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Abstract Leaks represent one of the most relevant faults in Water Distribution Net-
works (WDN), resulting in severe losses. Despite the growing research interest in
critical infrastructure monitoring, most of the solutions present in the literature can-
not completely address the specific challenges characterizing WDNs, such as the low
spatial resolution of measurements (flow and/or pressure recordings) and the scarcity
of annotated data. We present a novel integrated solution that addresses these chal-
lenges and successfully detects and localizes leaks in WDNs. In particular, we detect
leaks by a sequential monitoring algorithm that analyzes the inlet flow, and then we
validate each detection by an ad-hoc statistical test. We address leak-localization as
a classification problem, which we can simplify by a customized clustering scheme
that gathers locations of the WDN where, due to the low number of sensors, it is
not possible to accurately locate leaks. A relevant advantage of the proposed solution
is that it exposes interpretable tuning parameters and can integrate knowledge from
domain experts to cope with scarcity of annotated data. Experiments, performed on a
real dataset of the Barcelona WDN with both real and simulated leaks, show that the
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proposed solution can improve the leak detection and localization performance with
respect to methods proposed in the literature.

Keywords Leak detection · leak localization · water distribution networks
monitoring · change detection · classification

1 Introduction

Water Distribution Networks (WDNs) are critical infrastructure systems that are dif-
ficult to manage and monitor due to their size and complexity. For example, pipes
in a WDN of a medium-sized city connect the inlets/reservoirs to hundreds of nodes
(either junctions or locations where customers are connected) and span over hundreds
of kilometers. In such a large and complex system, faults can be ubiquitous, affect-
ing pipes, reservoirs, sensors or actuators. Leaks, a specific type of hydraulic fault,
might occur anywhere as a consequence of pipe breaks, loose joints and fittings, or
overflows from storage tanks.

The increasing water demand, pushed by the population growth, and the severe
implications of leaks in terms of operational costs and water losses [35], made leak
detection and localization a primary concern for water utilities. This has influenced
both WDN management strategies and research activities. On the one hand, the vast
majority of water management companies nowadays divide the whole WDN into
District Metered Areas (DMAs), where the flow and the pressure at the inlet can be
measured and easily monitored to detect leaks [24,35]. On the other hand, algorithms
for leak detection and localization have been also thoughtfully investigated in control
theory [46], computer science [38] and, more recently, artificial intelligence [22,44].
In particular, most recent solutions monitor recordings from accelerometric sensors
[22] or smart meters [54,26], which provide many measurements and enable sophis-
ticated AI models to be employed. Unfortunately, the vast majority of WDNs are
still equipped with flow/pressure sensors at DMA inlets [24,35,60,30,15,9], and few
flow/pressure sensors deployed inside the DMA.

Despite the promising results achieved by artificial intelligence and neural net-
works in many domains, leak monitoring remain a challenging problem in particular
when analysing a few flow/pressure recordings (see Section 2 for a detailed analysis
of the literature) and a general and effective solution is still missing. We speculate the
reason is twofold. First, the primary effect of a leak is an anomalous increase in the
flow (or a decrease in the pressure), but this is commonly experienced due to varia-
tions in the customers’ demand, which is difficult to forecast and rarely measured in
real-time [16]. Second, despite DMAs are typically very large and serve thousands of
costumers, these are often equipped with few sensors, because of cost or energy con-
straints. On top of these critical issues, noise, long-term trends/seasonality, as well
as the scarcity of measurements acquired under leak conditions make leak detection
and localization very specific and challenging problems requiring ad-hoc algorithms.
Solutions from related scenarios, e.g., monitoring of a chemical plant or smart grid,
do not typically apply [14,6].

We present a leak detection algorithm that requires only flow measurements at
DMA inlets [24,35,60,30,15,9], and perform leak localization from a flow/pressure



sensors deployed inside the DMA. Our integrated solution comprises three modules:
i) leak detection, ii) leak validation and leak time/size estimation, iii) node clustering
and leak localization. To compensate for scarcity of sensor information, our algo-
rithms integrate knowledge from domain experts.

We formulate leak detection and validation as change-point detection problems,
which we solve by an ad-hoc two-layer algorithm including a hypothesis test to val-
idate each detection and estimate the leak size and leak time. These latter have been
typically ignored by most leak detection algorithms [23,59,37,17,25,58], but are
crucial to diagnose and localize leaks. Most remarkably, we configure the detection
algorithm from few days of flow measurements (without leaks) and from the mini-
mum leak size, a parameter that is easy to interpret and tune for domain experts. We
formulate leak localization as a classification problem, and present a solution that is
effective even when only a few sensors1 (e.g. 1 sensor placed per 200 nodes/pipes) ac-
quiring pressure/flow measurements inside the DMA are available. We address leak
localization by a set of classifiers that have been specifically trained on sequences
generated by a hydraulic simulator of the WDN. Leak-localization can seamlessly
be trained and used at node-level or cluster-level [32,10,36], where clusters gather
nodes where leaks cannot be distinguished, thus allow WDN engineers to set the de-
sired granularity in leak localization. To summarize, we convey the following original
contributions:

– A novel leak validation algorithm to reduce false alarms by determining whether
each detection corresponds to a sufficiently large leak or not.

– A novel leak localization algorithm, which is based on classifier and is activated
every time a detection is validated.

– A specific clustering procedure that gathers nodes where classifiers cannot distin-
guish the leak location, mainly due to the lack of nearby sensors.

Experiments performed on large datasets of time series acquired in multiple Barcelona
DMAs, or that have been simulated from realistic hydraulic models of different cities,
demonstrate that the proposed leak-detection and localization algorithms outperform
comparable solutions in the literature.

The structure of the paper is the following. Section 2 reviews the literature on
leak detection and localization including integrated solutions. Section 3 formulates
the leak detection and localization problems, while Section 4 gives an overview of
the proposed solution. Section 5 and 6 present in detail the proposed leak detec-
tion/validation and leak localization solutions, respectively. Section 7 describes the
experiments and discuss results before conclusions that are given in Section 8.

2 Related Works

In the following, we overview recent leak detection and localization solution with a
particular emphasis on those that, like the proposed approach, address both problems
with a few flow/pressure sensors are available.

1 Sensor placement is a very important aspect which can heavily influence the localization performance
[12], but it is not covered in this work where we assume it has already been done.
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Fig. 1: Example of weekly profile for the total DMA inflow F (t). The MNF period
spans from 2 a.m. to 6 a.m. and is highlighted in red while the extended MNF pe-
riod spans from 10 p.m. to 8 a.m. and is highlighted in green. This picture is better
interpreted in the coloured version of the paper.

2.1 Leak Detection Techniques

Most leak-detection techniques in the literature monitor the flow measurements at
the DMA inlets, which are the most meaningful and always available time series.
The mainstream approach consists in i) fitting a model that well describes the flow
time series acquired in leak-free conditions, ii) computing some residuals or scores
between the fitted model and the acquired measurements, and iii) adopting a statisti-
cal/heuristic decision rule to detect leaks.

Several leak-detection algorithms are grounded in statistical or control literature,
where models describing the leak-free time series include an adaptive or non-linear
Kalman filter ([60] and [20]), projections in Fourier domain [15], and particle filters
[7]. Data-driven models from AI literature have been used for leak-detection pur-
poses, including Support Vector Regression (SVR) [28], projections over the first
Principal Component Analysis (PCA) [30], Bayesian networks [39] and Extreme
Learning Machine (ELM) in [43]. Self-similarity of flow time series is instead mon-
itored in [9] thanks to a special feature extraction procedure. In some cases, these
models are conveniently used to describe the Minimum Night Flow (MNF), namely
the flow during night hours, between 2 am and 6 am, where the flow is minimum and
fluctuations w.r.t. patterns are also smoother [35], as illustrated in Fig. 1 with the red
dashed line. There are two main reasons for analyzing MNF of the input F (·). First,
leaks during MNF are easier to detect as they introduce the largest percentage varia-
tion with respect to the total water consumption. Second, the trend of MNF is easier
to model, thus any departure from this can be detected as leaks. However, monitoring
MNF introduces relevant delays since hours between MNF intervals are not analyzed.

In terms of statistics, most of the above techniques adopt the residuals (possi-
bly normalized or averaged over a time window) between the measurements and
model predictions, which are assumed to infer flow in absence of leaks. There is
instead more variability in the decision rules adopted, which spans from straightfor-
ward thresholding [60], CUmulative SUMmation (CUSUM) test [29] in [20] and the
ICI-based Change Detection Test (CDT) in [9].

None of these algorithms implement specific strategies to mitigate the impact of
false alarms that in WDN monitoring are ubiquitous, due to drifts, peaks and season-



ality characterizing water consumption. Discarding false alarms is very important,
since a high false alarm rate implies relevant economical losses due to unnecessary
inspections, and at the same time increases the mistrust of operators to the monitoring
system. To this purpose, we customize the hierarchical change-detection framework
in [3] introducing a specific validation procedure for flow time series and that exposes
interpretable parameters. In our experiments, we have compared against [60], [30],
[9] and [15] (described in details in Section 7.3) and show that our solution achieves
lower detection delays and false negative rates when configured to yield the same
false positive rate. Another key advantage of the proposed solution is that we can
estimate both the leak starting time and the leak magnitude, which are very impor-
tant for the localization algorithm but that are rarely provided by competing methods.
Our experiments demonstrate that our solution is successful also on real data from
the Barcelona WDN, while only a few solutions have been tested on real data, [60,
20,28,9,39].

2.2 Leak Localization Techniques

Many leak-localization algorithms adopt data driven or AI models, and in particu-
lar these often resort to training classifiers [47,49,36]. Leak localization is typically
performed by assuming that a few sensors (most often pressure sensors) have been
installed inside the DMA, and that pressure decreases close to the leak. Most solu-
tions in the literature solve this problem by first identifying a candidate region con-
taining many nodes close to the leak, and then pinpointing the exact leak location
by inspecting the network using devices such as Ground Penetrating Radars (GPRs)
[27]. Various empirical studies [33,23,53], localize leaks through mathematical mod-
els describing the relation between flow and pressure measurements in presence of
leaks. Leak localization can be performed in transient-state, using a model of [11]
the dynamic effects of the leak in the time series like negative pressure waves, or in
steady-state, namely comparing the flow and pressure measurements inside the DMA
against a reference that was acquired/generated/modeled in absence of leaks. Steady-
state methods are the most popular ones, since they typically require fewer sensors
than transient state ones. A few steady-state methods employ correlation analysis
[32], k-NN [47] or more powerful classifiers [49,36] that take as input residuals be-
tween measurements inside the DMA and the output of an hydraulic simulator of
the WDN. In our experiments, we compared against [32,47,49], which we better de-
scribe in Section 7.4. Among the aforementioned works, only [27,32,47,49] were
validated on real data.

Our leak localization algorithm also relies on classifiers that take as input a richer
descriptor of the WDN status than [32,47,49]. In particular, to cope with leaks of
different magnitudes, we train a collection of classifiers: one per each expected leak
size, and every time we select which one to use. To train this model at best, we resort
to data-augmentation procedures inspired by [13], and here expanded. Moreover, the
proposed leak localization is coupled with a clustering algorithm to group locations
where leaks are more difficult to localize. The granularity of clustering results can
be easily adjusted by experts, thus representing a very useful tool to monitor DMA



equipped with few sensors. Most remarkably, once clustering is adopted, classifiers
are seamlessly retrained and used at cluster level. Previous solutions [47] adopt clus-
tering as a post-processing phase and not as a joint step to be combined with classi-
fiers used for localization.

2.3 Integrated Solutions

A few integrated solutions that perform both leak detection and localization have been
presented [17,59], which however require a large number of special sensors operating
at high sampling rates. As such, these solutions are not easy to adopt in most DMA.
Fuzzy theory has also been used for simultaneously detecting and localizing leaks
[19,55]. These solutions address the different forms of uncertainties characterizing
WDNs, such as nodal demand variability and sensor noise, but without any validation
step. Another relevant similarity to ours solution is that the parameters regulating
different fuzzy states are interpretable (e.g., leaks size) and can be defined by domain
experts. This approach has also been recently pursued in [57] to monitor and control
smart homes.

3 Problem Statement

Leak Detection. We consider the leak-detection problem by monitoring the total
inflow F (·) of a DMA2, which is a time series sampled at regular time intervals, that
in absence of leaks measures the amount of water Ψ(t) consumed within the DMA
each time instant t. For this reason, F (·) exhibits a repetitive pattern on a daily basis
[5], which depends on weekends, holidays or weather conditions, as shown in Fig. 1.
A leak permanently modifies the flow F (t) by increasing the water consumption of
an unknown leak size l > 0 at the leak-starting time T ∗, namely:

F (t) =

{
Ψ(t), t < T ∗

Ψ(t) + l, t ≥ T ∗ . (1)

We assume that the leak size is constant. Even though leaks often gradually in-
creases over time, this approximation typically holds over short time intervals, where
the leak has to be detected [32,10].

Our primary goal is to detect when a leak occurs inside a DMA and accordingly
estimate both the leak-starting time T ∗ and size l. The detection time, i.e., the time
instant when a monitoring algorithm reports a leak, is denoted as T̂ , while T̂ ∗ and l̂
denotes the estimated leak-time and the estimated leak size, respectively. We assume
that only leaks above a minimum size lmin need to be reported. A good detection
algorithm should provide short detection delays (DD) T̂ − T ∗, and very low false
negatives rate (FNR), namely the percentage of leaks above the minimum size lmin
that have not been detected. At the same time, the false positive rate (FPR), namely
is the percentage of detections where there is not a leak should be kept as low as

2 On DMAs provided with multiple inlets, F (·) sums the flow measured in all these
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Fig. 2: Leak detection notation: leak time T ∗, estimated leak time T̂ ∗, leak detection
time T̂ , δ corresponds to the number of values used for leak validation.

possible. It is further assumed that leak detection algorithm has to be configured from
a training sequence H containing the first days of flow measurements without leaks.

Leak Localization. We also consider the leak localization problem, which con-
sists in estimating, after each detection at T̂ , the node j∗ where the leak has occurred.
To this purpose, we assume that a few pressure/flow sensors have been deployed in-
side the DMA and that the i-th node records either the time series of pressure pi(·) or
the flow fi,j(·) between nodes i and j.

We assume that sensors inside the network are very sparse, i.e., that in total there
are only m time series recorded and that m << n, being n the total number of
candidate leak locations. Another typical assumption in the literature we make is
that there are no simultaneous leaks in different locations [32]. The estimated leak
location ̂ has to be as close as possible to the true leak location j∗, where the distance
can be either measured in terms of pipe length, node or linear distance.

Gathering a representative training set for leak localization purposes is unfeasible
in the real-world, as this would require measurements of flow and pressure in all the n
possible leak locations and for different leak sizes. Hence, we simulate a training set
TR of flow/pressure time series at nodes inside the DMA. To this purpose, we require:
i) a training sequence of leak-free inlet flows like the one used for leak detection,
ii) the time series of leak-free recordings from the m internal measurements, iii) a
calibrated hydraulic model of the DMA, and iv) a base nodal demands ξ, i.e., the
percentage of water consumed by each node (even based on monthly bills).

4 An Overview of the Proposed Solution

Figure 3 illustrates the proposed solution, which comprises three main modules: i)
the leak detection module, ii) the leak validation module and iii) the leak localiza-
tion module. The leak detection module monitors the total inflow F (·) at DMA inlets
by means of a change-detection test that compares the acquired data w.r.t. leak-free
flow measurements. Once a change has been detected at time T̂ , the change-detection
test also provides an estimate of the leak starting time T̂ ∗, which is used to activate
the leak validation module. Validation module further analyzes the flow at inlets to
reduce false positive detections by means of an ad-hoc statistical hypothesis test com-
paring the leak-free flow measurements with the measurements acquired between T̂
and T̂ ∗.



Fig. 3: An overview of the proposed solution comprising leak detection, leak valida-
tion and leak localization. All these modules are trained from a flow time series and
take advantage of knowledge from domain experts. This picture is better interpreted
in the coloured version of the paper.

When the detection is confirmed, the leak size l̂ is estimated by comparing the
flow time series before and after the estimated leak time T̂ ∗. Domain experts play
a crucial role in the validation module, as they can set the minimum leak size lmin
to be detected, and this greatly contributes to discarding false alarms and detections
due to fluctuations and other non-stationarities in the flow time series. We emphasize
that both the detection and validation algorithms require a short training set of leak-
free measurements from the total inflow time series F (·). The leak detection and
validation modules are described in detail in Section 5.

Once a leak has been detected, validated and the leak size l̂ estimated, the leak
localization module is triggered, which analyzes measurements from the m sensors
placed inside the DMA to estimate the leak location – denoted by ̂. To achieve this
goal, the leak localization module relies on a set of classifiers trained on syntheti-
cally generated time-series, which encompasses leaks in each of the n considered
locations and for different leak sizes. All these time series are generated by means
of the hydraulic model of the network, which is fed to a simulator (as e.g. Epanet
[41]) together with historical leak-free flow recordings and data-augmentation guide-
lines provided by domain experts. During training, an iterative spectral-clustering
algorithm operating with the expert-in-the-loop, aggregates nodes where classifiers
would not be able to localize leaks, to carry out localization at the level of clusters
rather than nodes. The leak localization module is described in detail in Section 6.



5 Leak Detection and Validation

Instead of pursuing the common approach of monitoring the MNF of the inflow F
(see Section 2), we monitor the total inflow during the extended Minimum Night Flow
(eMNF), which covers a longer period where still the flow exhibits controlled vari-
ations. Fig. 1 compares the MNF and the eMNF over a week and shows that eMNF
includes the MNF. We define the eMNF E time series as a portion of F (i.e. E ⊂ F )
that spans everyday between 10 p.m. and 8 a.m. for the residential areas we consider
in our experiments. When the DMA serves industrial areas, this period must be ac-
cordingly set by domain experts. Even though we exclude from eMNF high demand
hours (as these would require a very long training set to distinguish fluctuations due to
customer’s demand or leaks), monitoring eMNF requires a more general and flexible
model than MNF.

Leaks can be conveniently detected by monitoring eMNF time series through
Change-Detection Tests (CDTs) [8], which are sequential techniques to detect even
negligible – but persistent – changes in a data generating process. Unfortunately, the
vast majority of CDTs in the statistical literature apply only to data streams composed
of independent and identically distributed (i.i.d.) realizations of a random variable.
This is not the case of the flow F , nor E, that instead are time series showing re-
peated patterns on a daily basis (see Fig. 1). This type of regularity can be enforced
as in [9] to extract a sequence of features values % that assess the similarity of an
input time series with a reference leak-free training sequence. Thus, we can success-
fully monitor E by a CDT analyzing a stream of i.i.d. realizations from an unknown
random variable.

We expect the distribution of features % to change when a leak occurs. How-
ever, distribution changes might also occur as a consequence of abnormal demands,
seasonal drifts or sensor errors, to name a few examples. To prevent these common
situations from raising an unacceptable number of false alarms, we implement the hi-
erarchical change-detection test formulation proposed in [4], and we designed a mon-
itoring scheme composed of two modules (illustrated in Fig. 4) specifically meant for
leak-detection purposes. Our first module performs the feature extraction and moni-
toring of % by a sequential CDT. While there are no strict limitations on the CDT to be
employed, this has to reveal even subtle changes in the daily consumption patterns:
such variations, when persistent, might indicate a leak. Our second module deter-
mines whether the prospective leak affects the monitored DMA in a realistic manner,
and to this purpose we analyze the flow measurements directly. In what follows, we
provide a detailed description of the proposed hierarchical CDT for leak detection.

5.1 Feature Extraction and Change Detection

We extract % features to assess whether each small patch of incoming flow measure-
ments is similar to those in the training set as in [9]. A patch st is a short sequence
extracted from the eMNF, namely:

st = {E(t− ν), ..., E(t), ..., E(t+ ν)}, (2)
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formation of those modules is used in combination with domain experts knowledge
setting the minimum leak size lmin to validate the leak. This picture is better inter-
preted in the coloured version of the paper.

where the time t represents the patch center, and ν is the number of samples selected
on each side of the patch, such that the patch size is 2ν+1. We compute features % by
comparing patches extracted from the input flow time series against patches extracted
from the first q days of the initial training sequence, namely Hq . Thus, Hq ⊂ H ⊂ E
and this is recorded under leak-free conditions. For each input patch st, the closest
patch in Hq in terms of Euclidean distance to st is selected among those referring to
the same time of the day. We denote πt as the most similar patch to st among the
training ones belonging to Hq:

πt = argmin
ξ
‖st − sξ‖2, (3)

where the minimization is performed over patches having centers ξ ∈ {h(t), β +
h(t), 2β + h(t), . . .}, being h(t) the time of the day associated to t, and β = 24
hours denotes the daily cycle characterizing the monitored time series. Thus, the most
similar patch πt is selected from Hq , as long as this refers to the same time of the
day as st. In (3), ‖ · ‖2 denotes the `2 norm of a vector. The feature %(t) is defined as
the difference between the center of st and the center of πt denoted by (2):

%(t) = st(ν + 1)− πt(ν + 1). (4)

As discussed in [9] and tested for the specific case of flow time series, the %
values can be approximated as i.i.d. realizations of a random variable, thus can be
monitored by most CDTs. Similarly to [9], we adopt the Intersection-of-Confidence-
Interval (ICI)-based CDT [1], which monitors % over disjoint windows. In particu-
lar this test first computes the sample mean and a power-low transformation of the
sample variance (to approach a Gaussian distribution) over each incoming window.



These values are then used to update the global estimates of the same quantities over
the entire sequence. These global estimates (which are assumed to be constant in the
change-detection framework) are analyzed together with their confidence interval to
detect distribution changes. The amplitude of these confidence intervals is defined by
the tuning parameter Γ , which regulates the CDT promptness in detecting changes.
More precisely, the ICI rule [18] detects a change in % as soon as the intersection of
all the intervals from these global estimates becomes empty. The CDT requires only a
portion of % time series for configuration, and these have to be extracted from training
patches that are not in Hq . Therefore, we configure the ICI-based CDT form features
extracted from Hr, namely the the remaining r days in H = [Hq, Hr], being [·, ·] the
time series concatenation. Further details on the ICI-based CDT can be found in [1].

The CDT at the first module detects any change affecting either the mean or the
variance of %, which can be in principle due to a non-leak event. This is the reason
why we designed the following validation module for detected leaks.

5.2 Validation

To reduce the FPR, each detected change has to be confirmed by the validation mod-
ule (Fig. 4), which assesses whether there is evidence of a leak in the specific DMA.
To this end, we adopt i) a paired one-sided Wilcoxon’s test [56], which is a hypothesis
test meant to determine whether the median of an unknown distribution has changed,
and ii) we define at each DMA, lmin the size of the smallest leak that is expected to be
detected. Typically, WDN engineers employed in the monitoring can define a suitable
value of lmin, which often ranges between 5% and 10% of the average inflow.

We define ETS as a vector representing the average daily inflow over Hq , i.e.,
during the first q training days:

ETS

(
h(t)

)
=

1

q

q−1∑
i=0

Hq

(
h(t) + iβ

)
, (5)

where h(t) is the position of t in the current day and β is defined as in (3). An example
of ETS is depicted in Fig. 5. After each detection, the latest δ > 0 measurements
preceding T̂ are selected, i.e., {E(T̂ − δ), . . . , E(T̂ )} and we remove any trend in
the eMNF, by computing the point-wise difference between a window of the same
size opened over recent data and ETS :

ME(i) = E(T̂ − δ + i)− ETS
(
h(T̂ − δ + i)

)
− lmin, for i = 1, . . . , δ. (6)

Note that in the right hand side of (6) we subtract lmin to validate only leaks larger
than the minimum leak size. We then validate leaks by running a paired and one-sided
Wilcoxon’s test [56] with confidence levelα over ME, thus determining whether there
is enough statistical evidence for claiming that (6) is above zero, thus there is a leak
larger than lmin.
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Fig. 5: Example of the ETS vector obtained by averaging from five daily samples
from training set Hq .

Every time the null hypothesis is rejected, the detection is validated thus, we
activate the leak localization module. To this purpose, we first estimate the leak size:

l̂ =
1

δ

T̂−1∑
t=T̂−δ

(
E(t)− ETS

(
h(t)

))
. (7)

The change time can be estimated by the ICI-based CDT [3] through a retrospec-
tive analysis after each detection. A few other change-detection algorithms, like the
Change Point Method (CPM) [40], provide such an estimate after each detection. On
top of leak localization, which is the primary task for WDN utilities, it is also possi-
ble to activate heuristic procedures for re-training/adapting the CDT as commented in
[2]. In WDN monitoring these heuristics might be useful for compensating variations
in the customers demand.

When there is not enough statistical evidence to reject the null hypothesis, we
discard the detection and all the data before T̂ . In particular, the CDT at the leak
detection module is returned to monitor the inflow at time T̂ + 1.

It is worth mentioning that, to compute ME in (6), it might be necessary to manip-
ulate sequences to compensate for seasonal drifts. This is in particular feasible when
two DMAs exhibiting similar behaviour are simultaneously being monitored, and the
trend estimated from one sequence can be used to detrend the other.

6 Leak Localization

Our leak localization module is illustrated in Fig. 6, and comprises a set of classifiers
which have been specifically designed for localizing the leak inside the DMA. Each
classifier processes flow and pressure measurements acquired inside the DMA and
predicts the leak location (Section 6.1). Since the leak size influences much the input
time series, we train a set of classifiers {C′l} each one corresponding to a leak size l,
which is a parameter varying in a predefined range.
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Fig. 6: Leak localization scheme. Historical measurements from inlet sensors and
nodal demands from billing records are augmented by procedures defined by domain
experts, and then used to generate a new training set TR with the hydraulic simulator
of the network. TR is used to train the node-level classifiers, which are then used
in the clustering phase to group the locations where leak localization is not possi-
ble. Cluster-level classifiers {C′l} are then trained and used for inference (during the
operational phase). This picture is better interpreted in the coloured version of the
paper.

The most critical aspect of our supervised learning approach is the shortage of
training data. In fact we would need, for each considered leak size l, measurements
affected by a leak in each and every network location, which of course is not a vi-
able option. Therefore, like other works in leak localization literature [32,49], we
adopt an hydraulic model of the DMA and a simulator (e.g. Epanet [41]), together
with historical leak-free flow recordings estimated water demands from customers to
generate a large set of flow/pressure time series referring to nodes inside the DMA.
Here, domain experts play a primary role in defining data-augmentation guidelines
and transformations that manipulate the flow time series and customer demand (Sec-
tion 6.2) to yield a realistic training set TR.

During the training phase, we can aggregate nodes where classifiers would not
be able to exactly localize leak, by the clustering algorithm proposed in Section 6.3.
This is an iterative spectral clustering procedure, which takes into account classifiers
previously trained to assess how accurately a leak can be detected. Domain experts
play a central role during clustering as well, since they might visualize clusters be-
ing created during iterations, and stop the process at the desired level of granularity.
Leaks are then conveniently localized at cluster level (some of which might also con-
sist of a single node) and the same localization algorithm can be seamlessly used,
after training.



6.1 Leak Identification by Classification

In what follows we define the classifiers {Cl} and, for the sake of notation, we omit
the leak size l where this is not necessary. We train each classifier C to analyze the
flow and pressure measurements inside the DMA and determine where the leak has
occurred among the n possible locations. Measurements at DMA inlets are not infor-
mative enough to locate leaks, therefore we require thatm << n sensors (either flow
or pressure ones) were placed inside the DMA at known locations.

After each validated detection, we quantitatively assess the impact of the leak
inside the DMA by averaging the variations at these sensors before and after the
estimated leak-time T̂ ∗:

Mpi =
1(

T̂ − T̂ ∗ + 1
) T̂∑
t=T̂∗

(
pi(t)− pi(t)

)

Mfi,j =
1(

T̂ − T̂ ∗ + 1
) T̂∑
t=T̂∗

(
fi,j(t)− f i,j(t)

)
,

(8)

where pi denotes the pressure measurements acquired at the ith node, while fi,j
denotes the flow measurements between nodes i and j. The terms pi and f i,j denote
reference measurements recorded without leaks in the same location. Similarly to
ETS in (5) and Fig. 5, we compute pi (resp. f i,j) by averaging measurements over
different days in the training time series acquired at the m internal sensors during
Hq as in (5). For leak localization purposes, differences are computed by aligning pi
(resp. fi,j) and pi (resp. f i,j) at the same time of the day. Note that in (8) we do not
consider the eMNF period, but rather the entire time series.

We define the input x of a classifier C, as a m-dimensional vector having in each
component the variation in either flow or pressure due to the leak as in (8):

x =
[
Mf , Mp

]T
, x ∈ Rm. (9)

We train the classifier C to provide as output the correct leak location among the
n nodes of the DMA. Thus, the estimated leak location is:

̂ = C(x), ̂ ∈ {1, . . . , n}. (10)

In particular, we train a maximum likelihood classifier C that builds upon class-
specific density models. Thus, we associate to each potential leak location j ∈ {1, . . . , n}
a m-dimensional Gaussian density model Φj = N (µj , Σj), where µj ∈ Rm, Σj ∈
Rm×m . The choice of the Gaussian distribution is rather customary in the leak local-
ization literature [48,49,1] and, at the same time, ease the node clustering procedure
described in Section 6.3. Thus, for each input sample x, we compute Φj(x) for each
class j ∈ {1, . . . , n} and associate x to the class ̂ yielding the largest posterior
probability by means of:

̂ = C(x) = argmax
j∈{1,...,n}

(
log
(
Φj(x)

))
. (11)



The parameters of the classifier C are n pairs (µj , Σj) j = 1, . . . , n, which de-
scribe each density Φj . These parameters are obtained by sample estimators com-
puted from a synthetic training set TR obtained through simulation as discussed in
what follows.

We emphasize that C depends on the leak size l, as this can completely change the
input x. Therefore, z different values of leak magnitude l are considered, resulting in
z different classifiers {Cl} = {C1, . . . , Cz} trained. During operations, the classifier
associated with the leak size that best matches l̂ estimated during leak detection is
selected. As discussed in the following, it is unfeasible to acquire a training set for
each of these classifiers. Thus, these training sets are generated through a specific
data-augmentation procedure that uses the hydraulic model of the DMA.

6.2 Data-Augmentation and Training Set Preparation

As mentioned before, we generate multiple leak-free sequences of flow and pressure
measurements by means of the Epanet simulator [41]. This is fed with realistic time
series of inlet flow F̃ and customer demands d̃i, {i = 1, . . . , n}, which are obtained
by a data-augmentation procedure that was agreed with domain experts. The proce-
dure is depicted in the bottom part of Fig. 6.

Each augmented total inflow F̃ is obtained from F as:

F̃ (t) = F (t+ λ) + κ(t), (12)

where λ is a small random time-shift, and κ is a term that can be either zero or defined
to modify a portion of F (t+λ). In particular, κ can introduce a few spikes or replace
a portion of F (t + λ) with another measurement recorded in the same hour in a
different day.

The augmented demand at the i-th node d̃i is defined from historical billing
records as in [34]. In particular, we first infer from the historical billing records all
the base-demands {ξi}, where ξi ∈ [0, 1] is the portion of the total inlet flow F that
reaches the i-th node. As a consequence, base demands sums to one

∑n
i=1 ξi = 1. We

simulate a time series from each nodal demand by adding a time-variant uncertainty
η(t) term over the expected value ξi, as in [13]:

ξ̃i(t) = ξi + η(t), i = 1, . . . , n , (13)

where η(·) is white Gaussian noise N (0, 0.25) truncated in [−0.5, 0.5]. We then ob-
tain the data-augmented nodal demands as follows:

d̃i(t) =
ξ̃i(t)∑n
i=1 ξ̃i(t)

F̃ (t) . (14)

The augmented nodal demand at the i-th node d̃i(t) is thus proportional to augmented
total inflow F̃ (t) and to the percentage of augmented nodal demand, which has been
rescaled to sum to 1 in each time instant t. Division by

∑n
i=1 ξ̃i(t) performs such

rescaling.



We generate leaks of size l at node i by introducing a steady extra demand at the
specific location i:

d̃
(l)
i (t) =

ξ̃i(t)∑n
i=1 ξ̃i(t)

(F̃ (t)− l) + l . (15)

In contrast, in any location without leak j 6= i, we adjust the nodal demands as:

d̃
(l)
j (t) =

ξ̃i(t)∑n
i=1 ξ̃i(t)

(F̃ (t)− l), j 6= i . (16)

This is a rather common practice in WDN monitoring [32,10], and corresponds to
first subtracting the leak amount l from the total inflow F̃ , and then adding the leak
amount l exclusively to the time series of the selected leak location i.

Time series of augmented demands before and after the leak ({d̃i} and {d̃(l)i },
respectively) are fed to the Epanet simulation to generate flow {fi,j} and pressure
time series {pi} inside the DMA. The same procedure is repeated for multiple values
of the leak size l and leak locations i = {1, . . . , n}.

We further manipulate flow {fi,j} and pressure time series {pi} – either with or
without leaks – by introducing a multiplicative random term to mimic sensor noise:

f̃i,j(t) = fi,j(t)(1 + η(t)), (17)

where η(·) is white Gaussian noise N (0, 0.25) truncated in [−0.5, 0.5] as in (13) to
add larger uncertainty where the flow is larger. Augmented pressure measurements
p̃i are generated in a similar way.

Both augmented flows f̃i,j and pressure p̃i time series are then used to train the
classifier as in Section 6.1. In particular, Fig. 7 summarizes the adopted procedure to
artificially generate training sequences. Each complete sequence consists of an initial
part without leak, followed by a second part containing a leak of l [l/s], introduced as
an extra demand as in (15) and (16). These two are then used as in (8) to generate the
features needed to train the classifiers. This procedure is repeated for each potential
leak location ̂ = 1, . . . , n, and for each leak size considered to yield a meaningful
training set for the classifiers in (11).

6.3 Clustering Nodes for Leak Localization

The large uncertainty on nodal demands makes leak localization a very challenging
problem, thus leak localization estimates can be very poor when the number of sen-
sors inside the DMA is small. In particular, in the regions of the classifier’s input
space where Gaussians Φj largely overlap, it might not be possible to exactly locate
leaks. Thus, we propose an algorithm to cluster nodes and map the localization un-
certainty over the DMA layout. This clustering can help WDN engineers to identify
those regions where leaks can not be exactly pinpointed, and localization should be
performed at cluster-level rather than at node-level.

We formulate node clustering in a DMA as a cut problem on a weighted undi-
rected graph G(V, E) similar to [22,44]. Each graph vertex V corresponds to one of
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the n candidate leak locations and each edge E corresponds to a pipe connecting two
nodes. Clustering is solved by an iterative algorithm, the graph-cuts [45]. The graph
initially associated with a DMA contains a single connected component, since all the
nodes are reached by the total flow from inlets. The graph-cut algorithm performs a
recursive splitting of the graph, where the sub-graphs are the results of cuts that min-
imize an energy functional. Splits are determined by the eigenvalues of the weight
matrix W of the graph, and the process is terminated by standard stopping criteria,
like the functional value, the maximum number of calls, the minimum number of
vertices in sub-graphs.

The weight matrix W is a n×n matrix where each row and column corresponds
to a candidate leak location. To effectively solve leak localization, the weight matrix
W has to be defined – for each DMA and classifier C – upon a specific distance
measure. The weight associated to two directly connected nodes i and j is defined as:

Wi,j = e
−
(

sKL(Φi,Φj)/τ

)2

, (18)

where sKL (Φi, Φj) denotes the symmetric Kullback-Leiber (sKL) divergence and τ
is a user defined parameter to control the clustering. When sKL(Φi, Φj) = 1 nodes i
and j are very distinguishable, while sKL(Φi, Φj) = 0 corresponds to nodes that are
not distinguishable. The sKL(Φi, Φj) is defined as sKL(Φi, Φj) = 1

2 (KL(Φi, Φj) +
KL(Φj , Φi)), and is a distance measure between distributions that range in [0, 1].
In case of Gaussian functions, KL(Φi, Φj) can be computed through a closed form



expression:

KL(Φi, Φj) =
1

2

(
tr(Σ−1j Σi) + (µj − µi)TΣ−1j (µj − µi)−m+ ln

(
det(Σj)
det(Σi)

))
,

(19)
where tr(·) denotes the trace and det(·) the determinant of a matrix and m is the
dimension of the space where distributions Φi, Φj lives. The parameter τ in (18)
controls how fast the node distance increases with the sKL. This is a special parameter
of graph-cuts, which has to be set by domain experts that might take into account the
number of sensors and the magnitude of the input flow (we experienced smaller τ are
preferable when flow is large) or following the procedure in Section 3.1 of [45].

As shown in Fig. 6, once this iterative splitting procedure is terminated, each sub-
graph represents a cluster of nodes where leaks are not distinguishable, except from
sub-graphs containing a single node. The number of clusters, which corresponds to
the number of locations we denote by n′ where leaks can be located. Once nodes are
aggregated in clusters, node-level classifiers C have to be replaced by cluster-level
classifiers by computing the Gaussian densities {Φ′} over each non-singleton cluster.
This corresponds to running the same procedure described in Section 6.1, and yields
a new classifier C′ operating at cluster-level, thus returning values in 1, . . . , n′.

Note that since the weight matrix in (18) is defined depending on an specific
classifier C trained at node-level, the whole clustering procedure needs to be run
for each of the leak sizes considered in the set of classifiers {Cl}. The set {C′l}
corresponds to all the retrained classifiers operating at cluster-level for different leak
sizes. Once trained, the set {C′l} is fed to the leak localization module, which selects
the classifier corresponding to the estimated leak size.

Since the stopping criteria for graph-cuts are rather arbitrary and dictated by prac-
tical arguments, it is useful to display the sub-graphs created at each iteration, and let
WDN engineers choose the best level of clustering. This also allows the identification
of the most challenging regions of the DMA for leak-localization purposes.

7 Experiments

We test our solution in three real-world case studies, where this is compared against
solutions widely used in the leak detection and leak localization literature. More pre-
cisely, we assess leak detection performance over real measurements from five DMAs
from the Barcelona WDN where leaks have been artificially introduced. We test the
integrated leak detection and localization solution in artificial data from the Limassol
DMA, and in a real leak scenario from the Nova Icària DMA in Barcelona.

7.1 Figures of Merit

We adopt several figures of merit from the pattern recognition literature [50,52,42,
51] to assess the leak detection and localization performance.



Leak Detection and Size Estimation. We consider the following indicators to
evaluate the performance of the proposed leak detection and leak-size estimation
methods, which are computed over all the sequences during eMNF hours:

– FPR or False Positive Rate is the percentage of sequences having a false detection,
thus a leak detected at time T̂ < T ∗.

– FNR or False Negative Rate is the percentage of leaks that have not been detected.
– DD or Detection Delay is the difference between the true leak starting time and

the detection time as T̂ − T ∗, expressed in hours and considering the entire
day/night, not just eMNF.

– DTD or Difference Time Detection, is the difference between the true leak start-
ing time and the estimated leak starting time as T̂ ∗ − T ∗, expressed in hours like
DD.

– The average error in the leak size estimation Ml̂ expressed in [l/s].

We emphasize that DD, DTD and Ml̂ are computed only on correct leak detections.
Leak Localization. We assess leak localization performance as the accuracy indi-

cator χ and its modified version ω, which takes into account the fact that localization
occurs at cluster-level. These indicators are obtained from the confusion matrix Υ
that is commonly used in classification. Every entry Υi,j corresponds to the number
of leaks at node i that have been located in node j. A perfect classification would
yield to a diagonal Υ . The overall adjusted accuracy ω is expressed as:

ω = 100

∑n′

i=1 Υi,i
1
ui∑n′

i=1

∑n′

j=1 Υi,j
, (20)

where ui is the number of nodes in the ith cluster and n′ the number of clusters. This
is meant to measure classification performance at cluster-level. When no clustering
is performed or when all the clusters result in singletons, this indicator is replaced by
χ, i.e., the percentage of correctly localized leaks defined as:

χ = 100

∑n
i=1 Υi,i∑n

i=1

∑n
j=1 Υi,j

. (21)

Note that an ideal algorithm should achieve both χ=100 and ω=100.

7.2 Configuration of the Proposed Solution

We configure the ICI-based CDT by setting Γ = 1 and ν = 6, such that patches
contain 13 samples. The Wilcoxon’s test at the validation layer was configured with
α = 0.05 and has been executed over a window δ opened over the past 6 hours (the
actual value of δ therefore depends on the sampling rate as these can be 36 or 72
samples in the considered case studies). The value of lmin in the validation layer was
selected depending on the DMA characteristics, and the same for the clustering pa-
rameter τ : the values of these parameters are summarized in Table 1. We emphasize
that the proposed techniques have been compared against widely used leak detec-
tion and localization methods described in Section 7.3 (leak detection) and 7.4 (leak
localization), respectively.



7.3 Leak Detection Methods for Comparison

We compare the proposed solution against the following leak detection algorithms.
To enable a fair comparison all these techniques have been configured over the same
training set to yield, or at least approach where not possible, the same FPR value.

ICI-based CDT (ICI-CDT): This is the same technique used at the detection
layer [9], without validation layer. Therefore, this requires setting Γ=4.6 to achieve
the same FPR in Barcelona DMAs and Γ=2 in the other two case studies. Other
tuning parameters are set the same as in the proposed solution. This method has been
considered to assess the improvement provided by the proposed validation layer.

Leak Detection based on PCA (LD-PCA): This method, proposed in [30], relies
on dimensionality reduction to jointly analyze multiple flow measurements. Here, all
the flow measurements over one day are stacked in a vector (where each attribute
is a flow measurement) and then vectors for multiple days are stacked in a matrix.
This is done for both recent measurements to be analyzed and historical ones that
are leak free. Then, the PCA transformation of the historical matrix is computed
and the loads covering at least 95% of the variance are selected. The same number
of principal components are selected from the matrix of recent measurements and
the extracted loads are compared. A leak is detected when the difference in loads
exceeds a certain threshold. Other approaches use statistical features extracted from
current and past measurements. To guarantee the same FPR as other methods, we
set the threshold as the mean value of the loads plus 3.7 times the standard deviation
computed over the training set for Barcelona DMAs (1.1 times the standard deviation
in the Limassol DMA). Due to the limited amount of data provided for training, it has
not been possible to configure this method for the Nova Icària leak case.

Adaptive Kalman Filter (AKF): This method, introduced in [60], relies on a
Kalman filter to predict the flow and generate normalized residuals for each recording
in a week. Normalized residuals are then averaged over a sliding window spanning
one week, and compared against a threshold to detect a leak. Here the threshold was
set to 0.19 in the Barcelona DMAs, while it has not been possible to tune the method
to achieve the same FPR in the Limassol DMA. Our intuition is that this is due to
large fluctuations on the water consumption pattern probably caused by the small
number of customers. Therefore, we adopt the same threshold as for the Barcelona
DMAs. Finally, the threshold is set to 0.05 in the Nova Icària DMA.

CUSUM test for Fourier Coefficients (Fourier-CUSUM): This solution [15],
relies on the first Fourier coefficient on a window opened over the past, leak-free,
measurements to normalize the inlet flow. The same normalization is applied to the
incoming measurements and the first Fourier coefficient is compared against a thresh-
old. The same work, presents an alternative approach using the same normalization,
but leaks are detected when the maximum difference with the most similar flow pat-
tern in the last few days persistently exceeds a threshold. The latter approach has been
adopted in this experimental section. To achieve the target FPR, we set a threshold
to 0.38 for the Barcelona DMAs and 0.59 Limassol DMA and we required two con-
secutive days of detections (namely days where the residuals exceed the threshold,
instead of to one in [15]). Finally, in Nova Icària DMA the threshold is set to 0.13,
while the minimum number of consecutive days of detections is set to zero.



7.4 Considered Leak Localization Methods

We compare against three techniques following a steady-state approach:
Leak-Signature Correlation (LS-Corr): This solution, presented in [32], relies

on a hydraulic simulator to estimate the pressure, and then computes residuals w.r.t.
the recorded measurements. Residuals are then compared against the sensitivity ma-
trix (which is computed off-line and contains the expected residuals for each leak
location and size) and the node having the highest correlation is selected as the leak
node candidate. We configure this method like our localization solution, but over
residuals computed using simulations, and without adding noise or other demand un-
certainties during data-augmentation. Residuals are computed hourly, yielding many
leak-location estimates that are combined over time according to [32].

k-Nearest Neighbour (k-NN): This solution, introduced in [47], relies on the
same residual computation as in [32] but it also integrates demand and noise un-
certainties during data-augmentation for training the model. We selected k=3 in the
k-NN. As in the previous method, the residuals are computed hourly and aggregated
over time as the authors suggested.

Bayesian reasoning (Bayesian): This approach, suggested in [49], relies on the
computation of residuals and the assumption that each potential leak location fits a
Gaussian distribution in the feature space. The classifier is used as suggested in [49]
considering residuals with uncertainty and a time horizon aggregation.

In all the above methods, classifiers were configured using residuals as in [47,
49] on sequences generated with the same data-augmentation procedure. It should
be highlighted that the two latter classifiers do not require leak size as an additional
input. Other classifiers have not been considered since these typically achieve com-
parable performance, as shown in [36].

7.5 Leak Detection in Barcelona DMAs

We exhaustively tested the proposed leak detection procedure on five different DMAs
of Barcelona WDN. The main characteristics of these DMAs (numbers of reservoirs,
Pressure Reducing Valves (PRVs), nodes and pipes) are summarized in Table 1. In all
the DMAs, the flow at inlets has been recorded in leak-free conditions over two time
periods: from January 1st 2013 until May 18th 2013, and from August 31st 2013 to
March 3rd 2014, which correspond to set 1 and set 2 in Table 1, respectively. Days
affected by missing values or outliers (values three times larger than the flow mean)
have been removed from the two sets, resulting in 85 days from the first set, and
accordingly 85 days from the second. For each DMA, we assemble three sequences
of flow at inlets spanning days 1-55, 16-70, 31-85, obtaining overall 21 sequences
among all DMAs and the two sets. In each sequence, the first 14 days are used for
training, the next 21 are without leaks and in the remaining 20 days, a leak has been
synthetically injected as described in (1). The data sampling rate in all these DMAs
is ten minutes.

Three different leak magnitudes are considered: small, medium and large leaks
whose magnitude depends on the average total inflow and summarized in Table 1.
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Fig. 8: Topology of Limassol DMA.

Since the eMNF (10 p.m. - 8 a.m.) is considered, every time the leak is not detected
before the 8 a.m., the detection is delayed at least 14 hours.

Detection results are summarized in Table 2. The proposed leak detection tech-
nique outperforms the alternative on small leaks, and in particular it is the most
successful in terms of FNR. This is a very important aspect considering that false
negatives would correspond to a substantial increase in the DD when large testing
sequences were provided. In terms of medium and large leaks, the AKF and the
Fourier-CUSUM solutions achieve slightly better performance, having lower DD and
FNR. Compared to ICI-CDT, the proposed solution is prompter at detecting changes,
thanks to the validation module it can be configured with a lower value of Γ yielding
the same FPR. The proposed solution provides instead more accurate estimates of
leak time and size. Note that, due to the eMNF time interval considered, it is rather
easy to achieve large detection delays.

7.6 Leak Detection and Localization in Limassol DMA

We consider the DMA of Limassol WDN (Fig. 8) as a second case study to test the
whole integrated leak detection and localization solution. Out of the 57 consumer
nodes, only those that are located downstream a Pressure Reducing Valve (PRV) are
considered as potential leak locations, which results in n=47 nodes. In our simula-
tions we assume that two pressure sensors have been installed in nodes 16 and 28,
and that the pipes between nodes 16 and 18 and between 27 and 28 are equipped with
flow sensors. Other details of this case study are summarized in Table 1.

Leak Detection: The inlet flow time series used for leak detection has a sampling
rate of 5 minutes and lasts 130 days. The first 10 days of measurements were used to
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generate the training set of classifiers by data-augmentation as illustrated in Section
6. Out of the remaining 120 days, 5 sequences (corresponding to day intervals 1-48,
19-66, 37-84, 55-102, and 73-120 days) composed by 12 days for training, 18 days
without leak and 18 days with leak are generated considering three different leak
sizes.

As in the previous case study, leaks are artificially injected and three different
sizes are considered: small leaks, with size 0.125 [l/s], medium leaks, with size 0.250
[l/s], and large leaks, with size 0.375 [l/s]. The mean value for the input flow is
0.14 [l/s]. Since the total inflow and the sampling frequency are different from the
Barcelona DMAs, the detection layer has been tuned as in the Barcelona DMAs,
while the validation layer was tuned as follows: lmin=0.05 [l/s] and a δ=72 measure-
ments (corresponding to six hours recordings).

The leak detection performance is reported in Table 2 and confirms that the pro-
posed solution outperforms all the others in terms of FNR. Note that, since there are
only five sequences, a single false positive results in a 20% FPR. This is why we
were not able to achieve 10% FPR as in the Barcelona DMAs case. Nevertheless, all
the methods were configured to achieve 20% FPR, except from AKF as discussed in
Section 7.3.

Leak Localization: We adopt the data-augmentation procedure described in Sec-
tion 6.2 to generate time series for testing leak localization. The augmented proce-
dures been configured as follows: the first 10 days of inlet measurements are used to
generate 50 sequences as in (12). Both real and augmented sequences have been fed
to the Epanet hydraulic simulator to generate the flow and pressure measurements
at sensors placed inside the network, where nodal demands have been modified as
in Eqs. (13,14,15,16). These measurements are used to generate the training set to
estimate the parameters of the Gaussian distributions and perform clustering. We
configure the clustering process by setting τ = 10 in (18), and in each iteration we
split the graph in a number of subgraphs corresponding to the number of smallest
eigenvalues having their cumulative sum below 0.05. However, in each iteration, we
enable a maximum number of 5 splits.

The results of the clustering procedure described for classifiers Cl trained in
medium leak size are depicted in Fig. 9 and Fig. 10 for pressure and flow sensors,
respectively. Using pressure sensors, 14 non-singleton clusters with maximum of 5
nodes are obtained. This is because the low consumption results in small variations
of the pressure inside the network, preventing to distinguish the location of the leak
with pressure sensors, resulting in larger clusters. Using flow sensors, only 3 non-
singletons were formed with a maximum of three nodes. Flow sensors are better able
to distinguish the leak, since the leak flow represents a relevant portion of the total
inflow. Since flow is more heavily affected than pressure, leaks are expected to be
easier to locate, thus fewer clusters appear in clustering driven by flow.

Leak localization performance are summarized in Table 3, and shows that the pro-
posed leak-localization algorithm performs particularly well in the Limassol DMA in
the case of flow sensors, in particular for medium leaks and large leaks where the re-
sults combined with clustering delivers very precise localization. This is not the case
of other techniques, that are not able to distinguish leaks at different locations. Per-
haps, the problem lies in the nature of the residuals that these techniques use: different
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Fig. 9: Clusters formed using classifiers Cl trained on pressure sensors and medium
leak. Each colour represents a different cluster. Singleton nodes of the clusters are
black. This picture is better interpreted in the coloured version of the paper.

leak locations are typically very overlapped in the residual space [47], yielding very
poor localization performance. Localization performance using pressure sensors is
very poor and this is because pressure falls due to the leaks are not very noticeable,
as will be discussed in Section 7.8. In this case, also the proposed clustering solution
does not improve much the localization performance.

Table 3: Leak localization results in Limassol DMA, considering that three different
leaks at 47 nodes. p and f in the “Sens.” column stand for pressure and flow sensors.
The larger these indicators, the better.

Technique Ind. Sens. Small leaks Medium leaks Large leaks

Without clustering

Proposed χ p. 2.1 2.7 3.2
χ f. 37.8 50.0 54.8

LS-Corr χ p. 2.7 2.1 1.1
χ f. 6.9 4.8 2.1

k-NN χ p. 2.1 2.1 2.1
χ f. 5.9 4.3 4.3

Bayesian χ p. 0 0 0
χ f. 2.1 2.1 2.1

With clustering

Proposed

χ p. 6.6 3.6 2.5
ω p. 5.3 2.8 1.0
χ f. 43.5 82.7 84.2
ω f. 40.3 80.1 81.8
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7.7 Leak Detection and Localization in Nova Icària DMA Real Case

The third and final case study is entirely based on real measurements acquired in the
Nova Icària DMA, another DMA of Barcelona WDN. This DMA has two reservoirs
with flow measurements and PRVs. Inside the DMA, five pressure sensors are placed
in nodes 3, 4, 5, 6 and 7 using the methodology described in [31]. The topology of
the network and the sensor placement are depicted in Fig. 11. Most relevant network
parameters are in Table 1, which indicates the small number of sensors employed (5)
compared to the large number of candidate leak locations (1520).

Differently from the two previous cases, these measurements have been recorded
in a real leak scenario: acquired data contains six days of flow measurements with-
out leaks, 30 hours of data with leak and another 16 hours without leak. The leak
was introduced by opening a fire hydrant by the company in charge of the network
management, resulting in a leak size of approximately 5.6 [l/s]. The configuration
parameters used in the detection and localization procedures are the same as in the
previous case studies. The only difference is the minimum leak size, which was set
to 5% of the average consumption of water, namely lmin=3.8 [l/s].

Figure 12 shows the results of the proposed leak detection technique: the first plot
presents inlet flow, the second the eMNF used in the leak detection procedure, and the
last one the extracted features %: the blue line indicate the training set for extracting
features, the orange line the training set for the ICI-based CDT, the red line indicates
the leak time T ∗, magenta line indicates the estimated leak time T̂ ∗, and green line
indicates the detection time T̂ . The detection has a delay of 177 samples from the
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Fig. 11: Topology of Nova Icària DMA.

whole sequence (not only eMNF) corresponding to 29.5 hours. The difference be-
tween T ∗ and T̂ ∗ is only one sample, i.e., ten minutes. The estimated leak size is
7.1 [l/s] with respect to 5.6 [l/s] in reality. The ICI-CDT delivers the same results,
while the LD-PCA method was not able to detect the leak, probably due to the short
training set available. The application of AKF was very successful, detecting the leak
with a delay of five samples (40 minutes), estimating a leak size of 4.3 [l/s]. Finally,
the Fourier-CUSUM technique detected the leak after 10 hours (one complete period
of eMNF).

The proposed clustering algorithm applied on the recordings from the five pres-
sure sensors (configured using τ=5) provides clusters depicted in Fig. 13. The small
number of sensors employed makes hard to distinguish the location of the leak at
each node, but still it can be appreciated a superior performance achieved by pressure
sensors than in Limassol DMA. We speculate that this is probably due to the larger
water consumption. It can be noticed that the resulting clusters are very consistent
with the information spread through the network, since singletons are close to the
sensor’s nodes, while far from these, the clusters definitively increase their size.

Table 4 reports the leak localization performance computed in two different set-
tings. The first one “After detected the leak” consists in activating the proposed leak
localization algorithm in cascade to the leak detection. Localization is configured
from the estimated T̂ ∗ and l̂. In this case, the proposed algorithm localizes the leak
in the singleton cluster at the node 474, while the real leak is at node 996. Other leak
localization algorithms [47,49,32] result in different node candidates: 1508 for the
LS-Corr method, 4 for the k-NN and 1 for the Bayesian. Their relative locations are
shown in Fig. 14. The second scenario is referred to as “After true leak time”, and it
assumes that the leak is perfectly detected such that 24 hours of leaky data are pro-
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Table 4: Leak localization results in the Nova Icària real case. Linear distance and
pipe distance are measured in meters while the nodes distance is measured in nodes.
The smaller the better for these indicators.

Technique After detected the leak After true leak time
Linear dis. Pipe dis. Node dis. Linear dis. Pipe dis. Node dis.

Proposed 211.9 452.9 21 169.4 422.1 20
LS-Corr 367.8 478.6 26 222.0 433.4 17
k-NN 384.7 667.9 12 184.0 390.8 13
Bayesian 146.6 932.4 33 183.2 265.0 10

vided. These are the same settings as in [47,49,32]. In this case the proposed method
returns a singleton cluster, the node 1463 (see Fig. 14) along with the localization
performance presented in [47,49,32] for other methods. Table 4 summarizes some
indicators used to assess localization performance, and it can be seen that the pro-
posed technique delivers better results in terms of pipe distance – which is the most
meaningful one for water companies that pinpoint the leak by searching pipe by pipe
– in the most realistic settings where leak localization is performed in cascade to a
leak-detection algorithm.

7.8 Discussion

The proposed leak-detection algorithm outperforms other solutions in both Barcelona
and Limassol case studies at least for small leaks. This also achieves equivalent or
superior performance in terms of FNR for medium and large leaks. The proposed
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Fig. 14: Nova Icària leak localization results. Blue markers corresponds to local-
izations made in the “After detected the leak” scenario while magenta markers cor-
responds localizations in the “After true leak time” scenario. This picture is better
interpreted in the coloured version of the paper.



validation layer always improves the leak-detection performance and this is in agree-
ment with previous findings in change-detection [3]. Hopefully, this suggests that the
validation module can provide a performance boost also in combination with other
leak-detection techniques. In fact, thanks to the validation module, the ICI-CDT can
afford configurations that are more prompt in detecting changes, considering that
false positives are filtered by the validation module.

Regarding the proposed leak localization solution, it has shown to perform well
when monitoring features extracted from flow measurements as in (9). Analyzing
pressure seems instead not effective in the Limassol DMA, while it enables a very
accurate localization performance in the Nova Icària DMA. This is due to the dif-
ferent topology and hydraulic condition of the two networks. As discussed in [21],
the larger the flow in nominal conditions, the higher the relative impact of a leak
of a given size would be on the pressure measurements. Thus, considering that the
overall flow values in the Limassol DMA is rather small, the pressure fall due to a
leak should be almost negligible for the considered leak sizes. This is the reason why
leak localization performance – when analyzing pressure measurements – are very
poor for all the considered techniques. In the Nova Icària DMA, the flow is larger in
leak-free conditions, and the few pressures sensors employed are able to sense the
leak. The proposed solution in the realistic scenario where it is configured from the
estimates provided by the leak detection algorithm, can localize leaks with the lowest
pipe distance.

8 Conclusions

In this paper we proposed a comprehensive leak monitoring solution for WDNs,
which wisely combines machine learning models and information coming from do-
main experts to tackle the challenging problems of WDN monitoring. The proposed
method covers both leak detection and localization tasks in an integrated manner. In
particular, the proposed ad-hoc validation module is used in cascade with the detec-
tion module and allows detecting subtle leaks leading to a reduced FNR and DD.
Leak detection has been proven effective on real data with real and injected leaks,
outperforming other methods. The experiments also demonstrate that monitoring the
eMNF is particularly effective in small networks, where the daily patterns are subject
to large fluctuations compared to their standard consumption. Also, the proposed leak
detection algorithm yields very reliable estimates of the leak time and size, which are
used by the leak localization algorithm.

The proposed leak localization algorithm is entirely data-driven, and requires
only a hydraulic model of the network to generate a meaningful training set by data-
augmentation. The leak localization algorithm is very accurate, and outperforms all
the competing methods in combination characterized by flow sensors in networks
with low water consumption. Our experiments indicate that analyzing flow and pres-
sure differences before and after the estimated leak starting time yields superior lo-
calization performance than directly classifying residuals, which is the mainstream
approach in the literature [47,32]. Finally, we present a algorithm to cluster nodes
where leaks cannot be distinguished, which turns also in an inspection method to



identify regions of the DMA where leak localization is too difficult due to the limited
number of sensors installed inside the network.

Our solution shares a few limitations of other methods in the literature as it de-
tects and localizes one leak at a time and it assumes that leaks occur at nodes only.
Moreover, the number of the sensors deployed inside the network and their locations
are key for an effective leak localization. This is particularly relevant for branches
of the WDN without sensors, where leak localization might not be possible. Another
relevant aspect influencing both detection and localization performance is the service
pressure, which can increase the leak size and make pressure drop more apparent.
Despite these limitations, we have shown that our solution successfully combines
machine learning methods and knowledge from WDN engineers, e.g., for setting the
minimum leak size to be detected and in the clustering procedure.

Finally, although our proposed solution addresses leak detection and localization
in WDNs, the general methodology and the key ideas on which it is based (leak
detection improved with leak validation, leak localization based on distributed mea-
surements and classifiers, data-set augmentation using simulation, use of clustering
procedure to gather nodes where classification is not possible, role of domain ex-
perts to tune the solution) have the potential to be applied to other types of critical
large-scale distribution networks such as oil and gas networks.
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