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Abstract

Synchronization refers to the problem of inferring the un-
known values attached to vertices of a graph where edges
are labelled with the ratio of the incident vertices, and
labels belong to a group. This paper addresses the syn-
chronization problem on multi-graphs, that are graphs with
more than one edge connecting the same pair of nodes. The
problem naturally arises when multiple measures are avail-
able to model the relationship between two vertices. This
happens when different sensors measure the same quantity,
or when the original graph is partitioned into sub-graphs
that are solved independently. In this case, the relationships
among sub-graphs give rise to multi-edges and the prob-
lem can be traced back to a multi-graph synchronization.
The baseline solution reduces multi-graphs to simple ones
by averaging their multi-edges, however this approach falls
short because: i) averaging is well defined only for some
groups and ii) the resulting estimator is less precise and
accurate, as we prove empirically. Specifically, we present
MULTISYNC, a synchronization algorithm for multi-graphs
that is based on a principled constrained eigenvalue opti-
mization. MULTISYNC is a general solution that can cope
with any linear group and we show to be profitably usable
both on synthetic and real problems.

1. Introduction

Many tasks in Computer Vision can be formulated as
the synchronization [50] of group-labelled graphs: given
a network of nodes labelled with unknown elements of a
group Σ, it is required to estimate them from a collection
of noisy relative measurements expressed as ratios (or dif-
ferences) attached to edges. A prominent example is when
the nodes of the graph are sensors and the goal is to recover
the unknown attitude and location of each sensor in a com-
mon reference frame. In this case, labels are in the Special
Euclidean Group Σ = SE(3), and the pairwise measure-
ments are relative orientations. Depending on the group,
the synchronization formulation can be exploited to model
other relevant problems in Computer Vision, such as struc-
ture from motion, simultaneous localization and mapping

Figure 1: A multi-graph is a graph that admits multiple edges be-
tween its nodes. Nodes correspond to unknown group elements
xi ∈ SO(3) and edges correspond to known relative measures. A
multi-edge with cardinality 3, resulting for instance from different
estimates of relative transformations, is depicted in orange.

(SLAM), multi-view matching and image mosaicking.
Traditionally, synchronization is defined on a simple

graph, i.e., a graph where vertex pairs are connected by
at most one edge. In this work, instead, we deal with
the case where multiple measurements are available for the
same pair of nodes (multi-edge) and synchronization is per-
formed on a multi-graph rather than on a simple graph (see
Fig. 1). This general multi-graph synchronization frame-
work allows us to naturally account for multiple measure-
ments between the same pair of nodes, which often hap-
pens in many applications. In SLAM, for instance, multi-
ple sensors (cameras, IMU, GPS, . . . ) can estimate the 6
d.o.f motion of a vehicle. Another scenario where multi-
graphs naturally arise is in large-scale problems, where an
original graph is partitioned into smaller sub-graphs that are
solved independently to save computing time. In this con-
text, the cut-edges connecting vertices from different sub-
graphs give rise to multi-edges and yield a multi-graph syn-
chronization problem, as will be clarified in Sec. 5. This
partitioned approach not only reduces memory and process-
ing time, but also enable multi-threading and parallelism.
In addition, it has relevant implications in terms of privacy
since it allows for data to be segregated so that each pro-
cessing node sees only a portion of the data (see, e.g., [25]).

The naive synchronization solution on multi-graphs –



henceforth named edge averaging – consists in reducing
multi-edges to simple ones by averaging their measure-
ments. This suffers from several shortcomings. First of all,
averaging is well defined only for some groups: while it
is possible to average rotations [32], there is not a princi-
pled solution for homographies. Secondly, even when it is
possible to average multi-edges, the resulting estimator has
sub-optimal statistical properties. As an example, consider
the problem of estimating a scale factor s that links two ma-
trices with noisy entries: A = sB. The optimal estimate
is the least squares solution s = tr(B⊤A)/ tr(B⊤B) which
is different from, e.g., taking the average of the entry-wise
division A./B. Our experiments confirm that this intuition
holds also for synchronization.
Contributions. Our solution – named MULTISYNC– ap-
proaches synchronization of group-labelled multi-graphs
from a new perspective: rather than averaging measures in
order to collapse a multi-edge to a simple one, it expands
the multi-graph replicating nodes involved in multi-edges
and enforces identity constraints between replicated nodes.
This leads to a constrained optimization problem for which
we derive a general closed-form spectral solution, that can
be applied to graphs labelled with any linear group. Our ex-
periments, performed on both synthetic and real data sets,
demonstrate that MULTISYNC outperforms edge averaging
in terms of accuracy and precision. In the context of par-
titioned problems, our solution strikes a good balance be-
tween accuracy and complexity, as opposed to performing
synchronization on the whole graph. To summarize, our
contribution is three-fold:

we present, for the first time, a formal definition of the
synchronization of multi-graphs, which is a significant
extension of the synchronization of simple graphs;
we derive MULTISYNC, a practical algorithm for solv-
ing a synchronization problem on a multi-graph, which
is based on an expansion algorithm coupled with a con-
strained spectral solution to deal with replicated nodes;
we demonstrate how the multi-graph framework can be
conveniently used to partition classical synchroniza-
tion tasks, achieving a good trade-off between accu-
racy and complexity.

Outline. The paper is organized as follows. Sec. 2 reviews
previous works. Sec. 3 provides the theoretical footing and
presents our solution. Sec. 4 reports synthetic experimental
results and Sec. 5 describes a possible application of multi-
graph synchronization: partitioned synchronization. Con-
clusions are drawn in Sec. 6.

2. Related Work
The synchronization problem derives its name from

clock synchronization [26], and has been extensively inves-
tigated in the Computer Vision community (see [3] for a

recent survey). Depending on the chosen group, specific
instances of the problem are obtained, which relate to dif-
ferent applications.

Synchronization over the Special Orthogonal Group (i.e.,
Σ = SO(3)) is referred to as rotation synchronization,
multiple rotation averaging [32] or rotation optimization
[57]. Existing techniques include least squares [37], spec-
tral decomposition [50], the Weiszfeld algorithm [31], the
Levenberg-Marquardt algorithm [19], Lie-group optimiza-
tion [17], semi-definite programming [58, 22, 21], dis-
tributed optimization [56, 52], low-rank decomposition [6],
Riemannian optimization [12], deep learning [42] and mes-
sage passing [49]. When the Special Euclidean Group
(i.e., Σ = SE(3)) is considered, it results in rigid-motion
synchronization, motion averaging or pose-graph optimiza-
tion. Existing techniques include spectral decomposition
[9, 7], Lie-group optimization [29], diffusion over dual
quaternions [54], Riemannian optimization [55], semidef-
inite programming [44, 43], distributed optimization [53],
group contraction [39], Bayesian optimization [14] and
deep learning [33, 27]. Both rotation and rigid-motion syn-
chronizations can be applied to structure from motion [40],
registration of 3D point clouds [30] and SLAM [16, 23].

When considering the Symmetric Group (i.e., Σ =
Sym(d)), we get permutation synchronization, which finds
application in multi-view matching. Existing approaches
include spectral decomposition [41, 47, 10], Gauss-Seidel
relaxation [60], distributed optimization [35], and Rieman-
nian optimization [13]. Other synchronization problems
concern the Special Linear Group (i.e., Σ = SL(3)), which
is used to represent homographies in image mosaicking
[46], and the General Affine Group (i.e., Σ = GA(3)),
which has been used to solve for global color matching [45].

All the aforementioned approaches, with few excep-
tions discussed in Remark 1, are limited to deal with sim-
ple graphs. There are cases, however, where multi-graphs
naturally arise, the most prominent one being partitioned
synchronization, which motivated our research. For large-
scale graphs, synchronization approaches, in particular ro-
bust ones, may incur in severe computational issues as com-
plexity increases with respect to the number of edges in the
graph. An effective remedy is to partition the original mea-
surement graph into smaller sub-graphs (called patches in
this context) that can be easily synchronized, then one can
combine the labeling of each patch to obtain a consistent la-
beling of the original graph. This last step can be seen as a
synchronization on a multi-graph that resolves the ambigu-
ity of the local patch-wise solutions (see Fig. 5).

The idea of partitioning a synchronization problem into
smaller sub-problems (which are easier to solve) is present
in a number of works in the context of structure from mo-
tion [11, 24], simultaneous localization and mapping [36]
and motion segmentation [4]. Such techniques, however, do



not exploit the multi-graph formulation – that is introduced
in this paper for the first time in the literature – but they (ei-
ther implicitly or explicitly) turn the multi-graph into a sim-
ple one by averaging multi-edges. A few other partitioned
pipelines are present in the literature (e.g., in the context of
3D reconstruction [62, 18, 61] or sensor network localiza-
tion [20]), which, however, do not address synchronization
problems, as they exploit additional information (such as
coordinates of 3D points) alongside relative measurements.

3. Synchronization on multi-graphs
In this section we introduce the theoretical framework of

synchronization on group-labelled multi-graphs (Sec. 3.1),
then we present our algorithm (named MULTISYNC) for
linear groups. At a high level, our method consists in the
following main steps:

graph expansion: the multi-graph is expanded to a
simple graph by creating replicas of vertices (Sec. 3.2);
constrained optimization: a constrained eigenvalue
problem is solved, to address synchronization with du-
plicated vertices sharing the same label (Sec. 3.3).

3.1. Formulation

A multi-edge in a directed graph is a set of two or more
edges with both the same tail vertex and the same head ver-
tex. A graph that allows multi-edges is called a multi-graph
(see Fig. 1 for an example), which extends the definition of
graphs as follows:

Definition 1 (Multi-graph [15]). A multi-graph G =
(V, E , s, t) is a directed graph without loops, where V is
the set of vertices, E is the set of edges, s : E → V is a func-
tion that maps an edge to its source vertex, and t : E → V
is function mapping an edge to its target vertex.

Definition 2 (Multi-edge [15]). Given a multi-graph G =
(V, E , s, t), the multi-edge E(i, j) is the set:

E(i, j) = {e ∈ E : s(e) = i ∧ t(e) = j}. (1)

Strictly speaking, every simple graph is also a multi-
graph, but hereafter we consider them as different objects: a
simple graph refers to a graph having cardinality |E(i, j)| ≤
1 for all i, j ∈ V , whereas multi-graphs must have at least
one pair of vertices (i, j) with |E(i, j)| > 1. The elements
of a group (Σ, ∗) can be used to label the edges of a multi-
graph, yielding a group-labeled multi-graph:

Definition 3 (Group-labeled multi-graph). A Σ-labeled
multi-graph is a tuple Γ = (V, E , s, t, z) where G =
(V, E , s, t) is a multi-graph and z : E → Σ is the edge-
labeling function. The edge set E satisfies the following
property: if e ∈ E with s(e) = u ∧ t(e) = v, then e′ ∈ E
with s(e′) = v ∧ t(e′) = u, and z satisfies:

z(e) = z(e′)−1. (2)

Eq. (2) means that each edge connecting a pair of ver-
tices (u, v) has a corresponding edge connecting (v, u),
which is labelled with the inverse transformation.

Definition 4 (Consistent labeling). Let Γ = (V, E , s, t, z)
be a Σ-labelled multi-graph and let x : V → Σ be a vertex
labeling. We say that x is a consistent labeling if and only
if the following condition holds:

z(e) = x(i) ∗ x(j)−1 (3)

∀i, j ∈ V and ∀e ∈ E such that (s(e), t(e)) = (i, j).

Eq. (3) is also referred to as the consistency constraint
since it means that, for any pair (i, j) of vertices, the la-
bels of the edges connecting i and j must be equal to the
ratio of the vertex labels x(i) and x(j). There is an inherent
ambiguity in the synchronization problem: if x : V → Σ
satisfies Eq. (3), then also y(i) = x(i) ∗ w is a solution, for
any (fixed) w ∈ Σ.

In the presence of noise the consistency constraint will
not be satisfied exactly, thus the task of multi-graph syn-
chronization is to find the unknown vertex labelling such
that Eq. (3) is approximately satisfied, e.g., in the least-
squares sense. In this case, multi-edges represents redun-
dant relative measures to effectively compensate errors.

Remark 1. In this paper we concentrate on the spectral so-
lution due to its generality, for it can be applied to any ma-
trix group (e.g., rotations [50], rigid-motions [9, 7], homo-
graphies [8]) and also to semigroups (e.g., partial permu-
tations [38]) and sets that have a poorer structure (e.g., bi-
nary matrices [5]). Observe that existing synchronization
techniques based on spectral solutions cannot be applied
to multi-graphs straightforwardly, because multiple edges
cannot be represented in an adjacency matrix (see Sec. 3.3).
Therefore the multi-graph has to be transformed into a sim-
ple graph, as will be clarified later. There are synchroniza-
tion techniques [37] based on the following constraint:

z(e) ∗ x(j) = x(i) (4)

which gives rise to a trace-minimization problem [57]
where multiple edges could be potentially taken into ac-
count as additional terms. These approaches, however, are
limited to groups, since the above constraint is equivalent to
Eq. (3) only in a group; by contrast, our method has the po-
tential to be extended also to semi-groups, being based on
the spectral solution. In addition, some techniques based
on non-linear optimization (e.g., [19, 17, 55]) could be
adapted to multi-graphs by letting edges represent sums of
cost terms. These methods, however, are carefully designed
for a chosen group, while our method offers an approximate
closed-form solution for any matrix group.

Remark 2. The naive strategy of edge averaging – where a
multi-edge is collapsed to a single edge by averaging labels
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Figure 2: Multi-graph expansion: the process of expanding a multi-graph into a simple graph without multi-edges by replicating specific
vertices (shaded nodes) and by introducing additional constraints to preserve both absolute (global) and relative (pairwise) information
between the nodes in the graph.

– produces a sub-optimal solution, as it does not exploit the
redundancy of multiple measurements. In addition, averag-
ing is not always well defined: while averages in SO(3) are
well studied by [32], similar results are not known for ho-
mographies. For this reason, we follow a different strategy:
instead of reducing the multi-graph by collapsing multi-
edges, we first expand it by creating replicas of vertices, as
illustrated in Sec. 3.2. Then, we recover a consistent label-
ing by a constrained spectral solution where duplicated ver-
tices share exactly the same label, as described in Sec. 3.3.

3.2. Multi-graph expansion

We present an iterative greedy algorithm to expand a
multi-graph into a simple graph retaining all the pairwise
information. The rationale is that each multi-edge can be
expanded into a number of simple edges equal to its cardi-
nality, by properly replicating source or target vertices.

Fig. 2a represents a minimal multi-graph of two vertices
x1 and x2 connected by a single multi-edge with cardinality
2. In order to expand this into a simple graph, it is sufficient
to replicate only one of the two vertices, thus turning the
multi-edge into 2 edges connecting the replicas to the non-
replicated vertex. An additional edge labeled by 1Σ (blue
edge in Fig. 2b) is added to connect the replicas, since they
share the same label. After this step, all vertices that are
connected to a replicated node will have one less incom-
ing multi-edge. This suggests that vertices having several
multi-edges should be expanded first.

More in general, consider the expansion of a vertex xi

that is connected to more than one vertex by multi-edges
and suppose, for the sake of illustration, that each multi-
edge is characterized by a different cardinality. With refer-
ence to Fig. 2c, we have two multi-edges with 2 and 3 edges
respectively coming from the same vertex xi. Expansion of
xi consists in the following steps.
i) Replicate vertex: the number of replicas to be introduced
for xi is equal to the highest cardinality k of multi-edges
outgoing from xi, i.e., 3 grey nodes in Fig. 2d.
ii) Add identity constraints: k − 1 edges labeled by 1Σ are
added to enforce the identity between the k replicas (blue
edges in Fig.2d).
iii) Distribute previous constraints among replicas: every

node having an incoming edge in xi is connected to all the
replicas (black edges in Fig.2d). In addition, all the outgo-
ing edges from xi (even when belonging to different multi-
edges e.g., the orange and green multi-edges in Fig.2d) pre-
serve their labels and simply change their source to one of
the replicas. Distributing constraints does not significantly
affect synchronization performance, and proves beneficial
in terms of speed and memory, since less constraints need
to be added to the expanded graph. The computational com-
plexity of the expansion algorithm is O(n2m) where m is
the average multiplicity of multi-edges and n is the number
of vertices. Please refer to the supplementary material for a
more detailed description of the expansion algorithm.

3.3. Constrained eigenvalues optimization

Although both the theoretical framework of multi-graph
synchronization (Sec. 3.1) and our expansion algorithm
(Sec. 3.2) are general and hold for any group, for the sake
of concreteness, we will henceforth focus on linear groups,
i.e., groups admitting a matrix representation. A simple
group-labelled graph, where the group is linear, can be syn-
chronized using the spectral method [9, 7], that we briefly
review in the following, before extending it to multi-graphs.

Let n denote the number of vertices of the simple graph
and let us collect all the unknowns in a block matrix X of
size dn× d and all the measures in another block-matrix Z
of size dn× dn, which are constructed as follows

X=


x(1)
x(2)

...
x(n)

, Z=


Id z(1, 2) . . . z(1, n)

z(2, 1) Id . . . z(2, n)
...

. . .
...

z(n, 1) z(n, 2) . . . Id

. (5)

Eq. (5) clearly refers to a complete graph. For incomplete
graphs, Z is filled with zero blocks in correspondence of
missing edges, i.e., the available measures are given by

ZA = Z ◦ (A⊗ 1d) , (6)

where A denotes the adjacency matrix of the graph, ◦ indi-
cates the Hadamard (or entry-wise) product, ⊗ denotes the
Kronecker product and 1d is a d× d matrix filled by ones.



Proposition 1 ([9, 7]). A consistent vertex labelling X sat-
isfies the following equation:

ZAX− (D⊗ Id)X = 0 (7)

where D denotes the degree matrix of the graph.

This proposition is at the basis of the spectral solution
for synchronization on a simple graph, which, due to noise,
solves Eq. (7) by least squares:

min
X⊤X=Id

∥MX∥2F (8)

where M = ZA − (D ⊗ Id) is defined from the matrix of
incomplete relative measurements. It can be proved that
the relaxed synchronization admits a closed-form solution
as the null-space of M [9, 7], which in turn can be derived
from the least eigenvectors of M⊤M.

Let us now consider the case of a group-labelled multi-
graph. Synchronizing the expanded graph by solving
Eq. (8) for the unknown labels X falls short, as it does not
guarantee that replicated nodes have been assigned the same
label. Indeed, the constraints given by edges labelled with
the identity are treated as “soft” ones, like all the others.
To obtain a labeling of the expanded graph consistent with
the underlying multi-graph, it is hence necessary to enforce
that replicated vertices share exactly the same labels. We
are therefore led to a constrained version of Eq. (8):

min
X

∥MX∥2F subject to X⊤X = Id, C⊤X = 0, (9)

where C⊤X = 0 enforces the equality between replicated
vertices. Specifically, C is a nd× rd matrix composed by r
column-blocks Ck of size nd × d, that accommodate for r
constraints between replicas: suppose the k-th constraint is
of the form Xi − Xj = 0, hence

C =
(
C1 · · · Ck · · · Cr

)
,

Ck =
(
0 · · · Id · · · −Id · · · 0

)⊤
.

(10)

The constrained problem (9) admits a closed-form solu-
tion thanks to the following new result.

Theorem 1. The stationary points of the cost function (9)
are given by the eigenvectors of

(
I− CC†)M⊤M, where C†

is the pseudo-inverse of C.

Proof. Problem (9) is equivalent to

min
X

tr
(
X⊤(M⊤M)X

)
s. t. X⊤X = Id, C

⊤X = 0. (11)

The Lagrangian of the cost function to this problem is

L = tr
(
X⊤(M⊤M)X

)
+ tr

(
∆(X⊤X− Id)

)
+

tr
(
ΓC⊤X)

)
,

(12)

where ∆ and Γ are matrices of unknown Lagrange multipli-
ers, with ∆ symmetric. Setting to zero the derivatives with
respect to X we have

∂L
∂X

= 2M⊤MX+ 2X∆+ CΓ⊤ = 0. (13)

Revisiting the approach described in [28], we left-multiply
by C⊤, then using C⊤X = 0, we obtain

2C⊤M⊤MX+ C⊤CΓ⊤ = 0, (14)

from which we get Γ⊤ = −2C†M⊤MX. Plugging this
closed-form expression for Γ into (13) yields(

I− CC†)M⊤MX = −X∆, (15)

where C† = (C⊤C)−1C⊤. Let P = I − CC† and X =
[x1, . . . , xd], the last equation implies that the eigenvectors
of PM⊤M are stationary points for (12), and the eigenval-
ues are the corresponding stationary values. Even if P and
M⊤M are symmetric, their product is not necessarily so.
However, since P2 = P (so that it is a projection matrix),
we get

eig(PM⊤M) = eig(P2M⊤M) = eig(PM⊤MP). (16)

Hence, the stationary values of (12) are the eigenvalues of
PM⊤MP, which are real (and the eigenvectors as well).

Remark 3. If C has rank k, at least k eigenvalues will be
zero, so the the solution to (9) is attained when xi are the d
orthogonal eigenvectors of PM⊤M corresponding to eigen-
values λk+1 · · ·λk+d in ascending order. Golub [28] sug-
gests to get rid of the k zero eigenvalues due to the rank of
C by using the rank-revealing QR factorization of C. More
details on this are reported in the supplementary material.

Please note that Theorem 1 solves a relaxed problem,
as the feasible set is given by X ∈ Rdn×dn with X⊤X =
Id, instead of X ∈ Σn. In order to recover the block-wise
structure of X in Eq. (5), it is hence necessary to project each
d× d block of X onto the group Σ. When Σ = SO(3), for
instance, the final projection can be done via Singular Value
Decomposition. This produces our closed-form solution to
multi-graph synchronization. In the presence of outliers,
robustness can be easily gained via Iteratively Reweighted
Least Squares (IRLS), as in [7].

To sum up, MULTISYNC takes in input a group-labelled
multi-graph, and uses the expansion algorithm (Sec. 3.2) to
dilate it to a simple graph with replicated nodes. The hard
constraints between replicas are then integrated in the con-
strained Problem (9), for which a closed-form solution is
derived using Theorem 1. Finally, each block of the solu-
tion is projected on Σ. It is worth noting that our approach
is general and it can be applied to any linear group (and
semi-groups), such as the ones mentioned in Sec. 2, which
are relevant for a variety of vision applications.

Code is available at [1].
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Figure 3: Experiments in SO(3): accuracy and precision of MULTISYNC and edge averaging on synthetic multi-graphs at various values
of m (the average cardinality of multi-edges) and of noise level σ. The lower the curve the better.
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Figure 4: Experiments in SL(3): accuracy and precision of MULTISYNC and edge averaging on synthetic multi-graphs at various values
of m (the average cardinality of multi-edges) and of noise level σ. The lower the curve the better.

4. Synthetic Experiments
We compared our solution (MULTISYNC) with the base-

line approach of edge averaging, which is the only one that
has been employed before to deal with multi-graphs. Fu-
ture work will consider alternative methods that can be eas-
ily adapted from simple graphs to multi-graphs (such as the
ones discussed in Remark 1).

We considered synchronization problems in the group of
rotations SO(3) and in the Special Linear Group SL(3), on
synthetic data. Random multi-graphs are generated accord-
ing to parameters (n, p,m) where n indicates the number
of vertices, p indicates the probability that any two vertices
are connected by a multi-edge and m is the average cardi-
nality of the multi-edges. We considered various levels of
noise, which is defined in a different way for the two groups.
No outliers are present in these synthetic data, therefore we
concentrate on non-robust methods.

Synchronization in SO(3). We compare the estimated la-
bels x̃ with the ground-truth ones x by the angular distance
between rotations [34], which is defined as

ϵi = ∥ log(x(i)x̃(i)⊤)∥ (17)

and we report both the mean and the variance over all the
nodes i ∈ V . Edge averaging was performed using the (non-
robust) chordal ℓ2-mean [32].

In a first experiment, simulated multi-graphs have n =
10 vertices, p = 0.75 and a varying average cardinality
m of multi-edges. For each run, n random ground truth
rotation matrices x(i) were instantiated by uniformly sam-
pling Euler angles, hence relative rotations were generated

as z(i, j) = x(i)x(j)⊤ω(i, j) with ω(i, j) ∈ SO(3) be-
ing a small multiplicative noise. The Euler angles for the
perturbation ω(i, j) were sampled from a Gaussian distri-
bution with zero mean and a standard deviation σ = π/8.
Fig. 3(a) reports the angular distance averaged on 100 tri-
als, demonstrating the benefits of our MULTISYNC with re-
spect to edge averaging in terms of accuracy, especially for
higher values of m. Fig. 3(b) reports the variance of the er-
ror, showing that our approach delivers significantly more
precise results for all values of m.

In a second experiment, we assess the response of the
analysed methods when increasing the level of Gaussian
noise σ, choosing a multi-graph where edge averaging and
MULTISYNC showed comparable performance in the pre-
vious experiment, namely n = 10, p = 0.75 and m = 5.
Fig. 3(c) reports the average angular distance as a func-
tion of σ, showing that MULTISYNC is more accurate than
edge averaging, especially for large amounts of noise. From
Fig. 3(d), we can appreciate that the variance increases less
rapidly (with respect to σ) for our MULTISYNC as com-
pared to edge averaging.

Synchronization in SL(3). We repeated the previous
validation procedure on synthetic multi-graphs labeled in
SL(3). In order to compare the estimated labels x̃ with the
ground-truth ones x, the error was defined as the Frobenius
norm of the deviation from the identity:

ϵi = ∥I3 − x(i)x̃(i)−1∥F (18)

and we report both the mean and the variance over all the
nodes i ∈ V . Edge averaging was performed by computing



the element-wise average and then projecting the resulting
matrix onto the SL(3) group.

Ground-truth transformations x(i) were generated as
random matrices with entries uniformly sampled in [0, 1],
which are eventually projected onto the group. The rela-
tive transformations were corrupted by an additive Gaus-
sian noise with zero mean and standard deviation σ. Perfor-
mances of the analysed methods (averaged on 100 random
runs) are reported in Fig. 4, which confirms the findings at-
tained in SO(3). With respect to the average multi-edge
cardinality m, our method is both more accurate and more
precise than edge averaging. The advantages of our solu-
tion are even more evident for large noise value σ, where
MULTISYNC has a lower error and a smaller variance.

The rundown of these experiments is that edge averaging
does not provide optimal results, as major approximations
are introduced in the simplified measurement graph. MUL-
TISYNC overcomes these limitations, and better combines
the information provided by the multiple edge labels, espe-
cially when their multiplicity tends to be significant.

5. Application: partitioned synchronization

We illustrate how our multi-graph formulation can be
used to deal with partitioned synchronization problems,
demonstrating the advantages of our approach on real-data.
The main steps can be detailed as follows:

A) Graph partitioning: The first step consists in parti-
tioning the original graph Γ in multiple patches Φ1, . . .Φk

(see the middle part of Fig. 5). To this end, we feed its
adjacency matrix to spectral clustering. We choose the nor-
malization of [48] because it tends to balance the number of
edges among clusters1, which is the relevant parameter for
the computational complexity of the sparse matrix meth-
ods that we are using. Note that in some applications, e.g.
where for privacy reasons information cannot be shared be-
tween all nodes, the partition of the graph is given and this
clustering phase is sidestepped.

Simple graph Partitioning Patch graph

Figure 5: Partitioned synchronization: a simple graph (on the left)
is partitioned in three patches. Each patch is synchronized indi-
vidually. To solve for the local ambiguities, a patch-graph is built
(on the right), whose nodes correspond to patches and multi-edges
contain the cut edges (drawn in red). The patch-graph is synchro-
nized with our multi-graph approach.

1This choice is not critical: other algorithms give similar results.

B) Synchronization on patches: Each patch Φu –
which is a simple graph – is synchronized independently
using standard synchronization techniques (see Sec. 2), ob-
taining a labeling xu : Φu → Σ for each patch Φu. Each
local labeling comes with its own ambiguity as it is defined
up to the action of an arbitrary group element. Hence, we
need to remove the local ambiguities and lift the multiple
labeling derived in this step to a single consistent labeling
on the original full graph.

C) Patch-graph building: We build a multi-graph,
termed the patch-graph as follows. The vertices of the
patch-graph correspond to the patches Φ1, . . . ,Φk and the
multi-edge connecting Φu and Φv consists of all the cut
edges, i.e., the edges (if any) that have one endpoint in Φu

and the other endpoint in Φv (see the right part of Fig. 5).
Each node in the patch-graph is labelled with the unknown
group element that represents the transformation that must
be applied to the patch in order to fix its group ambiguity,
let wu ∈ Σ be the label of node Φu. Measures on multi-
edges of the patch graph are defined as follows. Let us
consider a multi-edge connecting nodes Φu and Φv , that
comprises multiple cut-edges between the two patches. Let
us consider one cut-edge that connects node i ∈ Φu and
node j ∈ Φv , and let xu(i) and xv(j) be the respective
labels found in the previous synchronization on patches.
Such labels must be multiplied by the respective matri-
ces representing local ambiguities, namely wu ∈ Σ and
wv ∈ Σ, hence the consistency constraint rewrites z(i, j) =(
xu(i)wu

)(
xv(j)wv

)−1
= xu(i)wuw

−1
v xv(j)−1. There-

fore wuw
−1
v = xu(i)−1z(i, j)xv(j) is the label of the

multi-edge between Φu and Φv .
D) Synchronization on the patch-graph: Our MUL-

TISYNC is applied to the patch-graph, in order to compute
the unknown transformations w1 . . . wk ∈ Σ (see Sec. 3).
For each patch, the label assignments xu are transformed
accordingly by applying the respective transformation wu.
This produces a unique and globally consistent labeling up
to a single global ambiguity.

For the experimental validation, we considered parti-
tioned synchronization problems in SO(3). We used large-
scale image data sets taken from [59, 19], which provide the
input graph and estimates of relative rotations. The graphs
are highly incomplete and affected by missing data. The
output of Bundler [51] was taken as ground-truth, as cus-
tomarily done in the literature. All the experiments were
performed in MATLAB on an Intel Core i9 9900k at stock
speeds coupled with 16 GB of 3200 MHz RAM.

As in Sec. 4, we contrast our method with edge aver-
aging. Both MULTISYNC and edge averaging operates on
the same patch graph constructed following steps from A to
C, and they differ only in the way the patch graph is syn-
chronized in Step D. In Step A, the number of clusters c
in which the input graphs are partitioned is computed from



Table 1: Partitioned synchronization in SO(3) on real data sets
from [59, 19]. The average error ϵ̄, median error ϵ̂, and running
time t are reported for MULTISYNC and edge averaging. Full syn-
chronization performances are included but are intended only as
an ideal reference as it works on different assumptions, having at
disposal the full graph instead of partitioning it. In the supplemen-
tary material this table is reported in full resolution.

Edge averaging MULTISYNC Full sync

Data set n c ϵ̄ ϵ̂ t ϵ̄ ϵ̂ t ϵ̄ ϵ̂ t

Ellis Island 247 9 3.56 0.73 1.02 3.49 0.68 1.07 3 0.47 3.4
Piazza del Popolo 345 11 5.62 1.86 1.27 5.22 1.41 1.38 3.3 0.86 3.47
NYC Library 376 11 4.91 3.35 0.93 4.24 2.32 1.01 3.16 1.27 4.8
Madrid Metropolis 394 11 7.84 3.19 1.13 7.14 2.52 1.18 6.6 1.12 1.18
Yorkminster 458 12 5.96 3.98 1.33 4.98 2.91 1.37 3.5 1.58 4.83
Montreal N. Dame 474 12 2.67 1.02 1.32 2.11 0.87 1.41 1.12 0.5 10.1
Tower of London 489 13 6.43 3.51 1.07 5.54 2.74 1.12 4.21 2.33 3.91
Notre Dame 553 13 4.25 1.92 3.82 3.43 0.85 3.87 2.7 0.65 22
Alamo 627 14 6.89 1.63 4.21 6.42 1.57 4.28 3.7 1.02 26.5
Gendarmenmarkt 742 15 39.54 21.18 2.29 34.32 12.68 2.34 40.82 6.09 39.9
Vienna Cathedral 918 17 15.73 4.87 3.88 11.01 3.73 3.92 6.2 1.27 50.2
Union Square 930 17 7.71 3.88 3.65 7.25 3.67 3.71 6.18 3.6 6.61
Roman Forum 1102 17 10.03 9.12 4.95 6.91 3.39 5.01 2.81 1.4 12.1
Piccadilly 2508 21 19.89 10.21 17.45 17.47 8.21 17.61 4.42 1.94 241
Cornell Arts Quad 5530 41 8.64 3.29 17.88 6.25 2.71 18.02 3.2 1.71 191

the number of vertices n as c = 0.54
√
n, where the coeffi-

cient 0.54 has been tuned manually on the whole data set. In
Step B, we synchronize the individual patches using MPLS
(Message Passing Least Squares ) [2, 49], which represents
the state of the art in rotation synchronization. It is worth
noting, however, that our framework allows to plug-in any
method as far as the synchronization of single patches is
concerned, as we shall see later on. For the sake of effi-
ciency, in Step C, we considered multi-edges with cardi-
nality at most 50 by randomly subsampling cut-edges. Fi-
nally, since these data sets are affected by outliers, multi-
graph synchronization in Step D is performed by robust
techniques:

MULTISYNC is augmented with IRLS, as in [7], to
provide robustness to outliers;
in edge averaging, the labels of the multi-edges are av-
eraged using the Weiszfeld algorithm [31], thus col-
lapsing the multi-graph into a simple graph; then, the
resulting graph is synchronized with MPLS [49].

For reference, we also include full synchronization on the
entire graph (with MPLS), which ideally represents the best
performance achievable in terms of accuracy.

Tab. 1 reports the mean/median angular error and the ex-
ecution time of all the analysed methods. For every data
set, 50 independent runs were performed and average re-
sults were computed. MULTISYNC consistently outper-
forms edge averaging in terms of accuracy on all the cases.
The worst accuracy on the Gendarmenmarkt data set is
caused by the fact that the graph is relatively sparse and
lacks cycle information, as already observed in [49]. With
respect to the “gold standard” represented by full synchro-
nization – that it is expected to outperforms partitioned ap-
proaches for it exploits all the information available on the

full graph – the great advantage of MULTISYNC is that it
trades relatively small loss in accuracy for shorter execu-
tion times. Some of the larger sequences, such as Piccadilly,
show up to a 13× improvement in this regard.

As already noted, MULTISYNC can be seen as a general
framework that is agnostic about the synchronization tech-
nique used on sub-graphs (Step B). This aspect is inves-
tigated in Tab. 2, which shows the performance of MUL-
TISYNC coupled with different synchronization methods,
namely EIG-IRLS [7], L1-IRLS [17] and R-GODEC [6].
The state-of-the-art MPLS [49] is only reported in Tab. 1.
EIG-IRLS results are not reported on Cornell Arts Quad
because it did not reach convergence. It turns out that differ-
ent performances of the various methods on the full graph
reflect on the partitioned case: for instance, R-GoDec is the
fastest solution whereas L1-IRLS is the most accurate. With
respect to full synchronization, again we see that MULTI-
SYNC strikes a good balance between accuracy and compu-
tational burden.

Table 2: Performances of MULTISYNC combined with different
techniques, for synchronization in SO(3) on real data sets [59,
19]. The median error ϵ̂, and running time t are reported. In the
supplementary material this table is reported in full resolution.

EIG-IRLS L1-IRLS R-GoDec
MULTISYNC Full sync MULTISYNC Full sync MULTISYNC Full sync

Data set n c ϵ̂ t ϵ̂ t ϵ̂ t ϵ̂ t ϵ̂ t ϵ̂ t

Ellis Island 247 9 1.15 0.43 1.18 0.82 1.05 0.41 0.57 2.35 1.48 0.23 1.00 0.23
Piazza del Popolo 345 11 1.78 1.18 1.02 2.24 1.84 0.53 0.98 3.55 1.86 0.24 1.48 0.49
NYC Library 376 11 3.24 3.15 1.98 1.65 2.02 0.39 1.33 2.36 2.82 0.47 3.20 1.35
Madrid Metropolis 394 11 4.01 3.83 4.43 1.79 2.68 0.57 1.01 4.20 3.94 0.29 4.07 0.49
Yorkminster 458 12 2.91 2.85 1.81 3.18 2.86 1.07 1.69 2.29 2.85 0.43 2.69 2.03
Montreal N. Dame 474 12 2.12 6.92 0.59 4.09 1.01 3.67 0.58 7.10 1.02 0.52 0.85 1.05
Tower of London 489 13 2.98 3.74 2.79 2.43 2.83 1.20 2.63 1.94 2.89 0.46 3.28 2.11
Notre Dame 553 13 1.23 5.22 0.74 7.46 1.22 25.94 0.65 29.11 1.57 1.79 1.05 1.10
Alamo 627 14 1.99 2.01 1.19 11.05 1.87 1.84 1.09 32.22 1.61 0.79 1.48 1.67
Gendarmenmarkt 742 15 26.88 8.19 76.97 11.30 14.81 2.12 28.85 12.01 37.36 1.01 28.70 5.83
Vienna Cathedral 918 17 4.72 2.88 1.62 18.23 3.92 1.68 1.37 56.80 2.53 1.59 2.08 9.26
Union Square 930 17 18.95 4.13 4.93 6.48 4.33 1.05 3.97 4.82 20.17 1.57 7.16 10.58
Roman Forum 1102 17 7.89 6.11 1.86 15.46 3.85 2.20 2.27 12.46 5.54 1.12 7.54 14.77
Piccadilly 2508 21 39.55 54.05 24.87 284.87 9.01 8.93 1.89 287.23 11.79 12.24 13.36 47.13
Cornell Arts Quad 5530 41 - - - - 5.49 30.10 1.98 73.51 17.13 28.24 13.21 586.6

6. Conclusion and future work

We studied the task of synchronization on multi-graphs.
After formally introducing the theoretical framework, we
derived an effective algorithm that works on any linear
group. Our approach exploits the redundancy encapsulated
in multi-edges and has better statistical properties with re-
spect to the baseline approach of edge-averaging, improv-
ing both accuracy and precision. Applications of multi-
graph synchronization are countless, including partitioned
synchronization, that motivated this work. Future work will
include partial permutation synchronization and an analy-
sis of alternative graph-expansion algorithms including op-
timality.
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nization. In Hal Daumé III and Aarti Singh, editors, Pro-
ceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning
Research, pages 8796–8806. PMLR, 2020. 2, 8

[50] A. Singer. Angular synchronization by eigenvectors and
semidefinite programming. Applied and Computational Har-
monic Analysis, 30(1):20 – 36, 2011. 1, 2, 3

[51] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism:
exploring photo collections in 3D. In SIGGRAPH: Inter-
national Conference on Computer Graphics and Interactive
Techniques, pages 835–846, 2006. 7

[52] Johan Thunberg, Florian Bernard, and Jorge Goncalves. Dis-
tributed methods for synchronization of orthogonal matrices
over graphs. Automatica, 80:243–252, 2017. 2

[53] J. Thunberg, F. Bernard, and J. Gonçalves. Distributed syn-
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