
ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 1

Nonparametric and Online Change Detection in
Multivariate Datastreams using QuantTree

Luca Frittoli, Diego Carrera, Giacomo Boracchi

Abstract—We address the problem of online change detection in multivariate datastreams, and we introduce QuantTree Exponentially
Weighted Moving Average (QT-EWMA), a nonparametric change-detection algorithm that can control the expected time before a false
alarm, yielding a desired Average Run Length (ARL0). Controlling false alarms is crucial in many applications and is rarely guaranteed
by online change-detection algorithms that can monitor multivariate datastreams without knowing the data distribution. Like many
change-detection algorithms, QT-EWMA builds a model of the data distribution, in our case a QuantTree histogram, from a stationary
training set. To monitor datastreams even when the training set is extremely small, we propose QT-EWMA-update, which incrementally
updates the QuantTree histogram during monitoring, always keeping the ARL0 under control. Our experiments, performed on synthetic
and real-world datastreams, demonstrate that QT-EWMA and QT-EWMA-update control the ARL0 and the false alarm rate better than
state-of-the-art methods operating in similar conditions, achieving lower or comparable detection delays.

Index Terms—online change detection, nonparametric monitoring, multivariate datastreams, histograms, false alarms.

F

1 INTRODUCTION

CHANGE detection in datastreams [1] is a challenging
problem with relevant applications in many domains

including quality control [2], security [3], cryptographic
attacks [4], finance [5], and in several engineering problems,
where control charts have been employed for decades [6].
A relevant example is industrial process monitoring, where
production machinery is equipped with multiple sensors
that measure vibration frequency, flow, temperature, pres-
sure, etc. These observations form datastreams that must
be monitored since any distribution change might indicate
failures or ongoing deterioration of specific components
such as bearings and gears, thus change detection can be
key for predictive maintenance [7]. Change detection is also
studied in the machine learning literature since classification
and recommendation systems often operate on streaming
data. Here, changes are called concept drifts and classifiers
must be adapted to an evolving data-generating process [8].

Many of these applications require multivariate datas-
treams to be processed online, i.e., while acquiring new
observations. This condition represents a crucial challenge
when designing and implementing change-detection algo-
rithms. On the one hand, a device implementing a change-
detection algorithm has limited memory and can perform
a limited number of operations at each time t, while
datastreams are virtually unlimited. On the other hand,
to increase the detection power, online change-detection
algorithms would need in principle to analyze, at each time
t, all the data observed until t, and this typically implies
an increase of computational and memory requirements [5].
Another fundamental challenge is to monitor multivari-
ate datastreams in a nonparametric manner, which enables
change-detection algorithms to operate when the initial
distribution φ0 is unknown. Unfortunately, most nonpara-
metric online change-detection algorithms can only monitor
univariate datastreams [5]. A few nonparametric detectors
for multivariate datastreams have been proposed in the lit-
erature [9], [10], but most of these address change-detection

in a one-shot scheme by performing independent statistical
tests over fixed-sized batches of data. Thus, these algorithms
do not leverage the whole datastream and usually perform
worse than their online counterparts [5].

We present QuantTree Exponentially Weighted Moving Av-
erage (QT-EWMA), a nonparametric online change-detection
algorithm that can effectively monitor multivariate datas-
treams while controlling the frequency of false alarms,
namely detections that do not correspond to any distribu-
tion change. As in statistical hypothesis testing, having a
certain number of false alarms is unavoidable in change
detection. In particular, any change-detection algorithm is
characterized by a trade-off between the frequency of false
alarms and the detection power. In many applications, in-
cluding our previous example of industrial process monitor-
ing [7], promptly detecting changes is crucial (e.g., to avoid a
failure). Still, any false alarm might trigger a costly interven-
tion (e.g., the replacement of functioning machinery). There-
fore, one typically sets a false alarm probability compatible
with the resources allocated for these interventions and
implements a change-detection algorithm that minimizes
the detection delay subject to this bound on false alarms [5].
Moreover, controlling false alarms enables a fair compar-
ison between the detection power of different solutions.
Unfortunately, most online change-detection algorithms for
multivariate datastreams from the literature, especially the
nonparametric ones, cannot control false alarms effectively.

Typically, a change-detection algorithm has three main
ingredients: i) a model φ̂0 of the initial distribution φ0 to be
fitted on a training set, ii) a statistic T , based on φ̂0, that
yields a known response when data are drawn from φ0,
and iii) a decision rule to analyze the values of T and report
changes. Typically, the decision rule consists in comparing
T with a threshold h defined to yield the desired false
alarm probability. One-shot detectors, which analyze a fixed
amount of data, have thresholds that do not depend on t



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 2

and are simply defined as quantiles of T , which can either
be computed analytically [11] or by Monte Carlo simula-
tions [9]. In contrast, the test statistic in online algorithms
depends on t, as Tt takes into account all the data points
acquired until t. In this case, computing the thresholds is
more complicated since one typically wants to control the
Average Run Length (ARL0), i.e. the expected time before
raising a false alarm [6].

The proposed QT-EWMA is a novel online nonparamet-
ric change-detection algorithm for multivariate datastreams.
QT-EWMA combines a QuantTree (QT) histogram [9], used
as a model φ̂0, and a novel online statistic Tt based on Ex-
ponentially Weighted Moving Average (EWMA) [12]. In partic-
ular, by QT-EWMA we monitor the proportion of incoming
samples falling in each bin of the histogram, and use this
to build an efficient and practical online change-detection
algorithm. The theoretical properties of QuantTree [9] guar-
antee that QT-EWMA is completely nonparametric since the
distribution of our statistic does not depend on φ0, hence its
thresholds {ht}t controlling the ARL0 can be set a priori.
Moreover, these thresholds guarantee by design a constant
false alarm probability over time and, consequently, a fixed
false alarm rate at any time instant during monitoring. Thus,
QT-EWMA controls both ARL0 and false alarm rate.

We also introduce QT-EWMA-update, a new change-
detection algorithm based on QT-EWMA that enables on-
line monitoring even when the training set is extremely
small, e.g. in concept-drift adaptation [8] when the change-
detection algorithm has to be re-configured after a detec-
tion. In QT-EWMA-update we use new samples to update
the bin probabilities of our initial QuantTree histogram,
as long as no change is detected. This update improves
the model φ̂0, thus increasing the detection power. Our
updating procedure is compatible with the computational
requirements of online monitoring schemes, and the dis-
tribution of the QT-EWMA-update statistic is also inde-
pendent from φ0, enabling the computation of thresholds
controlling the ARL0 through the same procedure as in
QT-EWMA. Hence, QT-EWMA-update overcomes a major
limitation characterizing several online and nonparametric
change-detection algorithms, i.e., requiring a large training
set to fit φ̂0 before monitoring. This is particularly useful
when acquiring stationary data from φ0 is difficult or costly.
Our main contributions are:

• We present QT-EWMA, an online nonparametric
change-detection algorithm for multivariate datas-
treams based on a novel EWMA statistic (Section 4.1).

• We prove that the bin probabilities of QuantTree
histograms follow a Dirichlet distribution, and this
allows us to compute the thresholds {ht}t of QT-
EWMA by an efficient Monte Carlo scheme. These
thresholds enable controlling the ARL0 and false
alarm rates for any φ0 (Section 4.2).

• We propose QT-EWMA-update, which enables mon-
itoring when the training set is extremely small by
updating the QuantTree histogram online (Section 5).

• We propose two simple yet theoretically sound pro-
cedures to extend a generic one-shot detector to mon-
itor datastreams controlling the ARL0 (Section 6),
which we employ as baselines in our experiments.

Our experiments, performed on both synthetic and real-
world datastreams, show that QT-EWMA controls the ARL0

better than the baselines and Scan-B [13], a competing
algorithm based on a Maximum Mean Discrepancy (MMD)
statistic [10], regardless of the training set size. Our results
also show that QT-EWMA operates at the expected false
alarm rate, which Scan-B does not guarantee. Moreover,
QT-EWMA achieves similar or lower detection delays than
Scan-B, especially on real-world datastreams. Most impor-
tantly, our QT-EWMA-update achieves significantly better
detection performance compared to all the nonparametric
alternatives when the training sets are extremely small. Our
code and the thresholds of QT-EWMA and QT-EWMA-
update are available at: https://boracchi.faculty.
polimi.it/Projects

This paper extends our previous work [14], where we
introduced QT-EWMA. The major original contribution of
this paper is QT-EWMA-update, which enables monitoring
when an extremely small training set is provided. Moreover,
we extend the results presented in [9] by proving that the
bin probability vector of a QuantTree histogram is a realiza-
tion of a Dirichlet random vector with known parameters,
and this allows us to derive a very efficient Monte Carlo
scheme to compute thresholds, reducing the runtime of the
simulations by 25% compared to [14].

The rest of the paper is organized as follows: in Sec-
tion 2 we survey the change-detection literature, focusing
on methods operating on multivariate datastreams, and
in Section 3 we provide a formal definition of the online
change-detection problem. In Sections 4 and 5 we introduce
the QT-EWMA and QT-EWMA-update algorithms, respec-
tively, and our procedure to compute thresholds controlling
the ARL0. In Section 6 we illustrate how to extend one-
shot change detectors to monitor datastream controlling
the ARL0, and discuss the theoretical guarantees and lim-
itations of these approaches. In Section 7 we show that
the computational complexity and memory requirements
of QT-EWMA and QT-EWMA-update favorably compare to
those of the alternative solutions and finally in Section 8 we
demonstrate the effectiveness of our solutions by testing it
on both synthetic and real-world datastreams.

2 RELATED WORK

Most change-detection algorithms in the literature employ
models and statistics designed to analyze univariate datas-
treams [2], [5], [12]. The vast majority of these methods lack
straightforward extensions to multivariate data, especially
those leveraging nonparametric statistics based on ranks [5].
Change detection in multivariate datastreams has often been
addressed in multi-stream (multi-channel) settings, i.e., by
separately analyzing each component of the datastream [15],
[16], [17]. However, the hypotheses underpinning multi-
stream monitoring are fundamentally different from those of
change-detection in multivariate datastreams. In fact, [15],
[16], [17] assume that the components of the input vector
are generated by a 1-dimensional random variables, and
ignore correlations among them. Moreover, in multi-stream
settings, changes typically affect the distribution of a subset
of these random variables [15], while, in multivariate set-
tings, more general distribution changes are considered [18],

https://boracchi.faculty.polimi.it/Projects
https://boracchi.faculty.polimi.it/Projects


ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 3

TABLE 1
Properties of the most relevant change-detection algorithms designed

for multivariate datastream monitoring.

algorithm nonpar. online control ARL0 update

G
au

ss Hotelling CPM [19] X X X
SS-CPD [20] X X

SPLL [21] semipar. with mod. with mod.

PC
A PCA-SPLL [22] X

PCA-CD [23] X X

Martingale [24], [25] X X

M
M

D Scan-B [13] X X X X
NEWMA [26] X X iff φ0 known

NTK-MMD [27] X X

H
is

t.

BG-CuSum [28] X X iff φ0 known
QuantTree [9] X with mod. with mod.

QT-EWMA X X X
QT-EWMA-update X X X X

including subtle changes in the correlation between compo-
nents that are hard to detect by multi-stream analysis.

Many change-detection algorithms specifically designed
for multivariate datastreams are parametric: two remarkable
examples are the Change Point Model (CPM) [19] based
on the Hotelling test statistic [29], and Sequential Subspace
Change Point Detection (SS-CPD) [20]. Both methods perform
online monitoring while controlling the ARL0, but rely on
the hypothesis that φ0 is Gaussian. A popular approach
to handle multivariate datastreams is to reduce the data
dimension by computing the likelihood of the observations
with respect to a Gaussian [3] or Gaussian mixture model
φ̂0 [21], [30], which is fitted on a training set and therefore
is quite flexible in modeling φ0. As in [21], we call these
methods semiparametric. The main limitation of parametric
and semiparametric methods is the implicit assumption that
φ0 belongs to a known family of probability distributions,
which typically does not hold in real-world datastreams.
Some nonparametric approaches reduce the data dimen-
sion by Principal Component Analysis (PCA) [22], [23], or
by a strangeness measure [24], [25] to monitor a univariate
datastream, e.g. by Martingale-based permutation tests [24].
However, none of these methods based on dimensionality
reduction can be set to maintain the target ARL0.

The Maximum Mean Discrepancy (MMD) is a nonpara-
metric statistic that was originally introduced for hypothesis
testing [10], and has recently been employed for online
change detection [13], [26], [27] following a sliding-window
approach. Usually, these methods do not fit a model φ̂0,
but compare the new observations directly to the train-
ing set, which has to be stored during monitoring [13].
Among these methods, Scan-B [13] is the only one where
the ARL0 can be set before deployment for any unknown
distribution φ0. However, Scan-B has a unique threshold,
i.e. ht ≡ h, defined by the asymptotic behavior of the
ARL0 when h → ∞ [13], which does not guarantee an
accurate control of the ARL0 and the false alarm rate, as
we show in our experiments. NEWMA [26] detects changes
by analyzing the relation between two EWMA statistics
based on MMD having different forgetting factors. Unfor-
tunately, thresholds controlling the ARL0 can be set only
when the analytical expression of φ0 is known [26], which
limits the applicability of NEWMA. Neural Tangent Kernel

MMD (NTK-MMD) [27] approximates the MMD statistic by
training a neural network on samples from φ0, to reduce the
computational and memory overhead in online testing. In
this case, the thresholds are computed by training multiple
networks with different training/validation splits, and then
bootstrapping over validation data, a procedure that does
not control the ARL0. A major limitation of algorithms
based on MMD is that they require a large amount of
reference data [13], [27]: our experiments show that Scan-B
[13] yields poor performance when the training set is small,
even though the algorithm includes the incoming samples
into the reference data, thus updating over time. In contrast,
QT-EWMA does not require such large training sets, and
QT-EWMA-update yields even lower detection delays by
incrementally updating φ̂0.

Histograms are very flexible nonparametric models to
describe φ0 [31]. A remarkable example is QuantTree [9],
which adaptively defines a histogram over a training set
drawn from φ0. QuantTree histograms have been employed
in a one-shot change-detection test [9], which cannot be
directly used in online settings, leveraging a nonparametric
statistic to assess whether a single batch of test data follows
φ0 or not. Another change-detection algorithm based on
histograms is the Binned Generalized Cumulative Sum (BG-
CuSum) [28], which can operate online controlling the ARL0.
However, this algorithm has been tested only on univariate
datastreams, and it is infeasible to extend to multivariate
data because the number of bins scales exponentially with
the data dimension. Moreover, it requires to know the
cumulative function of φ0, or an accurate approximation,
to enable controlling the ARL0. Thus, when φ0 is unknown,
BG-CuSum requires a huge training set, especially when the
data dimension is high [28]. The proposed QT-EWMA and
QT-EWMA-update overcome all these limitations, enabling
to control the ARL0 regardless of φ0 and the data dimen-
sion. Moreover, QT-EWMA-update is specifically designed
to operate when the training set is small.

Table 1 summarizes the main properties of the most
relevant change-detection algorithms designed to monitor
multivariate datastreams. In particular, we consider the
following properties: being nonparametric, being executed
online, controlling the ARL0, and being able to incremen-
tally update the model using the incoming data. To the best
of our knowledge, Scan-B [13] is the only nonparametric
and online change-detection algorithm from the literature
in which the target ARL0 can be set independently of φ0. As
we show in Section 6, one-shot change-detection methods
such as QuantTree [9] and Semi-Parametric Log-Likelihood
(SPLL) [21] can be modified to operate online while con-
trolling the ARL0. Other methods that control the ARL0

are either parametric [19], [20], or require the analytical
expression of φ0 [26], [28].

QT-EWMA-update shares some similarity with incremen-
tal learning methods [32], where streaming data samples are
used to improve previously learned models [33]. In incre-
mental learning and learning in non-stationary environments
literature, the model to be improved is typically a classifier
[34], [35], hence a certain amount of supervised data is
required. In contrast, we consider an unsupervised setting
in which we do not know whether the incoming samples
follow φ0 or not, and we incrementally update a model



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 4

φ̂0 using streaming data, similarly to other online change-
detection algorithms [5], [19].

We remark that all the models and statistics described
here might not be suitable to detect distribution changes
in high-dimensional data such as signals or images. This
is primarily due to the fact that models such as Gaussian
mixtures [21] and histograms [9] cannot describe compli-
cated structures, and in many statistics the computational
overhead increases with the data dimension [13], [28]. More-
over, the higher the data dimension, the harder it is to
detect distribution changes, an effect known as detectability
loss [30]. For this reason, high-dimensional data samples
typically undergo a feature-extraction procedure to reduce
their dimension before being analyzed by any change-
detection algorithm. This is a standard procedure that has
been followed to prepare the Credit Card Fraud Detection
dataset [36] and the INSECTS dataset [37].

3 PROBLEM FORMULATION

We address the online change-detection problem in a virtu-
ally unlimited multivariate datastream x1, x2 . . . ∈ Rd. We
assume that, as long as there are no changes, all the data
samples are i.i.d. realizations of a random variable having
unknown distribution φ0. In the case of time series, this
hypothesis is typically met after some pre-processing [5].
We define the change point τ as the unknown time instant
when a change φ0 → φ1 takes place:

xt ∼
{
φ0 if t < τ

φ1 if t ≥ τ
. (1)

We assume that both φ0 and φ1 6= φ0 are unknown, and that
a training set TR containingN realizations of φ0 is provided
to fit φ̂0, which in our case is a QuantTree histogram
[9]. After fitting φ̂0, an online change-detection algorithm
assesses, for each new incoming sample xt, whether the
sequence {x1, . . . xt} contains a change point. Typically, a
statistic Tt based on φ̂0 is computed at each incoming xt,
then a decision rule is applied. Usually, the rule consists
in controlling whether Tt > ht for a certain threshold ht,
and the detection time t∗ is defined as the first time instant
when there is enough statistical evidence to claim that the
datastream {x1, . . . xt∗} contains a change point, namely:

t∗ = min{t : Tt > ht}. (2)

As in any statistical test, the sequence of thresholds {ht}t
employed in change detection should be defined to control
the probability of having a false alarm, namely a detection
on data drawn from φ0. In online settings, we measure the
amount of false alarms by the Average Run Length [6],
defined as ARL0 = Eφ0

[t∗], where the expectation is taken
assuming that the whole datastream is drawn from φ0. Thus,
the ARL0 is the average time before a false alarm. Ideally, the
target ARL0 of an online change-detection method should be
set a priori, similarly to Type I error probability in hypothesis
testing. The goal is to detect a distribution change as soon
as possible, i.e., to minimize the detection delay t∗ − τ ,
while controlling the ARL0, i.e. having an empirical ARL0

that approaches the target ARL0 set before monitoring. We
remark that controlling the ARL0 also provides an upper
bound on the expected detection delay.

Algorithm 1 QT-EWMA

Input: datastream x1, x2, . . ., target probabilities {πj}Kj=1,
thresholds {ht}t, TR

Output: detection flag ChangeDetected, detection time t∗

1: ChangeDetected← False, t∗ ←∞
2: estimate QT histogram {(Sj , πj)}Kj=1 from TR and de-

fine {π̃j} as in (5)
3: Zj,0 ← π̃j ∀j = 1, . . . ,K
4: for t = 1, . . . do
5: yj,t ← 1(xt ∈ Sj)
6: Zj,t ← (1− λ)Zj,t−1 + λyj,t, j = 1 . . . ,K
7: Tt ←

∑K
j=1(Zj,t − π̃j)2/π̃j

8: if Tt > ht then
9: ChangeDetected← True, t∗ ← t

10: break;
11: end if
12: end for
13: return ChangeDetected, t∗

When TR is small, the model φ̂0 is typically inaccurate
and the change-detection algorithm yields high detection
delays. In this case, the algorithm should be able to incre-
mentally update φ̂0 using new samples, as in [5], [19], thus
improving the detection performance.

4 QUANTTREE EXPONENTIALLY WEIGHTED MO-
VING AVERAGE

Here we introduce the QT-EWMA algorithm (Section 4.1)
and illustrate the procedure we follow to compute its thresh-
olds controlling the ARL0 (Section 4.2).

4.1 The QT-EWMA Algorithm
We propose QT-EWMA (Algorithm 1) to extend to online
monitoring the QuantTree algorithm [9], which was orig-
inally designed for one-shot change detection. QuantTree
models φ0 by a histogram made of K bins {Sj}Kj=1 con-
structed by splitting Rd along random directions. The splits
are defined so that each bin Sj contains πjN samples from
the training set TR, where {πj}Kj=1 is a given set of target
probabilities. QuantTree histograms can model both univari-
ate and multivariate distributions and, most importantly,
enable nonparametric monitoring. In fact, the distribution
of any statistic defined by the number of test samples falling
in each bin Sj of a QuantTree histogram does not depend
on φ0 nor on the data dimension d, as demonstrated in [9].
Further details on QuantTree – including how to define the
bins when TR cannot be exactly split to match the target
probabilities – can be found in [9].

Here we define a novel online statistic Tt to monitor the
proportion of samples falling in each bin of a QuantTree
histogram constructed over TR (line 2). In particular, when
a new sample xt is acquired, we define K binary statistics
from the indicator functions of each bin Sj , namely

yj,t = 1(xt ∈ Sj), j = 1, . . . ,K, (3)

to track in which bin xt falls. Denoting the true bin prob-
abilities pj = Pφ0(Sj), namely, the probability of a point
sampled from φ0 to belong to Sj , we have that

Eφ0
[yj,t] = pj , j = 1, . . . ,K, (4)



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 5

where the expected value Eφ0
is computed under the as-

sumption that xt ∼ φ0. Since φ0 is unknown, so are the
bin probabilities (p1, . . . , pK), which are a realization of a
random vector [9] and can be approximated by π̃j ≈ pj ,
where π̃1, . . . , π̃K are defined as:

π̃j :=
πjN

N + 1
, j < K and π̃K :=

πKN + 1

N + 1
. (5)

After evaluating the statistics yj,t for the incoming sample
xt (line 5), we compute the EWMA statistic [12] Zj,t (line 6),
to monitor the proportion of data in Sj , for j ∈ {1, . . . ,K}:

Zj,t = (1− λ)Zj,t−1 + λyj,t where Zj,0 = π̃j . (6)

Finally, we define the QT-EWMA change-detection statistic:

Tt =
K∑
j=1

(Zj,t − π̃j)2

π̃j
, (7)

which is similar to the Pearson statistic [38]. In fact, Tt
measures the overall difference between the proportion
of samples x1, . . . , xt falling in each bin Sj , represented
by Zj,t, and π̃j , which represent their estimated expected
values under φ0. This difference naturally increases when
t > τ as a consequence of a change φ0 → φ1 since this
modifies the probability of some bin Sj . The QT-EWMA
statistic is computed at each incoming sample (line 7) and
then compared against the corresponding threshold ht to
detect changes (line 8).

The distribution of any statistic defined over a QuantTree
histogram does not depend on φ0 nor on d, thus QT-EWMA
is a nonparametric change-detection algorithm. This claim is
substantiated by the theoretical results in [9], which we ex-
tend here by fully characterizing the probability distribution
of (p1, . . . , pK):

Proposition 1. Let {Sj}Kj=1 be a partitioning built by the
QuantTree algorithm with target probabilities {πj}Kj=1 on a
training set TR ∼ φ0 of size N . Then, the bin probability vector
(p1, . . . , pK) is drawn from the Dirichlet distribution:

(p1, . . . , pK) ∼ D
(
π1N, π2N, . . . , πKN + 1

)
. (8)

Proof. We leverage the result in [39] linking the Dirichlet
distribution to the stick-breaking process. In particular, the
stick-breaking process generates a sequence of K random
variables q1, . . . , qK as

qj =

j−1∏
k=1

(1− q̃k) · q̃j , j < K, qK = 1−
K−1∑
j=1

qj , (9)

where q̃j for j = 1, . . . ,K − 1 are defined as

q̃j ∼ Beta
(
γj ,

K∑
k=j+1

γj

)
, (10)

and γ1, . . . , γK are the parameters that define the stick-
breaking process. In [39] it has been shown that

(q1, . . . , qK) ∼ D
(
γ1, . . . , γK

)
. (11)

To prove the proposition it is enough to show that there
exists a specific configuration of γj such that the bin proba-
bilities pj of a QuantTree histogram can be expressed as qj

2 4 8 16 32 64 128 256 512

0.64

0.66

0.68

0.70

0.72

0.74

0.76

K

A
U

C

Gaussian, d = 4, 16, 64

N = 4096 N = 2048 N = 1024 N = 512

Fig. 1. Detection power of QT-EWMA on Gaussian datastreams with
different training set size N when varying the number of bins K. The
results, which are averaged over d = 4, 16, 64, show that histograms
with a small K cannot describe φ0 accurately and yield low detection
performance. Also setting a very large K harms detection performance
since, at a fixed N , increasing K yields inaccurate estimates {π̃j}j .

in (9). To this purpose, we recall the result in [9] where it has
been shown that pj can be written as

pj =

j−1∏
k=1

(1− p̃k) · p̃j , j < K, pK = 1−
K−1∑
j=1

pj , (12)

where p̃j are independent and follow Beta distributions:

p̃j ∼ Beta
(
πjN,

(
1−

j∑
k=1

πk

)
N+1

)
j = 1, . . . ,K−1. (13)

Now, we only need to find a suitable choice of γ1, . . . , γK to
express the p̃j as the q̃j in (10). If we define γj = πjN for
j < K as in (13) and γK = πKN + 1, we obtain that:

K∑
k=j+1

γk =
K∑

k=j+1

πkN + 1 =

(
1−

j∑
k=1

πk

)
N + 1, (14)

where the last equality follows from
∑K
j=1 πj = 1. Equation

(14) ensures the correspondence between p̃j in (13) and q̃j
in (10), which implies the thesis.

Proposition 1 means that, whenever we construct a
QuantTree over a training set, we are partitioning Rd into K
bins with probabilities (p1, . . . , pK) drawn from the Dirich-
let distribution in (8). Since the expected value of the j-th
component of a random vector drawn from the Dirichlet
distribution D(γ1, . . . , γK) is γj/

∑K
k=1 γk, by simple alge-

braic manipulation we have that Eφ0
[pj ] = π̃j , where π̃j

are defined as in (5). Therefore, the values π̃1, . . . , π̃K can
be used as estimates of the bin probabilities p1, . . . , pK .
Moreover, from the property of the Dirichlet distribution
we have that var[pj ] → 0 when N → ∞, thus π̃j is a good
estimate of pj . We remark that the statistics employed in
QuantTree [9] estimate the bin probability pj by its target
value πj since it is assumed that a large training set is
provided, and π̃j → πj as N → ∞ by definition (5). Here
we also consider cases where N is small, thus in the QT-
EWMA statistics (6) and (7) we employ π̃j , which is a more
accurate estimate of pj .
Impact of the choice of K . The number of bins K of
the QuantTree histogram is a fundamental parameter that
influences the change-detection performance of QT-EWMA.
To analyze the impact of the choice of K , we test QT-EWMA



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 6

with K = 2, 4, 8, . . . , 512. In particular, we compute the QT-
EWMA statistic over 5000 stationary Gaussian datastreams
and 5000 datastreams containing a change point at τ = 500,
and we measure the detection power by the Area Under the
ROC Curve (AUC) given by the statistic values at t = 1000,
namely T1000. The distribution changes φ0 → φ1 consist in
random roto-translations of φ0 generated by CCM [18] (see
Section 8.1). Since the detection performance depends also
on the training set size N , we employ different values of
N = 512, 1024, 2048, 4096.

In Fig. 1 we report the average results obtained on datas-
treams with d = 4, 16, 64. Setting K = 2, 4 yields low AUC
because histograms having such few bins cannot describe
φ0 well. Increasing the number of bins (K = 128, 256, 512)
while keeping N fixed increases the variance of the bin
probabilities pj due to the properties of the Dirichlet distri-
bution (8), harming the detection performance. Intermediate
values – especially K = 16, 32 for the considered values
of N – yield the best results, thus we in our experiments
we select K = 32 as in [9]. As expected, the detection
performance increases with N since var[pj ] → 0 when
N → ∞. However, the improvement is substantial only
when increasing N from 512 to 1024, while using a larger
N yields a marginal improvement, see Fig. 1.

4.2 Computing Thresholds to Control the ARL0

In online monitoring, the thresholds {ht}t should guarantee
the target ARL0 = Eφ0

[t∗], where t∗ is the detection time, as
defined in (1). Thanks to the properties of QuantTree [9], the
distribution of any statistic based on QuantTree, including
Tt, does not depend on φ0 nor on d. Therefore, the QT-
EWMA thresholds {ht}t defined to yield the target ARL0

will only depend on the EWMA parameter λ, the target bin
probabilities {πj}Kj=1, and the training set size N . Follow-
ing [40], we define {ht}t to guarantee a fixed false alarm
probability α at each time instant t. This implies that the
detection time t∗ under φ0 is a Geometric random variable
with parameter α [40], hence its expected value is

ARL0 = Eφ0 [t
∗] =

1

α
. (15)

To this purpose, as noted in [40], the thresholds {ht}t must
satisfy the following condition:

Pφ0
(Tt > ht | Tk ≤ hk ∀k < t) = α ∀t ≥ 1. (16)

Since it is infeasible to exactly compute the conditional prob-
abilities in (16), we resort to Monte Carlo simulations as in
[5]. Leveraging Proposition 1, we simulate the construction
of a QuantTree histogram on a training set TR ∼ φ0 of size
N by drawing its bin probabilities (p1, . . . , pK) from the
Dirichlet distribution (8). Then, for each probability vector,
we simulate the binary statistics (y1,t, . . . , yK,t) in (3) of a
stationary datastream of length L = 5000 by drawing them
from the following multinomial distribution M:

(y1,t, . . . , yK,t) ∼M(p1, . . . , pK). (17)

Then, we use these values {(y1,t, . . . , yK,t)}5000t=1 to compute
the QT-EWMA statistics {Tt}5000t=1 by (6)–(7). To compute
the thresholds {ht}t yielding the desired ARL0, we repeat
the procedure above 1,000,000 times, and define h1 as the

empirical (1 − α)-quantile of all the values of T1, where
α = 1/ARL0 as in (15). Similarly, we define ht with
t > 1 as the (1 − α)-quantiles of the values Tt, using only
those sequences {(y1,k, . . . , yK,k)}tk=1 whose statistics Tk
have never exceeded any of the previous thresholds hk for
k = 1, . . . , t−1. Computing the thresholds {ht}t in this way
guarantees that, for each time t, the empirical quantiles of
Tt are conditioned to Tk ≤ hk ∀k < t, which in turn implies
(16), hence the target ARL0 is preserved [40].

We compute the thresholds ht for t = 1, . . . , 5000
and then fit a polynomial in powers of 1/t to these val-
ues that returns ht for a given t, as suggested in [5].
This allows to both estimate ht for t > 5000 and to
improve the estimates {ht}5000t=1 by leveraging correlation
among thresholds. In our code we provide the polyno-
mial expressions of the thresholds maintaining ARL0 =
500, 1000, 2000, 5000, 10000, 20000, which can be very use-
ful to control false alarms in high-throughput applications.

This procedure based on Proposition 1 is substantially
more efficient than that presented in [14], where we com-
puted the QT-EWMA statistics {Tt}5000t=1 from synthetic
univariate Gaussian datastreams, i.e. φ0 = N(0, 1) after
constructing a QuantTree histogram on a synthetic train-
ing set TR ∼ φ0. Directly generating the bin probabil-
ities (p1, . . . , pK) from the Dirichlet distribution (8) and
the sequences {(y1,t, . . . , yK,t)}5000t=1 from the multinomial
distribution (17) replaces the construction of a QuantTree
histogram on each training set and the computation of
the binary statistics (y1,t, . . . , yK,t) (3) for each synthetic
datastream, reducing by 25% the average runtime of the
Monte Carlo simulations compared to [14].
Control over False Alarm Rates. An important consequence
of setting a constant false alarm probability in (16) is that our
thresholds can also control the false alarm rate at any time
instant t. In fact, being t∗ a Geometric random variable [40]
with parameter α, the probability of having a false alarm
before t corresponds to the following geometric sum:

Pφ0
(t∗ ≤ t) =

t∑
k=1

α(1− α)k−1 = 1− (1− α)t. (18)

This property enables us to assess the control of false alarms
on datastreams containing a change point at τ by computing
the proportion of datastreams in which t∗ ≤ τ . This can then
be compared to the target false positive rate in (18), which
depends on the target ARL0 (see Section 8.3).

5 UPDATING THE QUANTTREE HISTOGRAM

Here we present QT-EWMA-update (Section 5.1), evaluate
the impact of the updating speed on the detection perfor-
mance (Section 5.2), and discuss stopping the update to
avoid including post-change samples (Section 5.3).

5.1 The QT-EWMA-update Algorithm
In QT-EWMA we model the distribution φ0 by means of
a QuantTree histogram [9] constructed on a training set
TR of size N . Then, during monitoring, we compute the
statistic Tt (7) to compare the proportion of samples falling
in each bin Sj with the estimated bin probabilities π̃j . Being
φ0 unknown, we approximate the true bin probabilities



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 7

50 100 200 500 1000

0.90

0.92

0.94

0.96

0.98

1.00

t− τ

A
U

C
N = 64

50 100 200 500 1000

0.92

0.94

0.96

0.98

1.00

t− τ

N = 128

50 100 200 500 1000

0.92

0.94

0.96

0.98

1.00

t− τ

N = 256

(a) (b) (c)

QT-EWMA-oracle QT-EWMA β = 2 β = 5 β = 10

Fig. 2. Detection power of QT-EWMA-update (β = 2, 5, 10) compared to QT-EWMA (β =∞) and the oracle QT-EWMA over univariate datastreams
containing a change point at τ = 1000, setting N = 64, 128, 256. In particular, we compute the AUC of the statistic Tt at different times t > τ . QT-
EWMA-update outperforms QT-EWMA right after the change, especially when N = 64. However, the performance of QT-EWMA-update decreases
over time since it updates the bin probabilities using xt ∼ φ1 when t > τ , and this is very apparent when the updating speed is high (β = 2).

pj = Pφ0(Sj) by π̃j , which is reasonable since Eφ0 [pj ] = π̃j
and var[pj ] → 0 as N → ∞ thanks to Proposition 1.
However, when N is small, the variance of pj is high, thus
{π̃j}Kj=1 yield inaccurate estimates of the true bin probabili-
ties {pj}Kj=1, which harms the detection performance.

To overcome such limitation in online settings, we pro-
pose to update the model φ̂0 every time a new observation
xt arrives, which increases the detection power as in [5],
[19]. In particular, we present QT-EWMA-update, where we
replace each π̃j in (7) with an estimate p̂j,t of the bin
probability pj that is incrementally updated when a new
observation xt becomes available, as long as no changes are
detected. We define p̂j,t as:

p̂j,0 = π̃j , p̂j,t = (1− ωt)p̂j,t−1 + ωtyj,t t > 0, (19)

where yj,t = 1(xt ∈ Sj), ωt = 1/β(N + t) is a parameter
representing the updating speed as it regulates the weight of
the latest sample in the average, and β ≥ 1 is a tuning
parameter. We remark that all the quantities involved in our
QT-EWMA-update statistic, including p̂j,t, are computed
from a QuantTree histogram, thus the distribution of the
statistic Tt does not depend on φ0 nor on d [9]. Therefore,
we can compute the thresholds of QT-EWMA-update for a
given β by the same Monte Carlo procedure presented in
Section 4.2, guaranteeing the control of the ARL0.

5.2 The Role of the Updating Speed
The parameter β allows tuning the updating speed ωt of QT-
EWMA-update, which has a crucial impact on the detection
performance. Setting β = 1 guarantees that p̂j,t → pj
when t → ∞, as long as xt ∼ φ0, since (19) becomes
the cumulative average of yj,t, whose expected value is
Eφ0

[yj,t] = pj by definition. However, samples xt ∼ φ1
acquired after the change τ introduce a severe bias that
harms the detection performance. Therefore, we propose to
set β > 1, as this reduces the contribution of the most recent
samples when updating p̂j,t. Setting β > 1 slightly biases
the estimate p̂j,t in stationary conditions, but turns out to be
very beneficial in terms of detection delay, as shown in our
experiments. We remark that QT-EWMA corresponds to the
case β =∞ since p̂j,t ≡ π̃j .

To illustrate the trade-off regulated by β, we perform a
simple experiment on univariate datastreams, setting φ0 =

U(0, 1) and φ1 = N(0.5, 0.5). We generate 1000 univariate
training sets from φ0, 500 stationary univariate datastreams
of length L = 2000 from φ0, and 500 datastreams with initial
distribution φ0 containing a change point at τ = 1000.

We monitor each datastream by the QT-EWMA-update
algorithm setting β = 2, 5, 10, and QT-EWMA. We measure
the detection power of these algorithms by the AUC of the
statistics Tt computed at different times t after the change
such that t−τ = 50, 100, 200, 500, 1000. Since in this case we
set φ0 = U(0, 1), we can easily compute the bin probabilities
pj of each QuantTree histogram, so we also test the “oracle”
QT-EWMA algorithm, which uses pj instead of π̃j in (6) and
(7), and that is never updated. The oracle is an upper bound
in terms of AUC, as it uses the analytical expression of φ0.

In Fig. 2 we show the results of this experiment, using
training set size N = 64, 128, 256. We observe that the QT-
EWMA algorithm steadily improves its detection power
when more samples drawn from φ1 are considered. We
also observe that the oracle QT-EWMA yields much better
results than QT-EWMA when the training set is small, while
the gap reduces when N is sufficiently large, as π̃j becomes
an accurate estimate of pj . In all cases, QT-EWMA-update
yields a higher detection power compared to QT-EWMA
right after τ , but shows a substantial decrease of the AUC
over time due to the fact that the p̂j,t are updated using
samples from φ1. Using a larger β mitigates this effect, at
the cost of slightly reducing the detection power right after
τ . In our experiments (Section 8) we set β = 5 as it yields
the best detection performance in Fig. 2.

5.3 Stopping the Update

All in all, QT-EWMA-update outperforms QT-EWMA when
the training set is small (N = 64, 128), but the update yields
only a marginal advantage when N = 256 because π̃j is
already a good estimate of pj . Hence, when a large training
set is available, QT-EWMA is preferable since it avoids the
risk of updating the model using samples from the post-
change distribution. QT-EWMA-update is preferred when
N is small, but the update of φ̂0 should stop as soon as a
sufficient number S of samples have been acquired without
detecting a change, i.e., when N + t = S. This allows to
reduce the risk of updating using samples xt ∼ φ1 once
the estimated bin probabilities p̂j,t are sufficiently accurate.



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 8

Since stopping the update does not change the the fact that
the distribution of the statistic is independent from φ0 and d,
which is guaranteed by the properties of QuantTree [9], we
compute thresholds controlling the ARL0 for given values of
β and S using the same Monte Carlo scheme illustrated in
Section 4.2. The only difference with respect to QT-EWMA-
update is that we update the bin probabilities p̂j,t by (19)
only for t < S −N , using p̂j,S−N when t ≥ S −N .

6 ONLINE ONE-SHOT CHANGE DETECTION

In this section we show how to adapt one-shot algorithms,
namely statistical tests to assess whether a fixed amount of
samples was generated by φ0, to online change detection
controlling the ARL0. We focus on algorithms that operate
batch-wise (Section 6.1), and element-wise (Section 6.2).

6.1 Datastream Monitoring by Batch-wise Detectors

Several change-detection algorithms process the datastream
in separate non-overlapping batches Wt of ν samples:

Wt = [x(t−1)ν+1, . . . , xtν ]. (20)

In particular, these algorithms compute for each incoming
batch Wt a test statistic T ν(Wt) based on a model φ̂0 fit
over TR. For example, in QuantTree [9] φ̂0 is a histogram,
while SPLL [21] employs a Gaussian mixture. These algo-
rithms detect a change as soon as T ν(Wt) > hν , where
the threshold hν does not depend on t and is defined to
control the false alarm probability over each batch Wt. In
what follows we show how to set the threshold hν in batch-
wise monitoring algorithms to maintain the target ARL0 in
online change detection, leveraging the following results:

Proposition 2. Let Wt be any batch of ν samples drawn from φ0
and let the detection threshold hν be such that

Pφ0
(T ν(Wt) > hν) = α. (21)

Then, the monitoring scheme T ν(Wt) > hν yields ARL0 ≥ ν/α.

Proof. Reported in the supplementary material.

Therefore, setting α = ν/ARL0, any batch-wise monitor-
ing algorithm can be transformed into a conservative online
change-detection algorithm, guaranteeing that the ARL0 is
greater than or equal to the target. A slightly different result
holds when the threshold hν is conditioned on TR, e.g.
when hν is computed by bootstrap. The following Proposi-
tion shows that, in this case, setting α = ν/ARL0 guarantees
that the ARL0 is equal to the target.

Proposition 3. Let Wt be any batch of ν samples drawn from φ0
and let the detection threshold hν be such that

Pφ0(T
ν(Wt) > hν | TR) = α, (22)

Then, the monitoring scheme T ν(Wt) > hν yields ARL0 = ν/α.

Proof. Reported in the supplementary material.

Leveraging these results, we adapt two well-known
batch-wise change-detection methods to monitor datas-
treams online while controlling the ARL0: QuantTree [9]
and SPLL [21]. The properties of QuantTree [9] guarantee

TABLE 2
Computational complexity for each update of the statistic and memory

requirement of QT-EWMA and QT-EWMA-update compared to the
other methods, depending on the configuration (Section 8.2).

algorithm complexity memory

QT-EWMA O(K) K
QT-EWMA-update O(K) 2K

QuantTree [9] O(K) K
SPLL [21] O(md) 1

SPLL-CPM O(md+ w logw) w
Scan-B [13] O(nBd) (n+ 1)Bd

that it is possible to set hν for (21) to hold for the Pear-
son statistic [38], independently from φ0 and TR. Hence,
Proposition 2 allows to set a lower bound on the ARL0. In
contrast, the distribution of the SPLL statistic, namely the
log-likelihood, depends on φ0, so hν has to be computed by
bootstrapping over a portion of TR that was not used to fit
φ̂0. In this case, the hypothesis of Proposition 3 holds since
the false positive probability is conditioned on the provided
TR, thus the online version of SPLL yields the target ARL0.
The main drawback of this bootstrap procedure is that it
requires a large TR to fit φ̂0 and to compute hν .

6.2 Datastream Monitoring by Element-wise Detectors

As pointed out in Section 2, an approach to change detection
in multivariate datastreams consists in reducing the data
dimension, constructing a univariate datastream that can be
monitored by standard change-detection algorithms. Here
we reduce the dimension of each incoming sample xt as in
SPLL [21] by computing the log-likelihood − log(φ̂0(xt)),
where φ̂0 is a Gaussian mixture model fit on the entire
TR. Then, we monitor the resulting univariate sequence
by a nonparametric online CPM [5] leveraging the Lepage
test statistic [41]. This algorithm, which we call SPLL-CPM,
maintains the desired ARL0 thanks to the CPM, which
controls the ARL0 on any univariate datastream [5].

7 COMPUTATIONAL COMPLEXITY

Since efficiency is key in online monitoring [5], we analyze
the computational complexity and memory requirements
of QT-EWMA and QT-EWMA-update. We perform the
same analysis on the online versions of QuantTree [9] and
SPLL [21] (Section 6.1), SPLL-CPM (Section 6.2), and Scan-
B [13] (Section 2). The results are summarized in Table 2.
QT-EWMA, QT-EWMA-update and QuantTree. These al-
gorithms are extremely efficient and require an amount of
memory that is constant over time and does not depend
on the data dimension d. Before monitoring, a QuantTree
histogram is constructed, requiring to rank the training set
K times according to a specific component, resulting in
O(KN logN) operations [9], where K is the number of bins
and N is the training set size. During monitoring, these
three algorithms find the bin of the QuantTree histogram
where each incoming sample xt falls, resulting in O(K)
operations [9]. Then, QT-EWMA and QT-EWMA-update
compute the test statistics (3), (6), (7) at a constant overhead
that falls within O(K). QT-EWMA-update also updates the



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 9

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L 0
Gaussian, d = 16, N = 64

500 1000 2000 5000

500
1000

2000

5000

target ARL0

Gaussian, d = 16, N = 128

500 1000 2000 5000

500
1000

2000

5000

target ARL0

Gaussian, d = 16, N = 256

500 1000 2000 5000

500
1000

2000

5000

target ARL0

Gaussian, d = 16, N = 4096

10 20 30 40 50 60
0

1000

2000

3000

4000

5000

false alarm rate (%)

de
te

ct
io

n
de

la
y

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

false alarm rate (%)
10 20 30 40 50 60 70

0

500

1000

1500

2000

2500

false alarm rate (%)
10 20 30 40 50 60

0

500

1000

1500

2000

false alarm rate (%)

(a) (b) (c) (d)

(e) (f) (g) (h)

QT-EWMA QT-EWMA-update QuantTree [9] SPLL [21] SPLL-CPM Scan-B [13]

Fig. 3. Experimental results over Gaussian datastreams (d = 16). (a,b,c,d) show that the empirical ARL0 of QT-EWMA, QT-EWMA-update and
SPLL-CPM approaches the target, while the other methods do not maintain the target ARL0. (e,f,g,h) show that, in terms of detection delay, the
best-performing method is SPLL-CPM when using small training sets (N = 64, 128, 256) and SPLL when using large training sets (N = 4096). We
observe that only QT-EWMA, QT-EWMA-update and SPLL-CPM achieve the target false alarm rates given by (18), which are represented by the
vertical dotted lines.

bin probabilities of the QuantTree histogram by (19), requir-
ing K additional operations, which also fall within O(K).
The QuantTree algorithm instead computes the Pearson
statistic at the end of each batch, and this does not increase
the order of computational complexity either, resulting in
O(K) operations as in QT-EWMA and QT-EWMA-update.
In terms of memory requirement, QT-EWMA only stores the
K values Zj,t−1, j = 1, . . . ,K to compute (6) for each new
sample xt. QT-EWMA-update stores also the K estimated
bin probabilities p̂j,t−1, j = 1, . . . ,K , hence it requires to
store 2K values in total. Similarly to QT-EWMA, QuantTree
stores only the proportion of points in the batch belonging
to each of the K bins to compute the Pearson statistic.

SPLL and SPLL-CPM. Both these algorithms are based on
a Gaussian mixture model φ̂0 with m components fitted
on TR. In SPLL, the likelihood of an incoming batch Wt

is computed incrementally (before applying the logarithm)
as the average likelihood of the samples x(t−1)ν+1, . . . , xtν ,
requiring O(md) operations per sample [21]. Hence, only
1 value has to be stored in memory, namely the likelihood
computed in the previous step. In contrast, the SPLL-CPM
algorithm leverages the CPM framework [5] to monitor the
stream of log-likelihood values {− log(φ̂0(xt))}t. In particu-
lar, the Lepage test statistic [41] used in the CPM requires to
sort the whole log-likelihood sequence obtained until time t,
resulting in O(t log t) operations on top of the O(md) opera-
tions required to compute − log(φ̂0(xt)). In this case, all the
t values of the log-likelihood sequence have to be processed
and stored at each time t, thus the computational complexity
and memory requirement steadily increase over time. Since
this is not desirable in online settings, the ranks of older
observations can be discretized and stored in a histogram,
yielding an approximation of the Lepage statistic [5] using
only the most recent w samples.

Scan-B. The Scan-B algorithm [13] operates on sliding win-
dows of size B, using n windows sampled from TR as a
reference. For each incoming sample xt, Scan-B updates n
Gram matrices by computing B times the MMD statistic,
resulting in O(nBd) operations [26]. The n reference win-
dows and the current window have to be stored, yielding
(n + 1)Bd values in memory [26]. Thus, the computational
and memory requirements of Scan-B increase with d.

8 EXPERIMENTS

In this section we show that QT-EWMA and QT-EWMA-
update can control the ARL0 and false alarm rates substan-
tially better than competing methods, while achieving lower
or comparable detection delays. We perform our experi-
ments in two configurations: large (N = 4096) and small
training sets (N = 64, 128, 256), to show the advantages of
QT-EWMA-update when N is small.

8.1 Considered Datasets

We simulate Gaussian datastreams of dimension d =
4, 16, 64, choosing an initial Gaussian distribution φ0 with
random mean and covariance matrix, and roto-translating
φ0 to obtain the post-change distribution φ1 = φ0(Q ·
+v). We randomly select the roto-translation parameters
Q and v using the CCM framework [18] to guarantee
a symmetric Kullback-Leibler divergence sKL(φ0, φ1) =
0.5, 1, 1.5, 2, 2.5, 3. These settings are very useful to compare
the detection performance at a different d [30]. For brevity,
here we report only the results on Gaussian data with
d = 16, 64, while d = 4 is in the supplementary material.

We also test on seven real-world multivariate datasets:
Credit Card Fraud Detection (“credit”, d = 28) from [36],



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 10

500 1000 2000 5000

500
1000
2000

5000

target ARL0

em
pi

ri
ca

lA
R

L 0
Gaussian, d = 64, N = 64

500 1000 2000 5000

500
1000

2000

5000

target ARL0

Gaussian, d = 64, N = 128

500 1000 2000 5000

500
1000

2000

5000

target ARL0

Gaussian, d = 64, N = 256

500 1000 2000 5000

500
1000

2000

5000

target ARL0

Gaussian, d = 64, N = 4096

10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

false alarm rate (%)

de
te

ct
io

n
de

la
y

10 20 30 40 50 60 70
0

1000

2000

3000

4000

false alarm rate (%)
10 20 30 40 50 60 70

0

1000

2000

3000

4000

false alarm rate (%)
10 20 30 40 50 60 70

0

1000

2000

3000

4000

false alarm rate (%)

(a) (b) (c) (d)

(e) (f) (g) (h)

QT-EWMA QT-EWMA-update QuantTree [9] SPLL [21] SPLL-CPM Scan-B [13]

Fig. 4. Experimental results over Gaussian datastreams (d = 64). (a,b,c,d) show that the empirical ARL0 of QT-EWMA, QT-EWMA-update and
SPLL-CPM approaches the target, while the other methods do not maintain the target ARL0. (e,f,g,h) show that, in terms of detection delay, the
best-performing method is SPLL-CPM when using small training sets (N = 64, 128, 256) and SPLL when using large training sets (N = 4096). We
observe that only QT-EWMA, QT-EWMA-update and SPLL-CPM achieve the target false alarm rates given by (18), which are represented in the
plots by vertical dotted lines.

Sensorless Drive Diagnosis (“sensorless”, d = 48), Mini-
BooNE particle identification (“particle”, d = 50), Physico-
chemical Properties of Protein Ternary Structure (“protein”,
d = 9), El Niño Southern Oscillation (“niño”, d = 5),
and two of the Forest Covertype datasets (“spruce” and
“lodgepole”, d = 10) from the UCI Machine Learning
Repository [42]. As in [9], we standardize the datasets and
sum to the samples of “sensorless”, “particle”, “spruce”
and “lodgepole” an imperceptible Gaussian noise to avoid
repeated values, which harm the construction of QuantTree
histograms. We prepare datastreams by randomly sampling
these datasets, whose distribution can be considered sta-
tionary, and we introduce a change by applying a shift
of a random vector drawn from a standard d-dimensional
Gaussian distribution, scaled by the total variance of the
dataset, as in [9], [22]. For brevity, we report only the average
results over the “UCI+credit” datasets, while the results
over individual datasets are in the supplementary material.

We also test on the INSECTS dataset [37] (d = 33),
which contains features describing the wing-beat frequency
of different species of flying insects, extracted from high-
dimensional signals acquired by optical sensors. This
dataset is meant as a classification benchmark for datas-
treams affected by concept drift. The dataset contains six
concepts, each referring to data acquired under different
environmental conditions affecting the insects’ behavior. We
assemble data from different concepts to form datastreams
that include 30 types of realistic changes: we start sampling
observations from one concept (φ0) and switch to another
(φ1) introducing a change point.

To make sure that training and test data do not have
samples in common, we generate Gaussian training and
test data from different seeds, and sample real-world datas-
treams after removing TR from the datasets [36], [37], [42].

8.2 Considered Methods

To enable a fair comparison, we only consider change-
detection methods where the target ARL0 can be set before
monitoring, regardless of φ0. As shown in Section 2, the
vast majority of the existing methods do not control the
ARL0 or do so only when φ0 is known [20], [26], which
is not guaranteed in general. For this reason, we compare
QT-EWMA and QT-EWMA-update against QuantTree [9],
SPLL [21], SPLL-CPM (described in Section 6), and Scan-
B [13], which is the only method from the literature where
the ARL0 can be set independently on φ0. Here we illustrate
the configuration of the considered methods.
QT-EWMA, QT-EWMA-update and QuantTree. In our ex-
periments we adopt the standard configuration of Quant-
Tree [9], with K = 32 bins and uniform target probabilities
πj = 1/K. In fact, [31] shows that uniform histograms are
very effective for change detection purposes. In QT-EWMA-
update we set the parameter β, which regulates the updat-
ing speed in (19), to β = 5, which yields the best results
in our preliminary experiment (see Fig. 2). In Section 5.2
we have shown that updating the QuantTree histogram is
beneficial when the training set is extremely small, hence we
test QT-EWMA-update withN = 64, 128, 256. In QuantTree
we set the batch size ν = 32 as in [9].
SPLL and SPLL-CPM. When monitoring datastreams sam-
pled from Gaussian distributions and from the UCI+credit
datasets, we set the number of components of the Gaussian
mixture φ̂0 to m = 1. To maximize the performance on
the INSECTS dataset, which contains data from 6 different
species of insects [37], we set m = 6. In SPLL, we set the
batch size ν = 32 as for QuantTree, and employ 1/4 of the
training set to fit φ̂0 and the remaining samples to compute
the threshold by bootstrap, as illustrated in Section 6.1. Since
the threshold computation for SPLL requires a relatively



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 11

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L 0
UCI+credit, N = 64

500 1000 2000 5000

500
1000

2000

5000

target ARL0

UCI+credit, N = 128

500 1000 2000 5000

500
1000

2000

5000

target ARL0

UCI+credit, N = 256

500 1000 2000 5000

500
1000

2000

5000

target ARL0

UCI+credit, N = 4096

10 20 30 40 50 60
0

250

500

750

1000

1250

1500

1750

false alarm rate (%)

de
te

ct
io

n
de

la
y

10 20 30 40 50 60 70 80
0

250

500

750

1000

1250

1500

false alarm rate (%)
10 20 30 40 50 60 70

0

200

400

600

800

1000

false alarm rate (%)
10 20 30 40 50 60 70

0

200

400

600

800

1000

false alarm rate (%)

(a) (b) (c) (d)

(e) (f) (g) (h)

QT-EWMA QT-EWMA-update QuantTree [9] SPLL [21] SPLL-CPM Scan-B [13]

Fig. 5. Experimental results averaged over the UCI+credit datasets [36], [42]. (a,b,c,d) show that the empirical ARL0 of QT-EWMA, QT-EWMA-
update and SPLL-CPM approaches the target, while the other methods do not maintain the target ARL0. (e,f,g,h) show that, in terms of detection
delay, the best-performing methods are QT-EWMA-update and SPLL-CPM when using small training sets (N = 64, 128, 256) and QT-EWMA when
using large training sets (N = 4096). We observe that only QT-EWMA, QT-EWMA-update and SPLL-CPM achieve the target false alarm rates
given by (18), which are represented in the plots by vertical dotted lines.

large amount of data, we only test SPLL with large training
sets (N = 4096). In SPLL-CPM we use the entire training
set to fit φ̂0, since the CPM employed to monitor the log-
likelihood does not require a training set [5].
Scan-B. In all the experiments with large training sets (N =
4096) we test Scan-B [13] in its standard configuration, with
n = 5 windows of size B = 100. This configuration cannot
be employed when the training set is extremely small since
Scan-B requiresN ≥ nB [13]. For this reason, we setB = 50
when N = 256 and B = 20 when N = 128, keeping n = 5.
All these configurations are among those suggested in [13].
Since no configurations with B < 20 are reported in [13],
we do not test Scan-B when N = 64.

8.3 Figures of Merit

Empirical ARL0. To assess whether QT-EWMA and the
other considered methods maintain the target ARL0, we
compute the empirical ARL0 as the average time before
raising a false alarm. In particular, we set the target
ARL0 = 500, 1000, 2000, 5000, and prepare 5000 datas-
treams of length L = 6 · ARL0. According to (18), the prob-
ability of having a detection in these stationary datastreams
is Pφ0

(t∗ ≤ L) ≈ 0.9975.
Detection delay. We also evaluate the average detection
delay, i.e. ARL1 = Eφ1

[t∗ − τ ], where the expectation
is taken assuming that a change point τ is present [6].
We run the considered methods configured with ARL0 =
500, 1000, 2000, 5000 on 1000 datastreams of length L =
10000, each containing a change point at τ = 500. We com-
pute the empirical ARL1 as the average difference t∗−τ over
these datastreams, excluding those yielding false alarms.
False alarm rate. To assess whether the desired false alarm
probability is achieved, we compute the percentage of datas-
treams in which a detection occurs at t∗ < τ . Setting the

the target ARL0 = 500, 1000, 2000, 5000 should yield a false
alarm in 63%, 39%, 22% and 9.5% of the datastreams (18).

8.4 Results and Discussion

Empirical ARL0. Fig. 3 (a,b,c,d) and Fig. 4 (a,b,c,d) plot
the empirical ARL0 achieved on Gaussian datastreams with
d = 16 and d = 64, respectively, against the target ARL0.
These plots show that QT-EWMA, QT-EWMA-update can
control the ARL0 very accurately, independently from the
data dimension d and the training set size N . This can be
seen from the fact that the lines are close to the diagonal
(note that axis scales are different). The empirical ARL0 of
QuantTree is higher than the target, and this is consistent
with the statement of Proposition 2. In contrast, the empir-
ical ARL0 of Scan-B substantially departs from the target,
in particular when the target ARL0 is large. The limitations
of Scan-B in controlling the ARL0 are due to the fact that
its threshold h is defined by an asymptotic approximation
of the ARL0 as h → ∞ and h/

√
B → c, where c is a

constant [13]. Therefore, a larger target ARL0 requires a
larger threshold h and, in principle, a larger window size
B. However, increasing B is infeasible because it would in-
crease the computational and memory requirements (Table
2), and also the training set size since N ≥ nB. Despite
the theoretical guarantees of Proposition 3, we observe that
also SPLL cannot maintain the target ARL0 accurately, and
this is due to inaccurate estimate of its thresholds, which are
computed by bootstrap over a limited training set. In con-
trast, SPLL-CPM accurately controls the ARL0 thanks to the
properties of the CPM that monitors the log-likelihood [5].
Results obtained on the UCI+credit and INSECTS datasets
(Fig. 5 (a,b,c,d) and Fig. 6 (a,b,c,d)) are consistent with those
achieved on synthetic data.



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 12

500 1000 2000 5000

500
1000

2000

5000

target ARL0

em
pi

ri
ca

lA
R

L 0
INSECTS, N = 64

500 1000 2000 5000

500
1000

2000

5000

target ARL0

INSECTS, N = 128

500 1000 2000 5000

500
1000

2000

5000

target ARL0

INSECTS, N = 256

500 1000 2000 5000

500
1000

2000

5000

target ARL0

INSECTS, N = 4096

10 20 30 40 50 60
0

250

500

750

1000

1250

1500

false alarm rate (%)

de
te

ct
io

n
de

la
y

10 20 30 40 50 60 70
0

250

500

750

1000

1250

false alarm rate (%)
10 20 30 40 50 60 70

0

250

500

750

1000

1250

false alarm rate (%)
10 20 30 40 50 60 70

0

250

500

750

1000

1250

false alarm rate (%)

(a) (b) (c) (d)

(e) (f) (g) (h)

QT-EWMA QT-EWMA-update QuantTree [9] SPLL [21] SPLL-CPM Scan-B [13]

Fig. 6. Experimental results averaged over the INSECTS dataset [37]. (a,b,c,d) show that the empirical ARL0 of QT-EWMA, QT-EWMA-update
and SPLL-CPM approaches the target, while the other methods do not maintain the target ARL0. (e,f,g,h) show that, in terms of detection delay,
the best-performing method is QT-EWMA-update when using small training sets (N = 64, 128, 256) and Scan-B when using large training sets
(N = 4096). We observe that only QT-EWMA, QT-EWMA-update and SPLL-CPM achieve the target false alarm rates given by (18), which are
represented in the plots by vertical dotted lines.

Detection delay vs false alarm rate. We plot the average
detection delay against the percentage of false alarms to
assess the trade-off between these two quantities. Fig. 3
(e,f,g,h) and Fig. 4 (e,f,g,h) illustrate the performance on
Gaussian datastreams with a change point at τ = 500 and
dimension d = 16, 64, respectively.

In terms of detection delay, QT-EWMA-update is the
best nonparametric method when the training set is small
(N = 64, 128, 256), being outperformed only by SPLL-
CPM, which operates in ideal conditions since its parametric
assumptions are met (φ0 is a Gaussian). For the same reason,
when the training set is large (N = 4096), both SPLL and
SPLL-CPM outperform QT-EWMA. Also Scan-B outper-
forms QT-EWMA in these settings since statistics defined on
histograms (such as that of QT-EWMA) are known to be less
powerful than those based on MMD (such as that of Scan-
B), as they perceive only changes affecting bin probabilities,
and are totally blind to distribution changes inside each bin.
Nevertheless, our experiments show that both QT-EWMA
and QT-EWMA-update yield lower detection delays than
Scan-B when the training set is small. All methods achieve
higher detection delays as d increases due to detectability
loss [30], which becomes apparent when we set the change
magnitude to sKL(φ0, φ1) = 0.5, 1, 1.5, 2, 2.5, 3 in the CCM
framework [18]. In the supplementary material we show
that the detection delays of all the considered methods
decreases when the change magnitude increases.

On the UCI+credit datasets (Fig. 5 (e,f,g,h)), QT-EWMA-
update is the second-best performing method (slightly
outperformed by SPLL-CPM) when the training set is
small, and QT-EWMA is the best-performing method when
N = 4096. On the INSECTS dataset (Fig. 6 (e,f,g,h)), QT-
EWMA-update achieves the best detection delays when
N = 64, 128, 256, and QT-EWMA approaches the perfor-

mance of Scan-B when the training set is large (N = 4096).
Moreover, QT-EWMA and QT-EWMA-update substantially
outperform SPLL and SPLL-CPM, meaning that a Quant-
Tree histogram can model the distribution of the INSECTS
datasets much better than a Gaussian mixture. Remarkably,
QT-EWMA and QT-EWMA-update consistently outperform
QuantTree in all the considered scenarios, confirming that
our sequential statistics are more powerful than the batch-
wise Pearson statistic computed online.

As expected, the detection power of the methods based
on QuantTree and Scan-B increases significantly with the
training set size N . In contrast, SPLL-CPM achieves similar
performance at different values of N since the Gaussian
mixture model φ̂0 fitted on TR is sufficiently accurate
even when N is small, and the CPM does not require
a training set [5]. Most remarkably, QT-EWMA and QT-
EWMA-update outperform Scan-B when N is small, mean-
ing that in these settings our online statistics have higher
detection power than monitoring sliding windows by the
MMD statistic. Finally, we observe that QT-EWMA-update
substantially outperforms QT-EWMA when the training set
is extremely small (N = 64, 128), while it yields only a
marginal improvement when N = 256, meaning that when
N ≥ 256 the values π̃j are sufficiently good estimates of pj .

In all the considered scenarios, QT-EWMA, QT-EWMA-
update and SPLL-CPM approach the target false alarm rates
computed by (18). In contrast, QuantTree and SPLL have,
respectively, lower and higher false alarm rates than the
target in all the considered monitoring scenarios. This is due
to the fact that the empirical ARL0 of QuantTree is higher
than the target as in Proposition 2, while the empirical ARL0

of SPLL is lower than the target due to inaccurate threshold
estimation, as observed previously. The false alarm rates
of Scan-B, instead, exhibit a completely different behavior,



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 13

250 500 750 1000
600

700

800

900

1000

1100

1200

τ

de
te

ct
io

n
de

la
y

Gaussian, d = 16, N = 64

250 500 750 1000
600

700

800

900

1000

τ

Gaussian, d = 16, N = 128

250 500 750 1000
600

650

700

750

800

850

τ

Gaussian, d = 16, N = 256

(a) (b) (c)

QT-EWMA QT-EWMA-update S = 512 S = 1024

Fig. 7. Detection delays of QT-EWMA-update (β = 5) stopping the update after acquiring S = 512, 1024 samples, compared to QT-EWMA-update,
QT-EWMA over Gaussian datastreams (d = 16) with change points at τ = 250, 500, 750, 1000 with sKL(φ0, φ1) = 2. We set initial training set sizes
N = 64, 128, 256 and target ARL0 = 2000. We observe that QT-EWMA-update outperforms QT-EWMA, and that stopping the update improves the
performance by reducing the risk of updating when t > τ .

which also depends on φ0 since its thresholds do not yield
a constant false alarm probability.
Stopping the update. As discussed in Section 5.2, we can
stop the update of the QuantTree histogram after acquiring
a sufficient amount of data. This mitigates the problem of
updating the estimated bin probabilities p̂j,t when t > τ ,
i.e., when xt ∼ φ1. To demonstrate this, we measure the
detection delay of QT-EWMA-update where we stop the
update after analyzing S samples, i.e., when N + t = S. In
this experiment, we compare QT-EWMA-update stopping at
S = 512, 1024 against QT-EWMA and QT-EWMA-update.
Fig. 7 shows the detection delays achieved on Gaussian
datastreams with d = 16 and length L = 10000 containing
a change point at τ = 250, 500, 750, 1000. We consider
different training set sizes N = 64, 128, 256, and set target
ARL0 = 2000. As observed in the previous experiments,
when N = 64, 128, QT-EWMA-update performs better than
QT-EWMA, while the two algorithms have similar results
when N = 256, confirming that updating the histogram is
not necessary when N is sufficiently large. In all cases, the
detection delay of QT-EWMA-update decreases when the
change occurs later in the datastream since more samples
xt ∼ φ0 are used to update p̂j,t.

The fact that the detection delays of QT-EWMA-update
with stopping rule are lower than those of QT-EWMA-
update confirms that reducing the amount of samples
xt ∼ φ1 used to update p̂j,t is beneficial. The detection
performance of QT-EWMA-update with stopping rule im-
proves when the change point τ occurs later in the datas-
tream, unless the change occurs after having stopped the
update, i.e. when τ > S − N . In Fig. 7(a,b) we observe
that setting S = 512 yields similar detection delays when
τ = 500, 750, 1000 since these changes occur after having
stopped the update, thus all the S − N samples used to
update p̂j,t are drawn from φ0. In contrast, when τ = 250
the detection delay is higher since samples from φ1 might
bias the estimates p̂j,t. We observe the same effect in Fig. 7(c)
for S = 1024, where the detection delays for τ = 750, 1000
are very similar and lower than those obtained when
τ = 250, 500.

9 CONCLUSIONS

We introduce QT-EWMA, a novel nonparametric online
change-detection algorithm for multivariate datastreams.

Our solution is efficient and effectively controls the ARL0

and false alarm rates, which is very useful in practical
applications. We also design an updating scheme for QT-
EWMA and implement QT-EWMA-update. Here we update
the estimated bin probabilities of the QuantTree histogram
online, as soon as new data becomes available, enabling
monitoring using a very small training set. Our experiments
on synthetic and real-world datastreams show that alter-
native solutions do not provide such guarantees in non-
parametric settings, and that QT-EWMA and QT-EWMA-
update achieve excellent performance, especially on real-
world data.

REFERENCES

[1] C. C. Aggarwal, “On change diagnosis in evolving data streams,”
IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 5,
pp. 587–600, 2005.

[2] D. M. Hawkins, P. Qiu, and C. W. Kang, “The changepoint model
for statistical process control,” Journal of Quality Technology, vol. 35,
no. 4, pp. 355–366, 2003.

[3] A. G. Tartakovsky, B. L. Rozovskii, R. B. Blazek, and H. Kim, “A
novel approach to detection of intrusions in computer networks
via adaptive sequential and batch-sequential change-point detec-
tion methods,” IEEE Transactions on Signal Processing, vol. 54, no. 9,
pp. 3372–3382, 2006.

[4] L. Frittoli, M. Bocchi, S. Mella, D. Carrera, B. Rossi, P. Frag-
neto, R. Susella, and G. Boracchi, “Strengthening sequential side-
channel attacks through change detection,” Transactions on Crypto-
graphic Hardware and Embedded Systems, vol. 3, pp. 1–21, 2020.

[5] G. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric
monitoring of data streams for changes in location and scale,”
Technometrics, vol. 53, no. 4, pp. 379–389, 2011.

[6] M. Basseville, I. V. Nikiforov et al., Detection of abrupt changes: theory
and application. Prentice Hall Englewood Cliffs, 1993, vol. 104.

[7] T. D. Popescu, D. Aiordachioaie, and A. Culea-Florescu, “Basic
tools for vibration analysis with applications to predictive main-
tenance of rotating machines: an overview,” International Journal of
Advanced Manufacturing Technology, vol. 118, pp. 2883–2899, 2022.

[8] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning
under concept drift: A review,” IEEE Transactions on Knowledge and
Data Engineering, vol. 31, no. 12, pp. 2346–2363, 2018.

[9] G. Boracchi, D. Carrera, C. Cervellera, and D. Macciò, “QuantTree:
histograms for change detection in multivariate data streams,” in
International Conference on Machine Learning, 2018, pp. 639–648.

[10] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and
A. Smola, “A kernel two-sample test,” The Journal of Machine
Learning Research, vol. 13, no. 1, pp. 723–773, 2012.

[11] A. Lung-Yut-Fong, C. Lévy-Leduc, and O. Cappé, “Robust change-
point detection based on multivariate rank statistics,” in 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2011, pp. 3608–3611.



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. ©2022 IEEE DOI: 10.1109/TKDE.2022.3201635 14

[12] S. Roberts, “Control chart tests based on geometric moving aver-
ages,” Technometrics, vol. 1, no. 3, pp. 239–250, 1959.

[13] S. Li, Y. Xie, H. Dai, and L. Song, “M-statistic for kernel change-
point detection,” Advances in Neural Information Processing Systems,
vol. 28, pp. 3366–3374, 2015.

[14] L. Frittoli, D. Carrera, and G. Boracchi, “Change detection in mul-
tivariate datastreams controlling false alarms,” in Joint European
Conference on Machine Learning and Knowledge Discovery in Databases
(ECML–PKDD). Springer, 2021, pp. 421–436.

[15] Y. Xie and D. Siegmund, “Sequential multi-sensor change-point
detection,” in 2013 Information Theory and Applications Workshop.
IEEE, 2013, pp. 1–20.

[16] G. Fellouris and A. G. Tartakovsky, “Multichannel sequential
detection–part I: Non-iid data,” IEEE Transactions on Information
Theory, vol. 63, no. 7, pp. 4551–4571, 2017.

[17] Z. Sun, S. Zou, R. Zhang, and Q. Li, “Quickest change detection
in anonymous heterogeneous sensor networks,” IEEE Transactions
on Signal Processing, vol. 70, pp. 1041–1055, 2022.

[18] D. Carrera and G. Boracchi, “Generating high-dimensional datas-
treams for change detection,” Big Data Research, vol. 11, pp. 11–21,
2018.

[19] K. Zamba and D. M. Hawkins, “A multivariate change-point
model for statistical process control,” Technometrics, vol. 48, no. 4,
pp. 539–549, 2006.

[20] L. Xie, Y. Xie, and G. V. Moustakides, “Sequential subspace change
point detection,” Sequential Analysis, vol. 39, no. 3, pp. 307–335,
2020.

[21] L. I. Kuncheva, “Change detection in streaming multivariate data
using likelihood detectors,” IEEE Transactions on Knowledge and
Data Engineering, vol. 25, no. 5, pp. 1175–1180, 2011.

[22] L. I. Kuncheva and W. J. Faithfull, “PCA feature extraction
for change detection in multidimensional unlabeled data,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 25, no. 1,
pp. 69–80, 2013.

[23] A. A. Qahtan, B. Alharbi, S. Wang, and X. Zhang, “A PCA-based
change detection framework for multidimensional data streams,”
in ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2015, pp. 935–944.

[24] S.-S. Ho, “A Martingale framework for concept change detection
in time-varying data streams,” in International Conference on Ma-
chine Learning, 2005, pp. 321–327.

[25] N. Mozafari, S. Hashemi, and A. Hamzeh, “A precise statistical
approach for concept change detection in unlabeled data streams,”
Computers & Mathematics with Applications, vol. 62, no. 4, pp. 1655–
1669, 2011.

[26] N. Keriven, D. Garreau, and I. Poli, “NEWMA: a new method for
scalable model-free online change-point detection,” IEEE Transac-
tions on Signal Processing, vol. 68, pp. 3515–3528, 2020.

[27] X. Cheng and Y. Xie, “Neural tangent kernel maximum mean
discrepancy,” Advances in Neural Information Processing Systems,
vol. 34, pp. 6658–6670, 2021.

[28] T. S. Lau, W. P. Tay, and V. V. Veeravalli, “A binning approach
to quickest change detection with unknown post-change distri-
bution,” IEEE Transactions on Signal Processing, vol. 67, no. 3, pp.
609–621, 2018.

[29] H. Hotelling, “A generalized t test and measure of multivariate
dispersion,” in Proceedings of the Berkeley Symposium on Mathemati-
cal Statistics and Probability. University of California, 1951.

[30] C. Alippi, G. Boracchi, D. Carrera, and M. Roveri, “Change de-
tection in multivariate datastreams: Likelihood and detectability
loss,” International Joint Conference on Artificial Intelligence (IJCAI),
vol. 2, pp. 1368–1374, 2016.

[31] G. Boracchi, C. Cervellera, and D. Macciò, “Uniform histograms
for change detection in multivariate data,” in International Joint
Conference on Neural Networks (IJCNN). IEEE, 2017, pp. 1732–1739.

[32] J. C. Schlimmer and R. H. Granger, “Incremental learning from
noisy data,” Machine Learning, vol. 1, no. 3, pp. 317–354, 1986.

[33] H. He, S. Chen, K. Li, and X. Xu, “Incremental learning from
stream data,” IEEE Transactions on Neural Networks, vol. 22, no. 12,
pp. 1901–1914, 2011.

[34] G. Ditzler and R. Polikar, “Incremental learning of concept drift
from streaming imbalanced data,” IEEE Transactions on Knowledge
and Data Engineering, vol. 25, no. 10, pp. 2283–2301, 2012.

[35] C. Alippi, G. Boracchi, and M. Roveri, “Just-in-time classifiers
for recurrent concepts,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 24, no. 4, pp. 620–634, 2013.

[36] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bon-
tempi, “Credit card fraud detection: a realistic modeling and a
novel learning strategy,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 29, no. 8, pp. 3784–3797, 2017.

[37] V. Souza, D. M. dos Reis, A. G. Maletzke, and G. E. Batista,
“Challenges in benchmarking stream learning algorithms with
real-world data,” Data Mining and Knowledge Discovery, vol. 34,
no. 6, pp. 1805–1858, 2020.

[38] E. L. Lehmann and J. P. Romano, Testing statistical hypotheses.
Springer, 2006.

[39] B. A. Frigyik, A. Kapila, and M. R. Gupta, “Introduction to
the Dirichlet distribution and related processes,” Technical Report
UWEETR-2010-0006, 2010.

[40] T. M. Margavio, M. D. Conerly, W. H. Woodall, and L. G. Drake,
“Alarm rates for quality control charts,” Statistics & Probability
Letters, vol. 24, no. 3, pp. 219–224, 1995.

[41] Y. Lepage, “A combination of Wilcoxon’s and Ansari-Bradley’s
statistics,” Biometrika, vol. 58, no. 1, pp. 213–217, 1971.

[42] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

Luca Frittoli graduated in Mathematics at Uni-
versità degli Studi di Milano in 2018, and is cur-
rently working towards the Ph.D. in Information
Technology at Politecnico di Milano. His research
interests include change detection in multivariate
datastreams, concept-drift detection, and deep
learning methods for anomaly detection and
open-set recognition in images and point clouds.

Diego Carrera Diego Carrera graduated in
Mathematics at Università degli Studi di Milano
in 2013 and received the Ph.D. in Information
Technology in 2018. In 2015 he has been visiting
researcher at the Tampere University of Technol-
ogy. Currently he is an Application Development
Engineer at STMicroelectronics, where he is de-
veloping quality inspection systems to monitor
the wafer production. His research interests are
mainly focused on unsupervised learning algo-
rithms, in particular change detection in high

dimensional datastreams, anomaly detection in signal and images, and
domain adaptation.

Giacomo Boracchi is an Associate Professor of
Computer Engineering at Politecnico di Milano
- DEIB, where he also received the Ph.D. in
Information Technology (2008), after graduating
in Mathematics (Università degli Studi di Milano,
2004). His research interests concern machine
learning and image processing, and in particular
change/anomaly detection, domain adaptation,
image restoration and analysis. Since 2015 he is
leading industrial research projects concerning
outlier detection systems, X-ray systems, and

automatic quality inspection systems. He has published more than
70 papers in international conferences and journals, he is currently
associate editor for IEEE Transactions on Image Processing and in
2019 - 2020 he served as an associate editor for IEEE Computational
Intelligence Magazine. In 2015 he received an IBM Faculty Award, in
2016 the IEEE Transactions on Neural Networks and Learning Sys-
tems Outstanding Paper Award, in 2017 the Nokia Visiting Professor
Scholarship, and in 2021 the NVIDIA Applied Research Grant. He has
held tutorials in major IEEE conferences: ICIP 2020, ICASSP 2018 and
IJCNN 2017 and 2019.

http://archive.ics.uci.edu/ml

	Introduction
	Related Work
	Problem Formulation
	QuantTree Exponentially Weighted Moving Average
	The QT-EWMA Algorithm
	Computing Thresholds to Control the ARL0

	Updating the QuantTree Histogram
	The QT-EWMA-update Algorithm
	The Role of the Updating Speed
	Stopping the Update

	Online One-shot Change Detection
	Datastream Monitoring by Batch-wise Detectors
	Datastream Monitoring by Element-wise Detectors

	Computational Complexity
	Experiments
	Considered Datasets
	Considered Methods
	Figures of Merit
	Results and Discussion

	Conclusions
	References
	Biographies
	Luca Frittoli
	Diego Carrera
	Giacomo Boracchi


