domain DT . Notice that only the traces from Mystique are
used for training.

B. Figures of Merit

We assess detection performance by the mean average
precision. In particular, we consider mAP@0.5, which was
introduced in the PASCAL VOC challenge [5], and the
mAP@[.5 : .05 : .95] which was introduced in the COCO
challenge [10] that evaluate mAP at 10 different Intersections-
over-Union (IoU) thresholds.

In addition, to better characterize the performance of the
methods, we resort to standard metrics used for classifi-
cation: accuracy, precision, recall, F1 Score, False Positive
Rate (FPR), and False Negative Rate (FNR). Specifically, we
consider a detected event a True Positive when its IoU with
the ground-truth is greater than 0.5, and the label is correctly
estimated. False Negatives refer to ground-truth events that

Mystique (Domain DS ) Sirius (Domain DT )

Faster Our Faster Our

Accuracy 92.45 93.78 57.91 93.18
Precision 77.91 83.89 13.77 79.52
Recall 89.93 88.32 14.67 88.59
F1 Score 83.49 86.05 14.20 83.81
False Positive Rate 6.86 4.69 28.61 5.67
False Negative Rate 10.06 11.67 85.33 11.40
mAP@0.5 69.27 75.33 3.12 64.93
mAP@[.5 : .05 : .95] 38.86 74.46 0.83 64.36

TABLE I: Performance computed from Mystique and Sirius traces. Mystique
values are computed by Cross-validation.
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Fig. 5: Confusion matrix computed from Mystique traces computed by
Cross-validation. Rows denote the ground-truth, while columns denote the
predictions.

NO-EVENT
FACE-PLATE

PASS-THROUGH
FIBER-CUT

FIBER-END

NO-EVENT

FACE-PLATE

PASS-THROUGH

FIBER-CUT

FIBER-END

57.69%
15/26

15.4%
4

26.9%
7

3.3%
1

96.67%
29/30

1.7%
1

96.61%
57/59

1.7%
1

21.4%
6

78.57%
22/28

0

20

40

60

80

100

Fig. 6: Confusion matrix computed from Sirius traces. Rows denote the
ground-truth, while columns denote the predictions.

were not detected, while False Positives represent detected
events that do not correspond to any ground-truth event (i.e.,
NO-EVENTs). In addition to the above metrics, we use
confusion matrices to better inspect the sources of errors for
the different models. To do so, we classify all the localized
events. The IPA is evaluated in terms of precision and recall
for the retrieved peaks.

C. Discussion

1) Interval Proposal Algorithm: The IPA employed on
Mystique traces attains 96.45% recall and 67.1% precision,
while on Sirius traces, it reaches 31.19% precision and 97.00%
recall. Despite the low precision, the high recall is crucial as it
indicates that almost all events are fed to the network, which
will possibly classify them as NO-EVENTs.

2) Event-detection performance: The performance of our
method is reported in Table I, where it is compared against
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Fig. 7: This negligible bump results in a PASS-THROUGH after the normal-
ization.

the Faster R-CNN on traces from the source domain DS

(Mystique device) and target domain DT (Sirius device). In the
source domain DS , the first two columns show that our method
performs comparably to 1D Faster R-CNN. However, it is
important to note that our method achieves higher mAP. This
is due to our expert-driven localization and interval estimation
that better fit the events. This is supported by the fact that
increasing the IoU threshold does not decrease mAP.

When applied to the Sirius traces, the advantages of our
solution become apparent. The 1D Faster R-CNN shows poor
performance as it fails to detect most events. This is because
the events in the Sirius domain have different shapes compared
to domain DS , which is indicated by the high false negative
rate (FNR) and low mAP. In contrast, our method can operate
successfully without being affected by the domain change, as
can be appreciated by its performance that is in line with the
ones on the DS source domain.

3) Confusion matrices: We can better inspect the errors of
our method by inspecting the confusion matrices in Fig. 5
and Fig. 6. These confusion matrices reveal that the primary
source of errors is the misclassification of NO-EVENTs as
PASS-THROUGHs, which is reflected by the false positive
rate of 11.4%. This happens when negligible bumps in the
trace can be mistakenly classified as a PASS-THROUGH.
This is due to the normalization stage makes noisy NO-
EVENTs similar to PASS-THROUGHs, as depicted in Fig. 7.
Qualitative experiments performed on Mystique and Sirius
traces confirm that our method is accurate and capable of
detecting optical events in the trace. An example is depicted
in Fig. 8 and Fig. 9, where all the events have been correctly
detected.

V. CONCLUSIONS AND FUTURE WORK

We present a novel method to address Domain Adaptation
in OTDR traces. Unlike traditional data-driven models, trained
end-to-end and working as black-box methods, our approach
leverages domain knowledge to analyze traces from different
domains enabling the same model to perform event detection
across different types of devices.

As future work, we plan to extend this framework to monitor
fiber spans that include a broader range of physical events, e.g.,
presence of amplifiers and fiber bends and knots.
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Fig. 8: Qualitative result on a Mystique trace.

Fig. 9: Qualitative result on a Sirius trace.
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