CHANGE DETECTION IN MULTIVARIATE DATASTREAMS
CONTROLLING FALSE ALARMS
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QuantTree Exponentially Weighted Moving Average
(QT-EWMA) is a novel online and nonparametric change-
detection algorithm for multivariate datastreams that can be
configured to yield a target Average Run Length (ARL ),
thus controlling the expected time before a false alarm. Our
experiments on synthetic and real-world data demonstrate
that QT-EWMA controls the ARL , better than state-of-the-art
methods, achieving comparable detection delays.
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online monitoring at a controlled Average Run
Length (ARL), i.e., the expected time before a false alarm

ARL, = E[t*],

industrial monitoring, security, finance...

t* = detection time

We model ¢, by QuantTree histogram (QT) [1] and monitor
the bin probabilities of the datastream by EWMA statistics
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We measure the deviation of ZJ. . from target probabilities:
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QuantTree properties [1] imply that QT-EWMA is non-
parametric: the distribution of T, is independent from ¢ .
We compute thresholds maintaining the target ARL, via
Monte Carlo simulations on univariate Gaussian data [1]
by setting a constant false alarm probability [2]:
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Then, the probability of a false alarm before time t is:
t

Pt*<t)=> a(l-a)f'=1-(1-0a)
k=1

algorithm | QT-EWMA QT [1] SPLL [3] SPLL-CPM Scan-B [4]
complexity O(K) O(K) O(md) O(md+wlogw) O(nBd)
memory K K 1 w (n+1)Bd

Zjo =T

QT-EWMA has constant computational and memory costs
that are independent from the data dimension d
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empirical ARL, = average stopping time t* on stationary datastreams
detection delay = average of t* - r on datastreams with a change point at ¢
false alarm rate = % of datastreams raising false alarms, i.e. t* <z

QT-EWMA
achieves the
target ARL ,, has
low detection
delays and yields
the target false
alarm rates

QT-EWMA
maintains the
control over both
ARL, and false
alarm rates, and
yields excellent
detection delays

- QT-EWMA extends QuantTree [1] to nonparametric
online change detection controlling the ARL
- Maintains the target ARL  on any datastream

- Effectively controls false alarm rates

- Achieves state-of-the-art detection delays
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code available at: https.//qgithub.com/diegocarrera89/quantTree
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