MultiLink: Multi-class Structure Recovery via Agglomerative Clustering and Model Se

POLITECNICO MILANO 1863

Multi-class multiple structure recovery

Recover structures described by a **mixture** of parametric models belonging to **multiple** classes from data contaminated by noise and outliers.

Applications:

- o **stereo geometry:** fit homography, fundamental and affine fundamental matrices on two view correspondences
- **motion segmentation:** segment trajectories in subspace of different dimension
- **3D point cloud segmentation:** fit geometric primitives

Idea: solve simple-model-selection problems guided by clustering

Dendrogram obtained by clustering preferences

Merging is controlled by model selection that decides whether to merge clusters and which class of model is the best

Luca Magri, Filippo Leveni, Giacomo Boracchi name.surname@polimi.it

Clustering via preference embedding

A data point $x \in X$ is embed to a vector of preferences that measures its adherence to sampled models *H* from different classes $\Theta_1 \cup \cdots \cup \Theta_s$. Points of the same structure have similar preferences (Tanimoto distance).

Model selection

Models of different classes are **fitted on-the-fly**, this mitigates sampling imbalance in *H*. Then GRIC selects the configuration yielding the lowest cost

Geometric

residuals

- *U* cluster
- ρ robust function
- σ noise estimate • *d* dim. of model manifold
- μ # model parameters

Experiments Synthetic data

Real datasets

PEAF

Conclusions

MultiLink is

- 0
- 0
- based methods.

Code Available at <u>https://github.com/magrilu/multilink</u>

References:

Isack, Boykov. Energy-based geometric multi-model fitting. IJCV, 2012

election	a	b	d	-©
	e	f	e	6
$\mathbf{\underline{U}}^{45} \begin{bmatrix} & \mathbf{\underline{T}}-link \\ & \mathbf{\underline{M}} \\ 40 \end{bmatrix} = \mathbf{\underline{T}}-link \\ \mathbf{\underline{M}} $	a	b	d	Time [s]

PEARL Multi-X Prog-X RPA T-link MLink 15.14 8.71 6.86 23.54 22.38 6.46 6.75 8.13 5.91 13.42 7.27 1.75 (a) Plane seg. fixed parameters Fundmental Affine trud. Mixed Mean Std. Mean Std. Mean Std. Mean Std. Mean 8.59 4.67 9.84 4.09 7.75 4.54 32.20 50.33 41.90 7.95 38.78 8.21 10.73 8.73 - - - - X 17.13 12.23 10.5 2.90 9.53 1.43 29.54 14.80 41.81 15.25 48.89 8.16
15.14 8.71 6.86 23.54 22.38 6.46 6.75 8.13 5.91 13.42 7.27 1.75 (a) Plane seg. fixed parametersFundamentalAffine fund.MixedMeanStd.MeanStd.MeanStd.MeanStd.MeanStd. 8.59 4.67 9.84 4.09 7.75 4.54 32.20 50.33 41.90 7.95 38.78 8.21 10.73 8.73 $4.17.13$ 12.23 10.5 2.90 9.53 1.43 29.54 14.80 41.81 15.25 48.89 8.16
6.75 8.13 5.91 13.42 7.27 1.75 (a) Plane seg. fixed parametersFundamentalAffine fund.MixedMeanStd.MeanStd.MeanStd. 8.59 4.67 9.84 4.09 7.75 4.54 32.20 50.33 41.90 7.95 38.78 8.21 10.73 8.73 $4.17.13$ 12.23 10.5 2.90 9.53 1.43 29.54 14.80 41.81 15.25 48.89 8.16
(a) Plane seg. fixed parametersFundamentalAffine fund.MixedMeanStd.MeanStd.MeanStd.MeanStd. 8.59 4.67 9.84 4.09 7.75 32.20 50.33 41.90 7.95 38.78 8.73 10.73 8.73 $4.17.13$ 12.23 10.5 2.90 9.53 14.80 41.81 15.25 48.89 8.16
FundamentalAffine fund.MixedMeanStd.MeanStd.MeanStd. 8.59 4.67 9.84 4.09 7.75 4.54 32.20 50.33 41.90 7.95 38.78 8.21 10.73 8.73 17.13 12.23 10.5 2.90 9.53 1.43 29.54 14.80 41.81 15.25 48.89 8.16
Mean Std. Mean Std. Mean Std. 8.59 4.67 9.84 4.09 7.75 4.54 32.20 50.33 41.90 7.95 38.78 8.21 10.73 8.73 - - - - X 17.13 12.23 10.5 2.90 9.53 1.43 29.54 14.80 41.81 15.25 48.89 8.16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
32.20 50.33 41.90 7.95 38.78 8.21 10.73 8.73 - - - - X 17.13 12.23 10.5 2.90 9.53 1.43 29.54 14.80 41.81 15.25 48.89 8.16
10.738.73X17.1312.2310.52.909.531.4329.5414.8041.8115.2548.898.16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
29.54 14.80 41.81 15.25 48.89 8.16

(c) Two-view seg. fixed parameters

(d) Video seg. s = Silhouette index.

General: can cope with a variety of models and can be extended by modifying cluster-merging conditions to accommodate for specific constraints coming from an application at hand.

Faster and more stable: less sensistive to sampling and to the inlier threshold than greedy alternatives based on preference analysis. **Accurate**: favorably compares with state-of-the-art optimization-

- Barath, Matas. Multi-class model fitting by energy minimization and mode-seeking. ECCV 2018
- Barath, Matas. Progressive-x: Efficient, anytime, multi-model fitting algorithm. CVPR 2019
- Delong, Veksler, Boykov.Fastfusion moves for multi-model estimation. ECCV, 2012
- Magri, Fusiello. T-Linkage: A continuous relaxation of J-Linkage for multi-model fitting. CVPR, 2014 Magri, Fusiello. Fitting multiple heterogeneous models by multi-class cascaded t-linkage. CVPR, 2019 Torr. Geometric motion segmentation and model selection. Transactions of the Royal Society, 1998