CHANGE DETECTION IN MULTIVARIATE DATASTREAMS CONTROLLING FALSE ALARMS

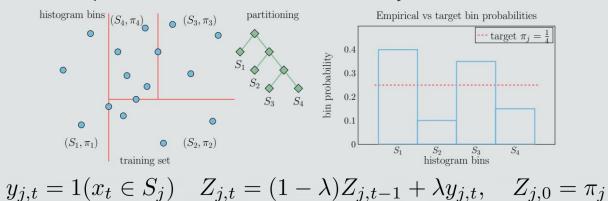
Luca Frittoli, Diego Carrera, Giacomo Boracchi

QuantTree Exponentially Weighted Moving Average (QT-EWMA) is a novel online and nonparametric changedetection algorithm for multivariate datastreams that can be configured to yield a target Average Run Length (ARL_a), thus controlling the expected time before a false alarm. Our experiments on synthetic and real-world data demonstrate that QT-EWMA controls the ARL_o better than state-of-the-art methods, achieving comparable detection delays.

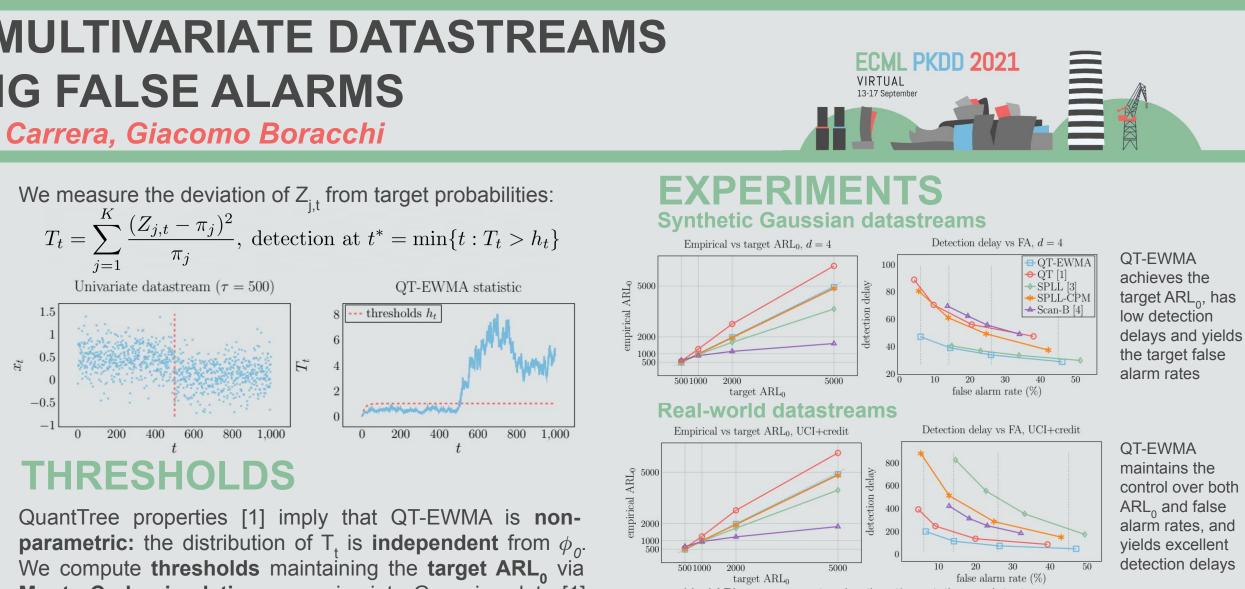
CHANGE DETECTION

Identify distribution changes in streaming data:

$x_1, x_2, \ldots \in \mathbb{R}^d$	$x_t \sim \langle$	ϕ_0	if $t < \tau$
		ϕ_1	if $t \geq \tau$


Goal: online monitoring at a controlled Average Run **Length** (ARL_0) , i.e., the expected time before a **false alarm**

 $ARL_0 = \mathbb{E}[t^*], \quad t^* = detection time$


Applications: industrial monitoring, security, finance...

PROPOSED SOLUTION

We model ϕ_0 by QuantTree histogram (QT) [1] and monitor the bin probabilities of the datastream by EWMA statistics

Corresponding author: Luca Frittoli (luca.frittoli@polimi.it)

Monte Carlo simulations on univariate Gaussian data [1] by setting a constant false alarm probability [2]:

$$\mathbb{P}(T_t > h_t | T_k \le h_t \forall k < t) = \alpha = \frac{1}{\text{ARL}_0}$$

Then, the probability of a false alarm before time t is:

$$\mathbb{P}(t^* \le t) = \sum_{k=1}^t \alpha (1-\alpha)^{k-1} = 1 - (1-\alpha)^t$$

COMPUTATIONAL COST

algorithm	QT-EWMA	QT [1]	SPLL [3]	SPLL-CPM	Scan
complexity	O(K)	$\mathcal{O}(K)$	O(md)	$\mathcal{O}(md + w \log w)$	O(r
memory	K	K	1	w	(n +

QT-EWMA has constant computational and memory costs that are independent from the data dimension d

empirical ARL_o = average stopping time t* on stationary datastreams detection delay = average of t^{*} - τ on datastreams with a change point at τ false alarm rate = % of datastreams raising false alarms, i.e. $t^* < \tau$

CONCLUSIONS

- QT-EWMA extends QuantTree [1] to nonparametric online change detection controlling the ARL
- Maintains the target ARL₀ on any datastream
- Effectively controls false alarm rates
- Achieves state-of-the-art detection delays

References:

n-B [4] nBd) -1)Bd

[1] Boracchi, Carrera, Cervellera, Macciò "QuantTree: histograms for change detection in multivariate data streams" ICML 2018 [2] Margavio, Conerly, Woodall, Drake "Alarm rates for quality control charts" Statistics & Probability Letters 1995 [3] Kuncheva "Change detection in streaming multivariate data using likelihood detectors" TKDE 2011 [4] Li, Xie, Dai, Song "M-statistic for change-point detection" NIPS 2015

code available at: https://github.com/diegocarrera89/guantTree