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Multi-class multiple structure recovery

Idea: solve simple-model-selection problems
guided by clustering

Clustering via preference embedding

A data point 𝑥 ∈ 𝑋 is embed to a vector of preferences that measures its 
adherence to sampled models 𝐻 from different classes Θ! ∪⋯∪ Θ".
Points of the same structure have similar preferences (Tanimoto
distance).

Model selection

Experiments

Conclusions

MultiLink is
o General: can cope with a variety of models and can be extended by 

modifying cluster-merging conditions to accommodate for specific
constraints coming from an application at hand.

o Faster and more stable: less sensistive to sampling and to the inlier
threshold than greedy alternatives based on preference analysis.

o Accurate: favorably compares with state-of-the-art optimization-
based methods.

Code Available at https://github.com/magrilu/multilink
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Recover structures described by a mixture of parametric models 
belonging to multiple classes from data contaminated by noise and 
outliers.

Applications:
o stereo geometry: fit homography, fundamental and affine fundamental 

matrices on two view correspondences
o motion segmentation: segment trajectories in subspace of different 

dimension
o 3D point cloud segmentation: fit geometric primitives
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Dendrogram obtained
by clustering preferences

Merging is controlled by model selection 
that decides whether to merge clusters and 
which class of model is the best
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preferences granted by the hypothesized models. A wide
variety of techniques have been proposed to segment prefer-
ences: hierarchical schemes [32,34] such as T-linkage [18],
Kernel Fitting [6], robust matrix factorization [19, 31], bi-
clustering [9, 30], higher order clustering [1, 11, 14, 46] and
hypergraph partitioning [16, 25, 38, 39, 41]. In this work we
build upon hierarchical clustering, that is robust to outliers
and, in contrast to divisive alternatives, does not need to
know the number of structures in advance.

The preference-based approach has been only lately in-
vestigated to address multi-class problems: Multi-class
Cascaded T-linkage (MCT) [21] assumes that model classes
are nested and it executes T-linkage in a stratified manner,
from the most general to the simplest class. Then, the model
selection tool [36] GRIC (Geometric Robust Information
Criterion) is used to compare each cluster deduced from the
general class with the corresponding nested clustering de-
duced from simpler structures. Unfortunately, MCT is not
designed for models belonging to classes that are not strictly
contained in each other. The motion segmentation algo-
rithm presented in [42] can be seen as a multi-class pref-
erence method as well. The focus is on nearly-degenerate
structures, which are difficult to characterize for real data.
To overcome this limitation, rather than dealing with elu-
sive model selection problems, authors fit models of mul-
tiple classes to data, and combine the resulting partitions
through an ad-hoc multi-view spectral clustering. Regret-
fully, this cannot handle data contaminated by outliers.

It is also worth mentioning that structure recovery so-
lutions based on deep-learning are now appearing. For in-
stance, [44] tackles the multi-class multi-model fitting prob-
lem by learning, from annotation, an embedding of the
points, that are subsequently segmented by k-means.

MultiLink follows a different approach and combines
the strengths of optimization and preference-based methods
owning both the neat formulation of model selection meth-
ods and the flexibility of clustering. Specifically, we extend
preference representation to jointly deal with multiple, not
necessarily nested, mixed classes of models.

2.1. Preference analysis

The core concept of preference analysis is the preference
embedding, that was used for single class of models ⇥1. Let
X be the input data and " > 0 a fixed inlier threshold, the
preference function of xi 2 X w.r.t. a model #j 2 ⇥1 is:

p(xi, #j) =

(
�(eij) if eij = err(xi, #j)  "

0 otherwise
, (1)

where err(xi, #j) measures the residual eij between a
model #j and a point xi, and � is a monotonic decreasing
function in [0, 1] such that �(0) = 1. Intuitively, p(xi, #j)
represents the preference that a point xi grants to a model
#j : the lower err(xi, #j) , the higher the preference.
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Figure 2: MultiLink combines single-linkage clustering and
GRIC. Clusters are merged as long as the GRIC score im-
proves when fitting suitable models on-the-fly. Colors indi-
cate how cluster aggregation proceeds in the dendrogram.

In practice, a finite pool H = H1 ⇢ ⇥1 of m model
hypotheses is randomly sampled from the parameter space
⇥1 and used to compute the preferences as in Eq. (1), defin-
ing an embedding of data points as vectors2

p(x, H) in the
unitary cube [0, 1]m. The rationale behind this embedding
is that points belonging to the same structure share simi-
lar preferences, thus are nearby. Several metrics have been
proposed to measure distance/similarity in the preference
space, e.g. Ordered Residual Kernel [6], Jaccard [32] and
Tanimoto [18] distance. In this work we rely on the Tani-
moto distance that, given two points u, v 2 X , is defined as
d(u, v) = 1 � ⌧(p(u, H), p(v, H)), where

⌧(a, b) =
ha, bi

kak2 + kbk2 � ha, bi
. (2)

3. Proposed method

Here we present the key principles of MultiLink by
an illustrative structure recovery problem (Fig. 2). At a
high level, MultiLink follows a hypothesize-and-clusterize
framework with two major differences w.r.t. existing solu-
tions: first, the preference embedding is computed by sam-
pling hypotheses from a “multi-class” preference space, in
our example H ⇢ ⇥l [ ⇥c, the space of lines and circles.
Second, the clustering is performed in the preference space
using single-linkage (see dendrogram in Fig. 2). The ma-
jor novelty of MultiLink is to determine whether each pair
of closest clusters can be conveniently merged by select-
ing which class of models describes its union at best. This
problem is solved by fitting new models on-the-fly, in order
to better describe points belonging to the two clusters, and
by deciding whether to merge them through a model selec-
tion criterion. Specifically, we use GRIC to determine the
best interpretation of the data in terms of both data fidelity

2Given H = {h1, . . . , hm}, p(x,H) is a succinct notation for
[p(x, h1), . . . , p(x, hm)].

H = Hl [Hc ⇢ ⇥l [⇥c
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lowest GRIChigh residuals and
high complexity

high complexityhigh residuals

1-vs-2 model selection are simple to solve, it is not difficult to tune 𝜆", 𝜆#.

Geometric Robust Information Criterion 
GRIC cost:

$
Geometric
residuals

Model
complexity

$
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!∈#

𝜌
err(𝑥, 𝜃(𝑈))

𝜎

$
+ 𝜆%𝑑|𝑈| + 𝜆$𝜇

• 𝑈 cluster
• 𝜌 robust function
• 𝜎 noise estimate
• 𝑑 dim. of model manifold
• 𝜇 # model parameters

Models of different classes are fitted on-the-fly,  this mitigates 
sampling imbalance in 𝐻. Then GRIC selects the configuration 
yielding the lowest cost
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PEARL Multi-X Prog-X RPA T-link MLink

Mean 15.14 8.71 6.86 23.54 22.38 6.46

Std. 6.75 8.13 5.91 13.42 7.27 1.75

(a) Plane seg. fixed parameters

T-link MCT MLink

Mean 6.60 6.13 4.10

Median 4.68 4.93 2.70

(b) Methods with " tuned per-sequence

Fundamental Affine fund. Mixed

Mean Std. Mean Std. Mean Std.

MLink 8.59 4.67 9.84 4.09 7.75 4.54
T-link 32.20 50.33 41.90 7.95 38.78 8.21
Prog-X 10.73 8.73 - - - -
Multi-X 17.13 12.23 10.5 2.90 9.53 1.43
PEARL 29.54 14.80 41.81 15.25 48.89 8.16

(c) Two-view seg. fixed parameters

Mean Std.

Multi-X 12.96 19.60
Prog-X 8.41 10.29
T-link +S (dim 3) 8.68 12.23
MCT +S 10.87 12.68
MLink +S (dim. 3) 8.34 11.93
MLink +S (mixed) 9.83 13.05

(d) Video seg. S= Silhouette index.

Table 2: Mean ME (in %) on real datasets. Averages over 5 runs on each sequence.

MultiLink outperforms all the competing methods in all the
three configurations. Second, MultiLink can successfully
perform multi-class fitting, achieving the lowest ME when
the three models are mixedly used. This result is in agree-
ment with findings in [42], and represents an interesting ap-
plication where multi-class can be successfully employed
to account for nearly degenerate data. When using only
affine fundamental matrices, both MultiLink and T-linkage
achieve higher ME than when using fundamental matrices,
suggesting that affine fundamental matrices are not flexible
enough to capture the motion diversity in the whole dataset.

4.3. Video motion segmentation (multi class)

Finally we test MultiLink on the video motion segmenta-
tion tasks of the Hopkins 155 benchmark [37]. This dataset
consists of 155 video sequences with 2 or 3 moving ob-
jects whose trajectories can be approximated, under the as-
sumption of affine projection, as a union of low dimensional
subspaces. The dimension of the subspaces might vary
depending on the type of motions in the dynamic scenes
[28]. Therefore, we run MultiLink in two configurations:
i) single-class, where we fit affine subspaces of dimension
3, and ii) multi-class, where we fit both affine subspaces of
dimension 2 and 3 as mixed models. Tab. 2d compares per-
formance of MultiLink against Multi-X and Prog-X, which
were reported in [4]. Both Multi-X and Prog-X were ex-
ecuted with fixed parameters over the whole dataset. We
thus configure MultiLink with all the parameters fixed, but
automatically estimate the inlier threshold " 2 [0.01, 0.3]
in each sequence by means of a variant of the Silhouette
index as described in [33]. Estimating " in this way repre-
sents a very practical solution that is widely applicable in
real-world scenarios. We also run T-linkage and MCT cou-
pled with Silhouette index. The results by MultiLink with

subspaces of dimension 3 are in line with the ones of Prog-
X. In addition, this experiment confirms that our solution
is stable, as it can successfully compensate for inaccurate
estimates of ". The advantages of adopting mixed models
are not apparent on the average ME over the whole dataset,
but we experienced that MultiLink with mixed classes con-
sistently improves the results as long as natural video se-
quences with some degenerate motions are concerned (Mul-
tiLink with mixed classes achieves a ME of 1.37% on Traf-
fic 3 and 3.14% on Traffic 2, in contrast to the configuration
with subspaces of dimension 3 that scores 7.51% and 4.18%
respectively). We suspect that, in a reasonably large number
of sequences, 3-d subspaces are the right model to fit, and
the mixed configuration actually degrades performance.

5. Conclusions

We presented MultiLink, a simple and effective algo-
rithm to recover structures from different classes in data af-
fected by noise and outliers. In particular, MultiLink can fit
models from different classes during clustering steps, and
includes a novel cluster-merging scheme that is based on
on-the-fly model fitting and model selection through GRIC.
Experiments on both simulated and real data demonstrates
that MultiLink is faster, more stable and less sensitive to
sampling and to the inlier threshold than greedy alternatives
based on preference analysis and agglomerative clustering
such as T-linkage and MCT. In addition MultiLink favor-
ably compares with optimization-based methods. All in all,
MultiLink represents a very flexible framework that can be
further extended by modifying cluster-merging conditions
to accommodate for specific constraints coming from an
application at hand. Finally, MultiLink offers an easy-to-
manage tool to practitioners, for addressing the difficult and
ubiquitous problem of multi-class structure recovery.
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Figure 5: Worst results by MultiLink on conic fitting.

" �1 �2

conic (a-c) 0.180 1 2
conic (d-g) 0.900 1 2
plane seg. 0.070 1 2
2-view seg. 0.058 1 2
video seg. [0.01, 0.3] 1 2

(a) Parameters used
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(b) Execution times

(a) (b) (c) (d) (e) (f) (g)

PEARL 6.00 16.22 14.44 8.05 8.33 17.38 19.21
MCT 0.67 2.00 2.33 5.23 7.12 5.38 6.23
MLink 2.17 2.13 1.55 1.83 0.87 2.46 4.28

(c) ME

Figure 6: Quantitative results on conic fitting: ME (bottom)
and execution times on the problem of Fig. 5.a (right).

Tab. 6c shows the performance of PEARL [13] and MCT
as reported in [21], and indicates that MultiLink favorably
compares with both methods achieving a lower ME on 5
cases out of 7. In the two cases where MCT scores the
best, the ME of MultiLink is rather small. Fig. 6b compares
the running times of MCT and MultiLink on the dataset of
Fig. 5.a w.r.t. |H|, the number of initial hypotheses. Both
algorithms are implemented in MATLAB, and the code of
MCT is from [50]. As expected, on-the-fly fitting makes
MultiLink more efficient than the cascaded approach of
MCT. In fact, the clustering step of T-linkage, which we
show on star5 experiment to be slower than that in Multi-
Link, is repeated several times in MCT, resulting in longer
executions. MultiLink spends most of the time in gener-
ating the hypotheses (light blue bars), whereas the actual
clustering step takes far less (dark blue bars). However, we
experienced that this is due to the optional pre-processing
step [30] used to remove irrelevant models, whose compu-
tational burden can be drastically reduced in an optimized
and parallel implementation.

4.2. Two-views relations

We test MultiLink on two-views segmentation over the
popular Adelaide RMF dataset [40], which consists of 36
sequences of stereo images with correspondences corrupted

Figure 7: Sample results attained by MultiLink on plane
(left) two-view (middle) and motion segmentation (right).

by noise and outliers, and annotated ground-truth matches.
Specifically, we first detect planar structures by fitting ho-
mographies, and then we perform motion segmentation.
This latter was cast as a multi-class recovery problem as we
fit both fundamental matrices, affine fundamental matrices,
and homographies.

Plane segmentation (single-class) Results in Tab. 2a
demonstrates that Prog-X and MultiLink achieve compa-
rable best mean performance, albeit the latter yields more
stable result. For fair comparison against MCT, which was
used to fit a fundamental matrix and then to recover nested-
compatible homographies using per-sequence tuned inlier
threshold, we execute MultiLink by optimizing " in the
same way. Tab. 2b indicates that MultiLink is still the best
performing algorithm. Furthermore, the difference in terms
of ME between fixed and sequence-wised tuned " for Mul-
tiLink is much smaller than for T-linkage, confirming that
MultiLink is rather robust w.r.t. the choice of ".

Two-views segmentation (multi-class) We carry out a
two-view motion segmentation experiment on the 19 stereo
images depicting moving objects. This dataset has been ex-
tensively used to estimate ego motions by fitting fundamen-
tal matrices, thus has become a benchmark for single-class
multi-structure fitting [3, 4, 18, 40]. However, our prelimi-
nary tests suggested that some movements can also be reli-
ably described by affine fundamental matrices, or even by
homographies. Probably, these ground-truth motions can be
deemed as quasi-degenerate. Therefore, we run MultiLink
with three different classes of models: (1) Fundamentals:
⇥f the manifold of fundamental matrices; (2) Affine funda-
mentals: ⇥a the manifold of affine fundamental matrices;
(3) Mixed models: where we consider ⇥f , ⇥a and ⇥h, the
space of homographies.

Tab. 2c reports the mean ME averaged over the whole
dataset, together with its standard deviation. We tested both
MultiLink and T-linkage in the above three configurations
using fixed parameters. Prog-X, Multi-X and PEARL were
also tested on this dataset to fit fundamental matrices, and
we report results from [4] accordingly. To test these meth-
ods on the affine fundamental and mixed models configura-
tions, we modified the codes provided by authors of Multi-
X and PEARL in [51] and [52]. This operation was not pos-
sible for Prog-X code which was not flexible enough to be
used in other settings. Two relevant comments arise: first,

Synthetic data

Real datasets
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Figure 4: Line fitting: MultiLink vs T-linkage. Fig. 4a: the worst result of MultiLink for " = 3� over 50 trials. Figs. 4b and
4c: the median ME (solid line), IQR (shaded area), maxima (+) and minima (�) as a function of " and outlier ratio.

MCT to determine which model(s) fit to each structure at
the end of a stratified clustering. In contrast, MultiLink uses
GRIC as a key ingredient during clustering. Moreover, tun-
ing �1, �2 in MCT is rather difficult, since GRIC compares
a varying number of model instances. MultiLink instead al-
ways compares one-vs-a-pair of models, and we safely set
�1 = 1, �2 = 2 in all our experiments, as in Tab. 6a.

4. Experimental validation

We test MultiLink on both single-class and multi-class
structure recovery problems. We first address 2D primi-
tive fitting problems (Sec. 4.1), which represent a standard
benchmark for structure recovery algorithms, and demon-
strate that MultiLink outperforms MCT. Then, we test Mul-
tiLink on real-world datasets (see Fig. 7) for the estimate of
two view relations from correspondences (Sec. 4.2) and for
video motion segmentation (Sec. 4.3). In all these experi-
ments, we show that MultiLink favorably compares or per-
forms on par with recent multi-class structure recovery al-
ternatives [4]. The results of MultiLink on 3D primitive fit-
ting in a sparse input point cloud [47] are reported in Fig. 1a.

Performance is measured, as customarily, in terms of
misclassification error (ME), i.e. the fraction of misclas-
sified points w.r.t. the ground-truth labelling. If not stated
otherwise, we always report ME averaged over 5 runs. Pa-
rameters used to configure MultiLink in each dataset are
reported in Tab. 6a. Matlab code of MultiLink is available
on-line at [48].

4.1. 2D fitting problems

We first consider a single-class structure recovery prob-
lem (line fitting) and show that MultiLink outperforms T-
linkage in terms of accuracy, robustness to outliers and
runtime. Then, we address a multi-class structure recov-
ery problem (conic fitting) and show that MultiLink outper-
forms MCT and PEARL.

Line fitting We consider T-linkage as the closest alter-
native to MultiLink on the single-class problem illustrated

in Fig. 4a. The dataset, containing multiple lines corrupted
by noise and outliers, and the MATLAB implementation of
T-linkage are from [49].

Fig. 4b reports the median ME over 50 runs as a function
of the inlier thresholds " = n�, where � is the noise level
and n = 2, . . . , 8. This plot displays the inter-quantile range
(IQR) of the ME (shadowed regions), together with the min-
imum (�) and maximum (+) errors. Both these methods
were provided with the same initial hypotheses H, leading
to the same preference representation of points. This plot
indicates that MultiLink outperforms T-linkage, achieving
the best performance both in terms of median, maximum
and minimum ME. Remarkably, except for " = 2� where
both methods over-segment the data, MultiLink provides
very stable outputs, as indicated by the small IQR. This
confirms that, fitting new models on-the-fly during cluster-
ing, improves the stability of MultiLink w.r.t. both " and
the randomly sampled hypotheses H. On the contrary, T-
linkage, which rely exclusively on the fixed pool of mod-
els H, suffers of higher instability across multiple runs as
demonstrated by its large IQR and maximum error. We
also calculated the ME on star5 dataset at increasing out-
lier rates (Fig. 4c), and MultiLink always outperforms T-
linkage, demonstrating to be more robust.

Despite, due to merge rejections, MultiLink features in
principle a worst-case complexity that T-linkage, in practice
it exhibit no computational overheads, as the single-linkage
scheme makes the clustering phase of MultiLink (0.26 s)
faster than that of T-linkage (0.76 s), on average. This ex-
periment confirms that MultiLink outperforms its closest,
single-class, alternative both in terms of effectiveness and
efficiency, being more stable thus more practical.

Line and conic fitting Fig. 5 illustrates 2D simulated
datasets used in [21] to recover lines, circles and parabolas,
where we report the worst results attained by MultiLink. All
the datasets comprise instances of lines and circles, while
(a), (b) and (c) include also parabolas. Here, MultiLink re-
covers all the geometric structures even in the worst runs.

Single linkage is faster than 
T-linkage and less sensitive 
to input parameters
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Figure 4: Line fitting: MultiLink vs T-linkage. Fig. 4a: the worst result of MultiLink for " = 3� over 50 trials. Figs. 4b and
4c: the median ME (solid line), IQR (shaded area), maxima (+) and minima (�) as a function of " and outlier ratio.

MCT to determine which model(s) fit to each structure at
the end of a stratified clustering. In contrast, MultiLink uses
GRIC as a key ingredient during clustering. Moreover, tun-
ing �1, �2 in MCT is rather difficult, since GRIC compares
a varying number of model instances. MultiLink instead al-
ways compares one-vs-a-pair of models, and we safely set
�1 = 1, �2 = 2 in all our experiments, as in Tab. 6a.

4. Experimental validation

We test MultiLink on both single-class and multi-class
structure recovery problems. We first address 2D primi-
tive fitting problems (Sec. 4.1), which represent a standard
benchmark for structure recovery algorithms, and demon-
strate that MultiLink outperforms MCT. Then, we test Mul-
tiLink on real-world datasets (see Fig. 7) for the estimate of
two view relations from correspondences (Sec. 4.2) and for
video motion segmentation (Sec. 4.3). In all these experi-
ments, we show that MultiLink favorably compares or per-
forms on par with recent multi-class structure recovery al-
ternatives [4]. The results of MultiLink on 3D primitive fit-
ting in a sparse input point cloud [47] are reported in Fig. 1a.

Performance is measured, as customarily, in terms of
misclassification error (ME), i.e. the fraction of misclas-
sified points w.r.t. the ground-truth labelling. If not stated
otherwise, we always report ME averaged over 5 runs. Pa-
rameters used to configure MultiLink in each dataset are
reported in Tab. 6a. Matlab code of MultiLink is available
on-line at [48].

4.1. 2D fitting problems

We first consider a single-class structure recovery prob-
lem (line fitting) and show that MultiLink outperforms T-
linkage in terms of accuracy, robustness to outliers and
runtime. Then, we address a multi-class structure recov-
ery problem (conic fitting) and show that MultiLink outper-
forms MCT and PEARL.

Line fitting We consider T-linkage as the closest alter-
native to MultiLink on the single-class problem illustrated

in Fig. 4a. The dataset, containing multiple lines corrupted
by noise and outliers, and the MATLAB implementation of
T-linkage are from [49].

Fig. 4b reports the median ME over 50 runs as a function
of the inlier thresholds " = n�, where � is the noise level
and n = 2, . . . , 8. This plot displays the inter-quantile range
(IQR) of the ME (shadowed regions), together with the min-
imum (�) and maximum (+) errors. Both these methods
were provided with the same initial hypotheses H, leading
to the same preference representation of points. This plot
indicates that MultiLink outperforms T-linkage, achieving
the best performance both in terms of median, maximum
and minimum ME. Remarkably, except for " = 2� where
both methods over-segment the data, MultiLink provides
very stable outputs, as indicated by the small IQR. This
confirms that, fitting new models on-the-fly during cluster-
ing, improves the stability of MultiLink w.r.t. both " and
the randomly sampled hypotheses H. On the contrary, T-
linkage, which rely exclusively on the fixed pool of mod-
els H, suffers of higher instability across multiple runs as
demonstrated by its large IQR and maximum error. We
also calculated the ME on star5 dataset at increasing out-
lier rates (Fig. 4c), and MultiLink always outperforms T-
linkage, demonstrating to be more robust.

Despite, due to merge rejections, MultiLink features in
principle a worst-case complexity that T-linkage, in practice
it exhibit no computational overheads, as the single-linkage
scheme makes the clustering phase of MultiLink (0.26 s)
faster than that of T-linkage (0.76 s), on average. This ex-
periment confirms that MultiLink outperforms its closest,
single-class, alternative both in terms of effectiveness and
efficiency, being more stable thus more practical.

Line and conic fitting Fig. 5 illustrates 2D simulated
datasets used in [21] to recover lines, circles and parabolas,
where we report the worst results attained by MultiLink. All
the datasets comprise instances of lines and circles, while
(a), (b) and (c) include also parabolas. Here, MultiLink re-
covers all the geometric structures even in the worst runs.
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