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Abstract. Detecting anomalous regions in images is a frequently encoun-
tered problem in industrial monitoring. A relevant example is the analysis
of tissues and other products that in normal conditions conform to a spe-
cific texture, while defects introduce changes in the normal pattern. We
address the anomaly detection problem by training a deep autoencoder,
and we show that adopting a loss function based on Complex Wavelet
Structural Similarity (CW-SSIM) yields superior detection performance
on this type of images compared to traditional autoencoder loss functions.
Our experiments on well-known anomaly detection benchmarks show that
a simple model trained with this loss function can achieve comparable
or superior performance to state-of-the-art methods leveraging deeper,
larger and more computationally demanding neural networks.

Keywords: Anomaly Detection · Unsupervised Learning · Segmentation
· Autoencoder · Texture Similarity

1 Introduction

The automatic detection and localization of anomalous regions within images
is a crucial problem in many industrial scenarios where the production volume
prevents human supervision. In most cases, anomaly detection solutions are
required to identify regions that deviate either in appearance, structure or contrast
from the rest of the image, which instead follows a pattern or texture representing
normal conditions. As an example, consider images of nanofiber tissues [5], namely
polymer fibers with diameters down to one hundred nanometers, which look
like a texture of randomly overlapping filaments. In this context, it is crucial
to automatically locate defects, i.e., regions that deviate from this texture, a
problem that was first addressed in [6]. Figure 1 represents the textures from the
Nanofiber [6] and MVTec dataset [2], and different kinds of anomalies.

Nanofiber images are a relevant example of many industrial monitoring
scenarios where normal images are characterized by specific textures or repetitive
patterns that can differ in orientation, scale and shape from image to image.
For this reason, it is rarely possible to detect anomalies in test images by direct
comparison against a template or a reference. Moreover, anomaly detection is
performed by assigning an anomaly score to each pixel of the image, while the vast
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Nanofiber Carpet Grid Leather Tile Wood

Fig. 1. Examples of normal (above) and anomalous images (below) from the
Nanofiber [6] and MVTec [2] datasets.

majority of anomaly detection methods is designed to classify an entire image as
normal or anomalous [17]. In our case, anomaly detection is seen as a segmentation
problem where images are to be segmented into normal and anomalous regions.
Since anomalies are typically rare, and their annotation is expensive and time-
consuming, supervised learning is impractical in most industrial scenarios. Thus,
anomaly detection is usually addressed by unsupervised models trained exclusively
on normal images, which are usually abundant and do not require annotation [2].

A mainstream approach to detect anomalous regions consists in processing
the image in small patches either by sparse representations [6] or deep neural
networks [3,14,25]. Here, the patch size determines a trade-off between the
resolution of the predictions, which increases when using smaller patches, and
the detection accuracy, which improves when using larger patches since each
patch contains more information. In this respect, deep neural networks have the
advantage that they can adjust their effective receptive fields during training,
and learn what is the most informative area inside a fixed-size patch. Thus, the
patch size is perhaps a less influential parameter in deep neural networks than in
traditional machine learning methods for anomaly detection.

Convolutional autoencoders, namely convolutional neural networks (CNNs)
trained to extract a latent representation and then reconstruct the original image,
have been widely employed for anomaly detection purposes [25,4]. The rationale
is that an autoencoder trained exclusively on normal images will accurately
reconstruct only the normal regions of a test image. Thus, it is possible to
detect as anomalous those regions of a test image that substantially differ from
their reconstruction. Autoencoders are usually trained to minimize the Mean
Square Error (MSE) between the input and reconstructed images. However,
the MSE is not well suited for textured images since it measures the average
pixelwise difference, while repetitive patterns are substantially more relevant than
individual pixel values. For this reason, a loss function based on the Structural
Similarity index (SSIM) [22] can improve the anomaly detection performance [4].

We propose to address anomaly detection in textured images using convo-
lutional autoencoders trained and tested using similarity metrics specifically
designed to compare textures. In particular, we employ Complex Wavelet Struc-
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tural Similarity (CW-SSIM) [23] to train an autoencoder, and also to compare the
original and reconstructed images at test time. Using CW-SSIM substantially im-
proves the reconstruction quality compared to MSE, and yields better robustness
to differences in scale and orientation compared to SSIM. Our experiments on the
Nanofiber [6] and MVTec Texture [2] datasets show that a simple autoencoder
can outperform comparably more complicated and computationally expensive
models such as those in [14,3]. The code is available at https://github.com/

AndreaBiondaPolimi/Anomaly-Detection-Autoencoders-using-CW-SSIM.
Our solution is currently designed to process grayscale images, since CW-SSIM

extracts structural and contrast information from single-channel images. This
type of images can be encountered in many circumstances, e.g. where quality
control is performed by X-ray imaging or electronic microscopes [6]. Our solution
yields excellent performance even on some MVTec datasets containing RGB
images, which we convert to grayscale before feeding them to our autoencoder.
However, it turns out that, in some MVTec images, anomalies only affect the
color of certain regions. Thus, color information is crucial for anomaly detection,
which encourages us to investigate how to better handle RGB images.

2 Problem Formulation

Let us denote by I : X→ Nc the image to be analyzed, where X ⊂ Z2 is a pixel
grid and c is the number of color channels, whose intensity can range from 0
to 2d − 1, where d is the color depth. We primarily consider grayscale images
(i.e., c = 1), since in several industrial monitoring scenarios images are acquired
by X-ray sensors or electronic microscopes [6]. Our goal is to locate anomalous
regions in I, i.e., to estimate the unknown anomaly mask Ω : X→ {0, 1}:

Ω(i, j) =

{
1 if pixel (i, j) falls inside an anomalous region,

0 otherwise.
(1)

In particular, we are interested in estimating an anomaly mask Ω̂ : X→ {0, 1}
that approximates Ω as well as possible. Typically, this is done by combining
anomaly scores computed on image patches, which we indicate by x.

We assume that a training set TR containing only normal (i.e., anomaly-free)
images is provided, so we address anomaly detection in an unsupervised manner.
These are reasonable settings in industrial monitoring, where normal images are
abundant, while anomalies are rare and expensive to annotate. Moreover, anoma-
lies can vary in shape, size and other characteristics, and an annotated training
set might not encompass all the possible anomalies that will be encountered
during testing. Our goal is to detect as anomalous all the regions of I that do
not comply with the structure of normal images provided for training.

3 Related Work

Anomaly detection in images is a widely studied problem. The vast majority of
the existing solutions follow a one-class classification approach, where the entire

https://github.com/AndreaBiondaPolimi/Anomaly-Detection-Autoencoders-using-CW-SSIM
https://github.com/AndreaBiondaPolimi/Anomaly-Detection-Autoencoders-using-CW-SSIM
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image is classified as normal or anomalous. In this paper we address the more
challenging problem of detecting anomalous regions within the image, thus we
refer to [17] for a recent survey of the one-class classification literature.

The first solutions proposed to detect anomalous regions in images apply
unsupervised learning methods, such as One-Class Support Vector Machine (OC-
SVM) [12] or Kernel Density Estimation (KDE) [15], to features extracted from
image patches. The extracted features can either be hand-crafted features, such
as the response of the image to Gabor filters [20] or regularity measures [7], or
data-driven features such as dictionaries learned to yield sparse representations [6].
Another approach models the texture by an autoregressive model and detects
anomalies using the residuals [9]. In general, data-driven models are more effective
than those based on hand-crafted features, thanks to their greater flexibility [6].

Nowadays, the vast majority of anomaly detection methods leverage features
extracted by Convolutional Neural Networks (CNNs), trained to address a dif-
ferent classification problem. A relevant example is the work by Napoletano et
al. [14], where a pre-trained ResNet-18 [10] is used to extract feature vectors
from normal patches. Then, these features are reduced in dimension by PCA
and clustered by K-Means to form a dictionary of normal features. The anomaly
score on each test patch is computed as the Euclidean distance between its
projected feature vector and the most similar dictionary atom. Another way to
exploit pre-trained CNNs is the Student-Teacher approach [3], which is based
on a feature-extracting network (pre-trained on natural images), referred to as
the Teacher, and a set of Student networks trained on anomaly-free patches
to estimate the Teacher’s output in a regression problem. During testing, the
anomaly score of each pixel is computed by combining the regression error and the
prediction variance of the Student networks. The intuition is that the Students
can extract similar features compared to the Teacher only from normal patches.

The most popular deep learning methods for anomaly detection in images are
autoencoders [25], namely CNNs trained to extract a compact latent represen-
tation from the input image and then to reconstruct the input image from the
latent representation. The most common loss function is simply the MSE between
the input and reconstructed images, even though Bergmann et al. [4] show that
using SSIM [22] as training loss instead of the MSE substantially improves the
reconstruction quality, as it takes into account local structures instead of differ-
ences in individual pixel values. During testing, the autoencoder can accurately
reconstruct only patches that are similar to the anomaly-free training data, thus
anomalous regions can be detected by analyzing the pixelwise reconstruction
error. In this work, we extend [4] and demonstrate that a loss function based on
CW-SSIM [23] further improves the anomaly detection performance.

It is also worth mentioning some more sophisticated anomaly detectors
based on Generative Adversarial Networks (GANs) [1,18] and reconstruction by
inpainting [24], which are becoming increasingly popular. However, we do not
consider these methods since we primarily focus on autoencoders, and investigate
the impact of using different loss functions. Moreover, so far these solutions based
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on GANs have been applied to produce a single anomaly score for the whole input
image, and cannot be easily adapted to localize anomalies within images [17].

4 Proposed Solution

We address anomaly detection using an autoencoder [25] trained on small image
patches. Autoencoders consist of two sub-networks: an encoder E and a decoder
D. The encoder extracts a feature vector z = E(x), called latent representation,
from a patch x of the input image. The decoder is an upsampling network
taking as input z and returning a patch y = D(z) having the same size as x.
The two sub-networks are jointly trained on patches of images from TR, which
do not contain anomalies, to minimize a loss function measuring the pixelwise
reconstruction error, namely the difference between y and x. This loss is typically
defined as the MSE, but in [4] it has been shown that replacing the MSE with
structural similarity metrics such as SSIM [22] improves the reconstruction and
anomaly detection performance.

Structural similarity metrics were initially designed to classify textured im-
ages [26] and to assess their quality [22] by detecting differences with respect to
a template. We focus on metrics based on the steerable filter decomposition [8],
which can extract informative features describing a texture. For this reason, we
propose to train the autoencoder to maximize the Complex Wavelet Structural
Similarity (CW-SSIM) index [23] between input and reconstructed images. We
also employ CW-SSIM at test time to estimate the anomaly map by comparing
the input and reconstructed images. Compared to other structural similarity
metrics (including SSIM), CW-SSIM is more robust to scaling, translations and
rotations, and we show that this further improves the reconstruction quality and
the anomaly detection ability compared to the autoencoder in [4].

In what follows we first illustrate the steerable filter decomposition (Sec-
tion 4.1), then we introduce the CW-SSIM index and illustrate how we employ
it in the loss function of the autoencoder (Section 4.2). Finally, we present our
anomaly detection procedure, which is also based on CW-SSIM (Section 4.3).

4.1 Steerable Filter Decomposition

Steerable filter decomposition is based on recursive application of filtering and
subsampling operations, stacked in the steerable pyramid algorithm. It has been
demonstrated that the statistics obtained by this procedure can characterize well
a broad class of textures [16]. This algorithm decomposes the input patch x into
M different subbands xm in the frequency domain, where m ∈ {1, . . . ,M}, at
S different scales. The first subband is obtained by applying the Fast Fourier
Transform (FFT) to the original patch. The patch is then downsampled by 2× 2
average pooling and convolved with O oriented kernels S − 2 times to obtain the
subbands at different scales. The patch is downsampled one more time to obtain
the last subband. In the end we have

M = O(S − 2) + 2 (2)
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subbands, where the term “+2” takes into account the first and the last subbands.
The design of the filters and more implementation details can be found in [19,8].

4.2 CW-SSIM as Loss Function

As in [4], we train the autoencoder over randomly cropped patches {x} from
anomaly-free images in TR. During training, the loss function L compares each
patch x with the corresponding y = D(E(x)) reconstructed by the autoencoder:

L(x, y) = 1− 1

M

M∑
m=1

1

L

L∑
l=1

CW-SSIM(xml , y
m
l ), (3)

where xm and ym indicate the subbands in which x and y are decomposed
by the steerable filter algorithm, for m ∈ {1, . . . ,M}. The CW-SSIM index is
computed by dividing each subband into L small windows xml and yml of size
R × R following a regular grid sampling with stride 1, where l ∈ {1, . . . , L}.
The term CW-SSIM(xml , y

m
l ), which compares two windows at the same spatial

location l and subband m, is defined as:

CW-SSIM(xml , y
m
l ) =

2|〈xml , yml 〉|+K

‖xml ‖
2
2

+ ‖yml ‖
2
2

+K
, (4)

where 〈·, ·〉 and ‖ · ‖22 indicate the inner product and norm of complex vectors,
and K is a small constant preventing the denominator from vanishing [23]. In
(4) the windows xml , y

m
l are assumed to be flattened to column vectors. The loss

function in (3) represents a dissimilarity score between x and y ranging in [0, 2].

Implementation Details. We empirically chose the window size R = 7 for CW-
SSIM and the number of orientations O = 6 for the steerable filter decomposition.
Since we observed that subbands with a spatial dimension lower than 16× 16
pixels in the last subband do not contain useful information for anomaly detection,
we set the number of scales S = 5, starting from patches of size 256× 256.

Our autoencoder features a simple architecture, with an encoder E made of
5 convolutional layers each, deployed with a kernel size of 4 and stride 2, and
a symmetric decoder D. We construct the training set by randomly cropping
50,000 overlapping patches from normal images. We train the autoencoder for 400
epochs, using the ADAM optimizer [11] with an initial learning rate of 1 · 10−3

and a weight decay set to 0.5 every 20 epochs.

4.3 CW-SSIM for Anomaly Detection

We employ CW-SSIM also at inference time, to estimate the anomaly masks by
comparing the original and reconstructed test images. To do so, we first divide
each test image I into patches, following a regular grid sampling with stride 16.
Then, we reconstruct these patches through our autoencoder, and merge them
to form a full-size reconstructed image J , averaging the overlapping regions. To
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identify anomalous regions in I, we first apply the subband decomposition on
both I and J , divide the two images into L′ R × R windows Iml , Jm

l , where
m ∈ {1, . . . ,M} and l ∈ {1, . . . , L′}, and then compare these windows by the
CW-SSIM index (4). We define the anomaly score S(l) for each pair Iml , Jm

l as
the average CW-SSIM index over all the subbands:

S(l) = 1− 1

M

M∑
m=1

CW-SSIM(Iml , J
m
l ). (5)

Then, we compute the anomaly score ω̂(i, j) for each pixel (i, j) by averaging
the scores S(l) of the windows containing the pixel (i, j). The CW-SSIM window
size R and number of orientations O in the subband decomposition are the
same used during training (R = 7 and O = 6), in order to extract the same
type of features. To produce more robust results, we average the anomaly maps
obtained computing the CW-SSIM index several times, changing the number of
scales S ∈ {7, 8, 9}. Using a larger number of scales increases the dimensionality
reduction factor, thus compensating for the fact that, at test time, we compare
full-size images, while during training the CW-SSIM index is computed only on
small patches. Then, we generate the estimated anomaly mask Ω̂ by detecting
as anomalous those pixels (i, j) whose anomaly score exceeds a threshold γ, i.e.,
ω̂(i, j) ≥ γ. We define the threshold γ to obtain a false positive rate (FPR) of
0.05 over the validation images, which are defective images that will be no used
during test. Finally, we apply circular erosion to Ω̂ over a disk of radius 10 pixels
to remove outliers and to reduce jagged edges, thus improving the coverage of
anomalous regions, as shown in [6].

5 Experiments

Here we present the experiments we performed to evaluate the anomaly detection
performance of our solution. First, we describe the datasets (Section 5.1) and
the figures of merit we employ to test our solution (Section 5.2). Then we briefly
present the methods against which we compare our solution (Section 5.3), and
finally we illustrate and discuss our experimental results (Section 5.4).

5.1 Benchmarking Datasets

We evaluate the performance of our methods on two anomaly detection datasets:
the Nanofiber and the MVTec Texture datasets (see Figure 1 for examples of
normal and anomalous images). The Nanofiber dataset [6] contains images of
nanofibrous material acquired by a Scanning Electron Microscope (SEM), with a
pixel size of few tens nanometers. In normal conditions, the material presents a
non-periodic continuous texture of filamentous elements with a diameter of about
10 pixels. The anomalous regions consist of agglomerates of filamentous material,
and can appear in any location within the image. The annotated defects have a
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diameter that ranges between 20 to 350 pixels. The images are grayscale (i.e.,
c = 1) with 8-bit color depth (d = 8), and have size 696× 1024 pixels.

The MVTec Texture dataset is the portion of the MVTec anomaly detection
dataset [2] that contains only textured images. We exclude images depicting
objects, which are out of the scope of this paper. There are 5 different categories
of either regular (Carpet, Grid) or random textures (Leather, Tile, Wood). Test
images can contain a variety of defects, such as surface anomalies (e.g., scratches,
cuts), or missing parts, with a diameter between 40 to 390 pixels. The dataset
is mainly composed of RGB images (i.e., c = 3), apart from the Grid images,
which are grayscale. All the images have 8-bit color depth and spatial dimension
ranging between 700× 700 and 1024× 1024. Due to the design of CW-SSIM, we
convert RGB images to grayscale before presenting them to our autoencoder.

5.2 Figures of Merit

We assess the anomaly detection performance by the area under the ROC curve
(AUC), a well-known threshold-independent performance metric, computed from
the anomaly scores of each pixel in test images. To enable a direct comparison
with the results in [2], in our experiments on the MVTec dataset we compute the
AUC up to FPR = 0.3 (normalized so that the maximum attainable value is 1).
On the Nanofiber dataset, we also evaluate the defect coverage, which compares
the connected components of the ground-truth and the estimated anomaly mask
obtained by a detector yielding FPR = 0.05. This metric was proposed in [6] to
assess the detection performance independently from the size of the anomalous
regions, which influences the AUC since larger anomalies contain more pixels [6].

5.3 Considered Methods

In our experiments we compare our solution with autoencoders sharing the same
architecture but trained with different loss functions: MSE, SSIM as in [4], and
MS-SSIM [21]. For a fair comparison, we re-train our SSIM autoencoder rather
than reporting the results from [4], whose autoencoder has a simpler architecture
than ours. We also evaluate the method presented in [14], which we indicate
by Feature Dictionary, and the Student-Teacher method [3], which represents
the state of the art on the MVTec datasets. On the Nanofiber dataset, we also
evaluate the sparse representation-based method proposed in [6], which we refer
to as Sparse Coding. The SSIM and MS-SSIM autoencoders and Sparse Coding
are designed to process grayscale images, thus it is necessary to convert RGB
images to grayscale before applying these methods.

We report the anomaly detection performance on the Nanofiber dataset in [14]
for Feature Dictionary and in [6] for Sparse Coding, and the performance on the
MVTec Texture datasets of Feature Dictionary and Student-Teacher as reported
in [2]. Since the Student-Teacher implementation is not publicly available, we
were not able to test it on the Nanofiber dataset.
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Table 1. AUC and defect coverage of the considered methods on the Nanofiber dataset.
Our solution is the best method, outperforming the state of the art on this dataset.

Metrics Sparse
Coding [6]

Feature Dict.
[14]

MSE
Autoencoder

SSIM
Autoencoder

MS-SSIM
Autoencoder

CW-SSIM
Autoencoder

AUC 0.926 0.974 0.665 0.961 0.962 0.977

Def. Cov. 0.650 0.850 0.000 0.880 0.870 0.960

Table 2. Normalized AUC of the considered methods of the MVTec Texture dataset. We
indicate by (G) grayscale textures and by (C) color textures. Our solution outperforms
the state of the art in three out of five textures from this dataset.

Dataset Feature Dict.
[14]

Student-
Teacher [3]

MSE
Autoencoder

SSIM
Autoencoder

MS-SSIM
Autoencoder

CW-SSIM
Autoencoder

Carpet (C) 0.943 0.927 0.543 0.754 0.753 0.947

Grid (G) 0.872 0.974 0.662 0.852 0.927 0.978

Leather (C) 0.819 0.976 0.658 0.800 0.696 0.979

Tile (C) 0.854 0.946 0.552 0.650 0.679 0.847

Wood (C) 0.720 0.895 0.574 0.706 0.640 0.753

5.4 Results and Discussion

In Table 1 we report the AUC and median defect coverage of the considered
methods on the Nanofiber dataset [6]. These results show that our CW-SSIM
autoencoder is the best at detecting anomalous regions, slightly outperforming
the state-of-the-art Feature Dictionary [14] in terms of AUC. The difference is
even more substantial in defect coverage, meaning that our solution is superior
in detecting also small anomalous regions.

Table 2 reports the normalized AUC (up to FPR = 0.3) of the considered
methods on the different categories in the MVTec Texture dataset [2]. Our
CW-SSIM autoencoder represents the best-performing method on three out
of five categories of textures, namely Grid (which is grayscale), Carpet and
Leather (which are color). We remark that our solution, which is based on a
simple architecture with 5.57 · 106 trainable parameters, outperforms the state-
of-the-art Feature Dictionary and Student-Teacher approaches, which leverage
comparably more complicated pre-trained models with respectively 11.46 · 106

and 26.07 ·106 parameters. Most remarkably, our solution yields better AUC than
competing methods also on color textures like Carpet and Leather, even though
we convert RGB images to grayscale before feeding them to our autoencoder,
while Feature Dictionary and Student-Teacher take as input the original RGB
images. In contrast, on Tile and Wood, our solution performs similarly to Feature
Dictionary but worse than Student-Teacher. We speculate that this is due to the
fact that color information is crucial to detect anomalies in these textures, and
this motivates us to further investigate how to manage colors in our solution.

The results in Tables 1 and 2 confirm that a loss function based on SSIM sub-
stantially improve the anomaly detection performance of autoencoders compared
to using the MSE, as shown in [4]. Our experiments show that using MS-SSIM
yields similar performance to SSIM, while our loss function and anomaly detection
procedure based on CW-SSIM further improve the results, making our solution
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Fig. 2. An example of reconstruction and anomaly scores produced by autoencoders
trained with different loss functions from a Nanofiber image. This image shows that
autoencoders trained with structural similarity metrics, and CW-SSIM in particular,
yield better reconstruction quality and superior anomaly detection performance than a
traditional MSE autoencoder.

comparable or superior to the state of the art. This is due to the fact that autoen-
coders based on structural similarity metrics, and CW-SSIM in particular, achieve
higher reconstruction quality of normal images than MSE autoencoders, and this
yields superior anomaly detection performance. We qualitatively illustrate this
in Figure 2, which shows an image from the Nanofiber dataset, its reconstruction
produced by autoencoders based on MSE, SSIM, MS-SSIM, and CW-SSIM, and
the corresponding anomaly maps ω̂ compared to the ground truth.

6 Conclusions and Future Work

We propose an effective training strategy for autoencoders to detect anomalous
regions in textured images. In particular, we employ a custom loss function based
on CW-SSIM [23] for both training and testing. Our experiments show that our
solution improves the state of the art on several anomaly detection benchmarks,
outperforming deep neural networks with more sophisticated and computationally
demanding architectures. Although CW-SSIM is designed for grayscale images,
thus it cannot exploit color information, our solution can effectively detect
anomalous regions also from RGB images converted to grayscale. Future work
will investigate how to combine CW-SSIM and Optimal Color Composition
Distance (OCCD) [13] in our custom loss function for autoencoders, as suggested
in [26], since in some cases color information might be crucial for anomaly
detection. Moreover, we will make our autoencoder fully convolutional to achieve
more efficient training and testing.
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