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Abstract—We introduce Class Distribution Monitoring (CDM),
an effective concept-drift detection scheme that monitors the
class-conditional distributions of a datastream. In particular,
our solution leverages multiple instances of an online and
nonparametric change-detection algorithm based on QuantTree.
CDM reports a concept drift after detecting a distribution change
in any class, thus identifying which classes are affected by the
concept drift. This can be precious information for diagnostics
and adaptation. Our experiments on synthetic and real-world
datastreams show that when the concept drift affects a few
classes, CDM outperforms algorithms monitoring the overall
data distribution, while achieving similar detection delays when
the drift affects all the classes. Moreover, CDM outperforms
comparable approaches that monitor the classification error,
particularly when the change is not very apparent. Finally, we
demonstrate that CDM inherits the properties of the underlying
change detector, yielding an effective control over the expected
time before a false alarm, or Average Run Length (ARL0).

Index Terms—concept drift detection, online change detection,
supervised learning, multivariate datastreams

I. INTRODUCTION

Datastreams represent a challenging scenario for machine
learning models [1] since their distribution might change over
time, resulting in a concept drift [2]. This phenomenon has
been widely studied in settings where the drift worsens the
performance of a classifier, which must be adapted to the new
data distribution. To this purpose, most solutions monitor the
classification error, ignoring drifts that have little impact on the
error rate, which are called virtual drifts. However, in practical
situations such as in industrial monitoring, any distribution
change in streaming data should be promptly detected for
diagnostic purposes. Moreover, in the emerging field of open-
set recognition [3], a classifier is required to recognize the
occurrence of known classes and also to detect samples that
do not belong to any known class, thus it is crucial to update
the decision boundary of the classifier even when the accuracy
on known classes does not decrease. This enables updating
also the regions in which the classifier predicts with low
confidence, where unknown samples might appear.

Most concept drifts can be detected by monitoring the data
distribution by online change-detection tests [4], which is
another common approach in concept-drift detection [2]. How-
ever, none of these methods can exploit supervised information
since they overlook class labels. Our intuition is that class
labels can be included in statistically sound change-detection

tests to monitor the class-conditional distributions instead of
the overall data distribution. To the best of our knowledge,
this approach has never been investigated before.

We fill this gap by proposing Class Distribution Monitoring
(CDM)1, in which we employ separate instances of QuantTree
Exponentially Weighted Moving Average (QT-EWMA) [5] to
monitor the class-conditional distributions. QT-EWMA is a
nonparametric online change-detection test based on Quant-
Tree histograms [6], and is designed to monitor multivariate
datastreams. We report a concept drift after detecting a change
in the class-conditional distribution of at least one class. The
main advantages of CDM are: i) it can detect any relevant
drift, including virtual ones that have little impact on the
classification error and are by design ignored by methods that
monitor the error rate of a classifier; ii) it can detect concept
drifts affecting only a subset of classes more promptly than
methods that monitor the overall data distribution, since the
other class-conditional distributions do not change; iii) it pro-
vides insights on which classes have been affected by concept
drift, which might be crucial for diagnostics and adaptation;
iv) it effectively controls false alarms by maintaining a target
Average Run Length (ARL0), i.e., the expected time before a
false alarm [4], which can be set before monitoring.

To summarize, our main contributions are:
• We introduce Class Distribution Monitoring (CDM), a

novel online and nonparametric monitoring scheme for
concept-drift detection leveraging supervised samples.

• Our CDM can, by design, detect drifts affecting only a
subset of classes and, contrarily to most concept drift
detectors, identify the drifted classes.

• We theoretically and empirically demonstrate that CDM
can be configured to yield the desired ARL0, thus effec-
tively controlling false alarms, even though it employs
several change-detection tests simultaneously.

Our experiments on synthetic and real-world datastreams show
that CDM outperforms algorithms monitoring the overall
distribution when the concept drift affects only a subset of
classes, while achieving comparable detection delays when
the change affects all classes. CDM can also effectively detect
virtual drifts, which are ignored by methods that monitor the
classification error but might be relevant in practice.

1Code is available at https://boracchi.faculty.polimi.it/Projects/projects.html

https://boracchi.faculty.polimi.it/Projects/projects.html


II. PROBLEM FORMULATION

We address the problem of detecting a concept drift in a
virtually unlimited datastream {(xt, yt)}, where each sample
xt ∈ Rd is associated to a class label yt ∈ {1, . . . ,M}. We
assume that the observations xt are independent realizations
of a random vector that follows an initial distribution ϕ0.
We denote by ϕm

0 the class-conditional distribution, i.e., the
distribution of instances belonging to class m, defined by

Pϕm
0
(xt) = Pϕ0(xt | yt = m), (1)

for each m ∈ {1, . . . ,M}. In other words, we say that xt ∼ ϕ0

if and only if xt ∼ ϕm
0 , where yt = m. We assume that a

concept drift affects at least one class-conditional distribution,
resulting in a change ϕm

0 → ϕm
1 occurring at an unknown time

τ for some m ∈ {1, . . . ,M}. We assume that an annotated
dataset TR sampled from the initial distribution ϕ0 is provided
before monitoring, to configure the concept-drift detector.

In the concept-drift detection literature [7]–[10] it is usually
assumed that, during monitoring, the true labels yt are revealed
after the prediction made by a classifier K, to provide imme-
diate feedback on whether the classification was correct. We
operate in the same settings, even though in practical situations
the labels are typically provided only for a few samples of the
datastream. In the latter case, methods that require the true
labels can take as input only those samples xt for which the
label yt is provided.

The goal of a concept-drift detection algorithm is detecting
any distribution change as soon as possible by analyzing the
incoming samples. We indicate by t∗ the detection time, and
we measure the detection performance by the detection delay
t∗ − τ . A crucial challenge in change detection is controlling
false alarms, which in online settings means maintaining a
target Average Run Length (ARL0), defined as

ARL0 = Eϕ0 [t
∗], (2)

which is the expected time before having a false alarm,
namely a detection that does not correspond to any distribution
change [4]. The ARL0 represents the online counterpart of the
false positive rate in statistical hypothesis testing. Operating
at a controlled ARL0 allows to limit the frequency of false
alarms, which typically trigger costly adaptation procedures
such as re-training a classifier. This is particularly important in
industrial monitoring, and in experimental test-bed to enable
a fair comparison between different concept-drift detectors.
Unfortunately, the vast majority of concept-drift detection
methods fail to control the ARL0 effectively.

III. RELATED WORK

Concept-drift detection [2] is a challenging problem in
datastream learning, and has been addressed in different set-
tings and by different approaches, which we summarize here.
Since we focus only on concept-drift detection, we do not
review the literature on concept-drift adaptation. We refer
to [11] for a survey on this subject.

The most popular concept-drift detection methods analyze
the binary stream {et} defined by the errors of a classifier K:

et = 1(K(xt) ̸= yt), (3)

and report a concept drift when the error rate increases. In
particular, Drift Detection Method (DDM) [7] and its vari-
ants [8], [9] apply statistical tests on recent windows of {et}
to assess whether the error rate has increased significantly.
Moreover, it has recently been proposed to monitor the clas-
sification performance on individual classes to handle imbal-
anced datastreams and drifts affecting only some classes [12],
[13]. However, none of these solutions can be configured to
maintain the ARL0. In contrast, EWMA for Concept Drift De-
tection (ECDD) [14] analyzes {et} online by an Exponentially
Weighted Moving Average (EWMA) chart [15], which enables
controlling false alarms by setting the ARL0. Thanks to this
property, in our experiments we can fairly compare ECDD and
our solution by configuring them to maintain the same ARL0.

Another relevant class of concept drift detection methods
monitors the distribution of the input data, overlooking the
information possibly coming from class labels, and therefore
can operate also when few or no labels are available. These
methods leverage online change-detection tests [4] to analyze
the data distribution over time. A popular approach consists in
monitoring the likelihood of the streaming data with respect
to a density model such as a Gaussian [16] or a Gaussian
Mixture [17], [18]. The main limitation of these approaches is
the assumption that ϕ0 can be approximated by a distribution
from a known family, which might not be the case when
dealing with real-world data.

A very flexible nonparametric approach consists in mod-
elling the initial data distribution by a histogram [5], [6], [19],
and then monitoring the proportion of incoming samples that
falls in each bin of the histogram. For instance, QuantTree [6]
computes the Pearson test statistic [20] over fixed-size batches,
while its extension QT-EWMA [5] enables online monitoring
controlling the ARL0. Other nonparametric online change
detectors are either based on PCA [21], [22], permutation
tests [23], [24], or the Maximum Mean Discrepancy statis-
tic (MMD) [25] computed over sliding windows [26], [27].
However, among these, the only one that can control the ARL0

regardless of the initial data distribution is Scan-B [26].

IV. PROPOSED SOLUTION

Here we briefly introduce QT-EWMA [5] (Section IV-A),
which is the change-detection algorithm we use to define
our solution. Then, we present Class Distribution Monitoring
(CDM) (Section IV-B). Finally, we demonstrate that CDM
inherits the properties of QT-EWMA and analyze its compu-
tational complexity (Section IV-C). In particular, we show that
CDM can control false alarms by yielding the desired ARL0.

A. Concept Drift Detection by Distribution Monitoring

Most concept-drift detection methods that monitor the dis-
tribution of the datastream {xt} compute at each time t a
test statistic Tt, and report a drift after detecting a distribution



change [2]. Typically, a change is detected when Tt > ht,
where ht is a threshold defined to control the probability
of having a false alarm. The detection time t∗ is defined as
the first time t in which the statistic exceeds the threshold.
We adopt QuantTree Exponentially Weighted Moving Average
(QT-EWMA) [5], which effectively controls the ARL0 and is
also completely nonparametric, i.e., it does not require any
assumption on the initial data distribution ϕ0.

QT-EWMA models ϕ0 by a QuantTree histogram [6]
built on the training set TR. The histogram is defined by
Q = {(Sk, πk)}Kk=1, where Sk are the histogram bins, πk the
corresponding target bin probabilities, and K is the number
of bins to be set a priori. Then, QT-EWMA monitors the
proportion of samples falling in each bin of the histogram
by K EWMA statistics [15]:

Zk,t = (1− λ)Zk,t−1 + λbk,t, Zk,0 = πk, (4)

where the binary statistics bk,t = 1(xt ∈ Sk) indicate the bin
of the histogram in which xt falls, for k ∈ {1, . . . ,K}. Then,
the statistic Tt is defined by

Tt =

K∑
k=1

(Zk,t − πk)
2

πk
. (5)

Each statistic Zk,t is an incremental measure of the proportion
of samples acquired until time t falling in each bin Sk. The
statistic Tt assesses how much the Zk,t deviate from the
target bin probabilities πk, thus it is similar to the Pearson
statistic [20]. The main advantage of this solution is that the
distribution of Tt (5), like any other statistic based exclusively
on the number of points falling in the bins of a QuantTree
histogram, is independent from ϕ0, as demonstrated in [6].
This property enables nonparametric monitoring, and allows
to define thresholds {ht} for QT-EWMA such that:

Pϕ0(Tt > ht | Tk ≤ hk∀k < t) = α, (6)

which have been shown to guarantee a desired ARL0 when
α = 1/ARL0 [28]. These thresholds are computed by Monte
Carlo simulations that are described in detail in [5].

B. Class Distribution Monitoring

QT-EWMA, like other concept-drift detectors that monitor
the data distribution, is designed to operate in unsupervised
settings, and therefore ignores the labels yt, which we assume
to be regularly provided during monitoring. As a result,
concept drifts affecting only a subset of classes can be hard
to detect following this approach.

To exploit class labels, we propose Class Distribution Mon-
itoring (CDM), which is illustrated in Algorithm 1. First, we
divide the training set TR into M subsets TRm and use these
to construct M QuantTree histograms Qm = {(Sm

k , πk)} [6],
corresponding to the classes m ∈ {1, . . . ,M} (lines 4–5).
When an input sample xt is provided with its label yt, we
find the histogram bin such that xt ∈ Sm

k in the QuantTree
Qm corresponding to its label m = yt (line 11). Then, we
compute the QT-EWMA statistic Tm

tm (5) (lines 12–13), where

Algorithm 1 Class Distribution Monitoring (CDM)

Input: datastream {(xt, yt)}t, target probabilities {πk}Kk=1,
thresholds {ht}t, TR = {(x, y)}

Output: detection flag ChangeDetected, detection time
t∗, drifted class m∗

1: // Configuration:
2: ChangeDetected← False, t∗ ←∞,m∗ ← 0
3: for m = 1, . . . ,M do
4: TRm ← {x : (x, y) ∈ TR, y = m}
5: build QuantTree Qm = {(Sm

k , πk)} [6] from TRm

6: initialize tm ← 0, Zm
k,0 ← πk, k ∈ {1, . . . ,K}

7: end for
8: // Monitoring:
9: for t = 1, . . . do

10: if the label yt is provided then
11: m← yt, tm ← tm + 1, bk,tm ← 1(xt ∈ Sm

k )
12: compute Zm

k,tm
(4) for k ∈ {1, . . . ,K}

13: compute QT-EWMA statistic Tm
tm (5)

14: if Tm
tm > htm then

15: ChangeDetected← True
16: t∗ ← t, m∗ ← m
17: break
18: end if
19: end if
20: end for
21: return ChangeDetected, t∗,m∗

tm is the number of samples of class m observed until time t.
We report a concept drift as the first time t when Tm

tm > htm ,
where htm is the QT-EWMA threshold defined by (6) (lines
14–18). We remark that, contrarily to the other concept-drift
detectors, our algorithm returns, on top of the detection time
t∗, the class m∗ that triggered the detection (line 21).

C. Properties of CDM

Here we illustrate the most important properties of CDM,
in particular the control of the ARL0, and analyze its compu-
tational complexity.

Online and Nonparametric Monitoring. Consistently with
the notation introduced in Section IV-A, we can see CDM as
an online change-detection test with statistic T̃t defined as

T̃t = Tm
tm , m = yt, (7)

and thresholds h̃t = htm . The online nature of CDM is evident
from Algorithm 1, where the datastream is processed one
sample (xt, yt) at a time. The nonparametric nature of CDM
derives from the fact that the distribution of the test statistic T̃t,
like any other statistic based on QuantTree, does not depend
on the initial distribution ϕ0, as shown in [6].

Control of the ARL0. CDM inherits from QT-EWMA
the control of false alarms by maintaining a target ARL0.
In particular, we demonstrate that, since (6) holds for QT-
EWMA, CDM yields the same ARL0 as the QT-EWMA
monitoring each class-conditional distribution.



Proposition 1. Let T̃ be the test statistic of CDM defined
in (7), and let {ht} be the QT-EWMA thresholds yielding
the target ARL0. Then, the change-detection test defined by
T̃ yields the same ARL0.

Proof. To prove the Proposition, we need to show that (6)
holds for T̃ . By the definition of T̃ in (7) and the law of total
probability we have that

Pϕ0
(T̃t > h̃t | T̃k ≤ h̃k ∀k < t) =

=

M∑
m=1

Pϕ0(T
m
tm > htm | Tm

k ≤ hk ∀k < tm, yt = m)·

· Pϕ0
(yt = m | Tm

k ≤ hk ∀k < tm). (8)

Since all the samples (xt, yt) in the datastream are assumed to
be independent, the label yt associated with xt is independent
from the values of the statistic Tm

k for k < tm, so we can
drop the conditioning in the second factor of the second term
of (8). Moreover, the probability under ϕ0 in the first factor is
conditioned on the event “yt = m”, so it coincides with the
probability under the class-conditional distribution ϕm

0 defined
in (1). Hence, (8) becomes:

M∑
m=1

Pϕm
0
(Tm

tm > htm | Tm
k ≤ hk ∀k < tm)Pϕ0

(yt = m) =

=

M∑
m=1

α · Pϕ0
(yt = m) = α, (9)

where the penultimate equality derives from the fact that (6)
holds for the QT-EWMA test statistics Tm monitoring each
class-conditional distribution. The last equality in (9) derives
from the assumption that, under ϕ0, each sample xt has a label
yt = m ∈ {1, . . . ,M}, so the events {yt = m}Mm=1 represent
a partition of the probability space, thus their probabilities
sum to 1. The fact that (8) = (9) proves that (6) holds for T̃ ,
showing that CDM yields ARL0 = 1/α [28].

We remark that Proposition 1 holds for any CDM defined
by an online change-detection algorithm that can be config-
ured to yield the desired ARL0 by setting a constant false
alarm probability over time as in (6). This means that, in
principle, we can define CDM using other change-detection
tests. However, to the best of our knowledge, QT-EWMA is
the only nonparametric and online change-detection test for
multivariate datastreams whose thresholds can be set to satisfy
(6), which is not guaranteed by other methods controlling the
ARL0, such as Scan-B [26] and ECDD [14].

Computational Complexity. Similarly to QT-EWMA [5],
CDM is extremely efficient in both computational and memory
overhead. It places each sample xt in its bin in the QuantTree
histogram Qm corresponding to its label m = yt, resulting in
O(K) operations [6]. Then, CDM updates the corresponding
statistics Zm

k,tm
(4) for k ∈ {1, . . . ,K}, thus requiring to store

in memory M ·K values, namely K statistics per class.

V. EXPERIMENTS

Here we illustrate our experiments, which we designed
to demonstrate that CDM outperforms mainstream concept-
drift detection methods that monitor either the error rate of
a classifier or the overall data distribution. First, we present
the real-world and synthetic datasets on which we test our
solution (Section V-A), then we formally define the figures of
merit we use (Section V-B) and the reference methods from
the literature (Section V-C). Finally, we present and discuss
our experiments and their results (Sections V-D,V-E).

A. Considered Datasets

Real-world data. The INSECTS dataset [29] is a well-
known benchmark for classification and concept-drift detec-
tion. It contains feature vectors (d = 33) extracted from
sensor measurements describing the wing-beat frequency of
six (annotated) species of flying insects. The dataset contains
six concepts, each representing measurements acquired at a
different temperature, which influences the flying behavior of
the insects. This allows us to introduce realistic concept drifts
by sampling the datastream from different concepts before and
after the change point τ . In our experiments, the stationary
condition ϕ0 is characterized by the class-conditional distri-
butions {ϕm

0 }Mm=1 describing the features of M = 4 different
insect species from each of the six concepts. We consider
multiple drifts ϕ0 → ϕ1 that consist in a temperature change
affecting one or more classes, namely ϕm

0 → ϕm
1 ̸= ϕm

0 . In
these settings, for each stationary distribution ϕ0, the change
ϕ0 → ϕ1 is defined among 5 potential temperature changes
affecting one of 2M − 1 = 15 different subsets of the M
classes, for a total of 75 distribution changes per initial concept
ϕ0. In our experiments we consider training sets containing
256 instances of each class, sampled without replacement from
each class-conditional distribution ϕm

0 .
Synthetic data. To interpret the results obtained on real-

world data, we synthetically generate various distribution
changes ϕ0 → ϕ1 and assess their impact on the classification
error. In particular, we define the stationary distribution ϕ0 as
a mixture of M = 2 Gaussians (one per class) ϕ1

0 = N(µ1
0, I)

and ϕ2
0 = N(µ2

0, I) in R2, where I denotes the identity matrix,
µ1
0 = [0, 0]T , and µ2

0 = [δ, 0]T for some δ > 0. Post-change
distribution ϕ1 is defined by shifting ϕ2

0 → ϕ2
1 = N(µ2

1, I),
while keeping ϕ1

0 fixed. Changes are thus regulated by µ2
1,

which we move over a grid around µ1
0 (see Figure 1). Also

in this case, we consider training sets containing 256 samples
drawn from each ϕm

0 .
This setup was designed to assess when CDM is a better

option than ECDD. The classification error varies when µ2
1

moves along the horizontal direction, which is the line con-
necting µ1

0 and µ2
0: these changes can be promptly detected

by ECDD when they increase the error rate. In contrast,
changes translating µ2

1 vertically (thus orthogonal to the line
joining µ1

0 and µ2
0), do not change the error rate but only

the input distribution. These changes cannot be detected by
ECDD, but are perceivable by CDM, whose performance
only depends by the change magnitude. Here we measure the
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Fig. 1: Illustration of Gaussian class-conditional distributions
generating synthetic data. The distributions are represented by
the mean and the 3σ ellipsoid. We consider changes ϕ0 → ϕ1

defined by translating the mean of ϕ2
0 inside the dashed

rectangle, as in this example.

change magnitude by the symmetric Kullback-Leibler distance
sKL(ϕ2

0, ϕ
2
1) [30], which in this case is equal to 1

2∥µ
2
1−µ2

0∥2.

B. Figures of Merit

We consider two common figures of merit in the change-
detection literature. First, we assess the control of false alarms
by computing the empirical ARL0, i.e., the average detection
time in datastreams distributed as ϕ0. Thanks to Proposition 1,
we expect the empirical ARL0 of CDM to approach the target
ARL0 set before monitoring. Then, we measure the detection
power by the average detection delay (or ARL1), namely the
average difference between the detection time t∗ and the actual
change point τ . The detection delay is computed considering
only datastreams where no false alarms were reported before
the change, thus t∗ > τ .

C. Considered Methods

To ensure a fair comparison, we only consider methods that
i) are nonparametric and ii) control the false alarms by setting
a target ARL0 before monitoring. In particular, we consider
ECDD [14], which monitors the error rate of a classifier,
Scan-B [26] and QT-EWMA [5], which are nonparametric and
online change-detection tests monitoring the data distribution.

ECDD [14] employs an EWMA control chart [15] to
monitor the sequence {et} (3) defined by the errors of a
classifier K. In particular, ECDD computes a statistic

Ut = (1− r)Ut−1 + ret, U0 = p̂0,0, (10)

where p̂0,t indicates the average error rate of K up to time t,
and r is the EWMA parameter, which we set to r = 0.2 as in
[14]. A concept drift is detected when Ut > p̂0,t+Lσt, where
σt is the estimated standard deviation of Ut:

σt =

√
p̂0,t(1− p̂0,t)

r

2− r
(1− (1− r)2t). (11)

Since Ut is an incremental estimate of the error rate of K,
which gives exponentially larger weights to the latest elements

TABLE I: Computational complexity for processing a new
sample (xt, yt) and memory requirement of CDM and the
other considered methods. The computational complexity of
ECDD [14] is that of the classifier K, indicated by O(K).

Method ECDD [14] Scan-B [26] QT-EWMA [5] CDM (ours)
Complexity O(K) O(nBd) O(MK) O(K)

Memory 2 (n+ 1)Bd MK MK

of et compared to older elements, and since a one-sided
decision rule is applied, ECDD can only detect drifts that
increase the classification error. The control limit L can be
tuned to yield a target ARL0, and [14] provides polynomial
approximations to compute L for different values of the target
ARL0 as a function of p̂0,t.

In our experiments on INSECTS, we train K as a k-Nearest
Neighbors (k-NN) classifier (k = 9), and we never update
it during monitoring. On the synthetic dataset we employ a
Linear Discriminant Analysis (LDA) classifier, which is faster
and yields excellent performance over Gaussian classes.

In terms of computational complexity, computing and up-
dating Ut (10) and p̂0,t are extremely cheap operations, which
require storing in memory only 2 scalar values, namely Ut−1

and p̂0,t−1. The computational complexity of ECDD therefore
depends on that of the classifier, which we indicate by O(K),
which has to be applied on each xt.

Scan-B [26] is a nonparametric change-detection algorithm
that monitors the input distribution by computing at each
time t, the average Maximum Mean Discrepancy (MMD) [25]
between a sliding window of a fixed size B and n reference
windows of the same size sampled from the training set TR.
This requires updating n Gram matrices for each sample
xt by computing B times the MMD statistic, resulting in
O(nBd) operations [27]. Therefore, Scan-B stores in memory
n reference windows of B d-dimensional inputs, on top of
the current window, resulting in (n+1)Bd memory footprint.
Thresholds are set by analyzing the asymptotic behavior of
ARL0 when the threshold tends to infinity, while in CDM
and QT-EWMA the thresholds are defined by (6), providing
more accurate control of the ARL0 [5]. As in [26], we set the
window size B = 50 and n = 5.

QT-EWMA [5], is a nonparametric change-detection algo-
rithm which we have described in Section IV-A. To enable
a fair comparison, since CDM leverages M instances of
QT-EWMA each one based on a QuantTree histogram with
K = 16 bins, we set the number of bins of QT-EWMA to
MK and, according to [5], we set λ = 0.03 in (4). As shown
in [5], QT-EWMA is very efficient since it performs O(MK)
operations to place each sample xt in the corresponding bin
of the QuantTree histogram [6], and requires storing only the
MK scalar values of the statistic Zk,t−1 (4) to be updated at
time t.

In Table I we compare the computational complexity and
memory requirements of CDM (discussed in Section IV-C) to
those of the other considered methods. This analysis shows
that CDM and QT-EWMA are extremely efficient from both



TABLE II: Empirical ARL0 of the considered methods on the
6 concepts of the INSECTS dataset [29].

Method (target ARL0)
Concept ECDD [14] Scan-B [26] QT-EWMA [5] CDM (ours)

(400) (300) (375) (375)
A 376.51 382.08 379.10 375.44
B 371.07 384.56 361.78 374.47
C 373.16 381.65 371.66 365.32
D 374.14 387.17 367.18 369.94
E 371.82 376.28 375.10 374.64
F 377.67 374.22 375.58 371.87

the computational and memory points of view. In contrast,
Scan-B performs more operations and stores more data, and
these requirements increase with the data dimension d, contrar-
ily to CDM and QT-EWMA. ECDD has negligible memory
requirements, but its computational complexity depends on the
classifier K, which is applied to each sample xt to form {et}.

D. Concept Drift Detection on INSECTS Data

In this Section, we discuss the empirical ARL0 and the
detection delay achieved on the INSECTS dataset by the
considered models in the settings described in Section V-A.

ARL0. We compute the empirical ARL0 of the considered
methods on the six concepts of the INSECTS dataset [29],
which we denote by A, B, C, D, E, F. We consider each
concept as a stationary distribution ϕ0, and we sample without
replacement 5000 training sets and 5000 datastreams of length
8000 from each ϕ0. Then, we configure the considered meth-
ods on the training sets, and compute the empirical ARL0 as
the average detection time over these stationary datastreams.

We report the results of this experiment in Table II, which
shows that ECDD fails at accurately controlling the target
ARL0 = 400. In contrast, the empirical ARL0 of CDM
and QT-EWMA approaches their target, which we set to
ARL0 = 375 to match the empirical ARL0 of ECDD.
Similarly to ECDD, Scan-B does not accurately control the
ARL0, and this is consistent with the experiments in [5]. For
this reason, we set the target ARL0 = 300 in Scan-B to yield
approximately the same empirical ARL0 as the other methods.
Table II indicates that in these settings it is possible to fairly
compare the detection delays of the considered methods, since
these all yield approximately the same empirical ARL0.

Detection delay. For each of the 450 changes ϕ0 → ϕ1 (75
for each of the 6 initial concepts) described in Section V-A,
we sample without replacement 1000 training sets and 1000
datastreams to be monitored. Each datastream is the concate-
nation of τ = 160 points drawn from ϕ0 and 7000 points
drawn from ϕ1. Table III reports the average detection delays
of the considered methods depending on the drifted classes. As
suggested in [31], we rank the considered methods according
to their average detection delay obtained on each of the 450
changes (rank = 1 for the method with the lowest detection
delay, etc.), and report their average rank. We also report the
p-values of the Nemenyi [32] and Dunn [33] post-hoc tests,
to assess whether the differences between the best-ranking
method and the others are statistically significant.

TABLE III: Average detection delays on the 15 subsets of
classes affected by change of the INSECTS dataset [29].

Drifted classes ECDD [14] Scan-B [26] QT-EWMA [5] CDM (ours)
1 207.98 212.53 267.73 195.45
2 245.85 162.58 195.44 124.92
3 264.27 224.99 278.57 204.00
4 224.91 235.87 265.96 196.74

1,2 198.17 131.71 174.80 114.44
1,3 172.62 169.87 223.50 160.98
1,4 165.77 163.63 221.66 145.82
2,3 163.66 126.56 167.55 112.18
2,4 176.53 119.41 154.95 106.49
3,4 210.04 169.88 218.90 153.51

1,2,3 139.29 115.01 152.91 103.60
1,2,4 148.03 103.24 141.09 98.89
1,3,4 144.81 134.83 183.41 131.38
2,3,4 132.36 96.92 136.90 98.57

1,2,3,4 122.38 88.86 128.04 91.44

Avg. rank 2.416 2.356 3.524 1.704
Nemenyi-p 6.95 · 10−6 1.44 · 10−1 5.18 · 10−17 –

Dunn-p 2.43 · 10−7 2.01 · 10−2 6.40 · 10−19 –

We observe that CDM turns out to be the best method in
13 out of the 15 considered changes, and the best in terms of
average rank. The Nemenyi and Dunn tests show that the gap
of CDM over ECDD and QT-EWMA is statistically significant
(p-value < 0.05). The gap between CDM and Scan-B is less
remarkable, but still significant according to the Dunn test.

As expected, all the methods tend to yield lower detection
delays when the change affects more classes. In particular,
the difference between the detection delays of CDM and QT-
EWMA is larger when the change affects only one class rather
than when it affects all of them, showing that monitoring
the class-conditional distributions can indeed improve the
detection performance in these cases. This effect is even more
apparent in the comparison between CDM and Scan-B.

Most remarkably, CDM substantially outperforms ECDD in
terms of average detection delay in all the considered settings.
This is due to the fact that ECDD can only detect concept drifts
that increase the classification error, while the considered drifts
in the INSECTS dataset might have little impact on the error
rate of a classifier. To further analyze the relation between
detection delay and classification error, we plot in Figure 2
the average detection delays of CDM and ECDD against the
difference between the classification error after (p1) and before
the change (p0). Each plot reports the results obtained on the
75 drifts we consider for each initial concept A, B, C, D, E,
F. We highlight the relation between p1−p0 and the detection
delay by plotting the moving average (weighted by a Gaussian
kernel) of the detection delay as a function of p1 − p0. These
results qualitatively show that the performance of ECDD only
depends on p1−p0, which is often small and sometimes even
negative. In contrast, CDM can detect any change in the class-
conditional distributions, thus yielding a lower detection delay
in most cases.

E. Concept Drift Detection on Gaussian Data

Concept drifts might not always heavily impact the classi-
fication performance, as we have shown in Figure 2 on the
INSECTS dataset. Here we further analyze the fundamental
difference between monitoring the classification error (ECDD)
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Fig. 2: Detection delay achieved by ECDD and CDM on the INSECTS dataset [29] for each of the 6 stationary concepts,
plotted against the difference p1 − p0, where p0, p1 are the error rates of K before and after the drift. Each dot is the average
of 1000 realizations of the same change ϕ0 → ϕ1 i.e., thus with the same affected classes.

and the input distribution (CDM), by considering the synthetic
scenario described in Section V-A, where we can control
both p1 − p0 and the change magnitude sKL(ϕ2

0, ϕ
2
1). We

configure ECDD and CDM to maintain the same ARL0 as
in Section V-D.

The results of this experiment are illustrated in Fig-
ure 3. Figures 3(a)-(b) report the detection delays respectively
achieved by ECDD and CDM as a heatmap. The color
coded value at a coordinate µ ∈ R2 represents the detection
delay achieved by the model when µ2

1 = µ, averaged over
5000 experiments. Moreover, in the same figures we report,
respectively, p1 − p0 and sKL(ϕ2

0, ϕ
2
1) as contour plots.

As expected, ECDD cannot detect virtual drifts, as can be
seen by the large detection delays on the right side of Fig-
ure 3(a), but it achieves excellent detection performance when
the translation reduces the distance between the two class-
conditional distributions, increasing the classification error
(p1−p0 > 0). In contrast, the detection delay of our CDM only
depends on the distance sKL(ϕ2

0, ϕ
2
1), as it can be appreciated

in Figure 3(b), where the level curves of the detection delays
are circular and follow 1

2∥µ
2
1 − µ2

0∥2. Figure 3(c) reports the
difference between the detection delays of ECDD and CDM.
ECDD outperforms CDM when µ2

1 falls inside a relatively
small triangular portion of R2, corresponding to drifts that
significantly increase the error rate while keeping the distance
between ϕ2

0 and ϕ2
1 low. However, the difference is substantial

only in a small region close to µ2
0, where the change is nearly

negligible and the performance of both methods is rather poor.
CDM yields lower detection delays than ECDD in all the other
cases, and the performance difference is quite large, especially

when the drift reduces the classification error.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced CDM, a novel concept-drift detection
method that monitors the class-conditional distributions using
QT-EWMA [5]. Our experiments on real-world datastreams
and synthetic data show that our solution can effectively detect
virtual drifts that are ignored by methods that monitor the error
rate of a classifier. In many circumstances, CDM yields lower
detection delays than methods that monitor the overall data
distribution, especially when the drift affects only a subset of
classes. Moreover, our CDM is built upon solid theoretical
guarantees on false alarms, enabling to set the ARL0 before
monitoring. Another important advantage of CDM compared
to other concept-drift detection methods is that our solution
returns information on which class triggered the detection, and
this can be crucial for adaptation and diagnostics in general.

Future work will extend CDM by applying other detectors
controlling the ARL0 in parametric settings or in combina-
tion with QT-EWMA, to improve the detection performance
when parametric assumptions can be made on some class-
conditional distributions. We will also investigate the appli-
cation of CDM when class labels are not available during
monitoring, using the predictions of a classifier instead.
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