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Optical Time Domain 
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Optical Time Domain Reflectometer (OTDR)

OTDR
Launch Cable Cable Under Test Receive Cable
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OTDR Traces

• Fiber optic performance are 
evaluated by measuring the Optical 
Return Loss (ORL) 

• Allow to create a ‘‘virtual’’ picture of 
the fiber link

• Measure the attenuation of the signal 
due to the fiber dispersion constant

• Highlight multiple events caused by 
physical devices or flaws
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OTDR Events

• Optic events in OTDR traces are caused by devices or defects present on the link

• Each visual pattern identifies a specific event type

• OTDR vendors provide expert-driven solutions to make events localization process 
automatic
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Problem Formulation and 
Baseline Solution
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Each OTDR Trace is encoded as a vector 𝑻 = 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … , 𝒙𝒏 , and might contain 

Problem Formulation

Any number of events, represented by the triplet  𝒆 = 𝒚, 𝒔𝒕𝒂𝒓𝒕, 𝒆𝒏𝒅

Where:  𝑦 ∈ { 𝐹𝑎𝑐𝑒−𝑃𝑙𝑎𝑡𝑒,  𝐹𝑖𝑏𝑒𝑟−𝐶𝑢𝑡,  𝐹𝑖𝑏𝑒𝑟−𝐸𝑛𝑑,  𝑃𝑎𝑠𝑠−𝑇ℎ𝑟𝑜𝑢𝑔ℎ }

𝑥′′𝑠𝑡𝑎𝑟𝑡 𝑥′′𝑒𝑛𝑑𝑥′𝑠𝑡𝑎𝑟𝑡 𝑥′𝑒𝑛𝑑
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Our goal is to design a model able to detect each event in an input trace 𝑻

Problem Formulation

To train our model we assume a labeled training set 𝑫 containing 𝑵 traces

Where each trace is associated with the set of annotated events 𝑬 over the trace 𝑻

𝑥′′𝑠𝑡𝑎𝑟𝑡 𝑥′′𝑒𝑛𝑑𝑥′𝑠𝑡𝑎𝑟𝑡 𝑥′𝑒𝑛𝑑
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• Takes as input windows extracted from an OTDR trace

• Applied on fixed-size windows at inference time

• CNN Classifier trained to predict an event type for each window

Sliding Window Classifier (Baseline)

CNN + Softmax

OTDR Trace

𝐹𝑎𝑐𝑒 − 𝑃𝑙𝑎𝑡𝑒
·
·
·

𝑃𝑎𝑠𝑠 − 𝑇ℎ𝑟𝑜𝑢𝑔ℎ
𝐹𝑖𝑏𝑒𝑟 − 𝐸𝑛𝑑
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• Requires an additional step to split 
OTDR traces into windows 

• Limited to single-scale events 
resolution 

• Works under the assumption that each 
window includes at most one event

• Does not consider events position

• Does not share computations

Sliding Window Classifier - Drawbacks
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Introduction to 
Object Detection
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Deep Neural Network For Object Detection in Images: R-CNN

• A Region Proposals algorithm extract region proposals from the input image

• Then a Convolutional Neural Network is used to compute a latent representation of 
each region

• CNN Features are fed as input to an SVM classifier that predicts the object class

R-CNN Architecture - Rich feature hierarchies for accurate object detection and semantic segmentation 12



Deep Neural Network For Object Detection in Images: Fast R-CNN

• Introduce the concept of Region of Interest (RoI)

• The Region Proposals are projected onto the CNN feature map

• RoI Pooling extract a feature vector for each RoI projected on the CNN feature map

Fast R-CNN Architecture - Fast R-CNN 13



Deep Neural Network For Object Detection in Images: Faster R-CNN

• Introduce the concept of Region Proposal Network (RPN)

• The Region Proposals are computed from the CNN feature map

• RPN and Detection Head share the same convolutional layers backbone (Features 
Extractor Network)

Faster R-CNN Architecture - Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks14



Deep Neural Network for 
OTDR Events Detection
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• Inspired by Faster R-CNN 

• Designed to process 1D inputs and detect specific shape pattens in 1D data

• Composed of 3 Convolutional Neural Networks

Deep Neural Network For Optical Events Detection
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• Inspired by Faster R-CNN 

• Designed to process 1D inputs and detect specific shape pattens in 1D data

• Composed of 3 Convolutional Neural Networks

Deep Neural Network For Optical Events Detection

Detection 
Network

Features 
Network

RPN

1D Faster R-CNNOTDR Trace OTDR Trace with Events
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• Takes as input the entire OTDR trace 

• Outputs a latent representation of the input

• Pre-Trained on Sliding Window Classification

• Inspired by ResNet Architecture

Features Extractor Network

Conv1D Pool1D Residual-Block Residual-Block Residual-Block

OTDR 
Trace

Feature 
Maps

Detection 
Network

Features 
Network

RPN

1D Faster R-CNN
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• Initialized by Features Extractor 
Network

• Generate a set of multi-scale 
region proposals for each spatial 
location in the input feature maps

• Each proposal is associated with an 
eventness score

• Translation invariant approach

Region Proposal Network
Detection 
Network

Features 
Network

RPN

1D Faster R-CNN
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• Initialized by Features 

Extractor and Region 

Proposal Networks

• Extract Region of Interest 

(RoIs) from the input feature 

maps and region proposals

• Classify each RoI with an 

event type

• Refine RoI coordinates to 

match a true event location

Detection Head
Detection 
Network

Features 
Network

RPN

1D Faster R-CNN
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Training follows Faster R-CNN alternate training procedure:

1. Training Region Proposal Network (RPN) layers initialized by 
the Features Extractor Network, keeping its weights fixed

2. Training Detection Head layers using proposals from RPN 
trained at step 1

3. Train RPN layers initializing the Feature Network with weights 
from step 2

4. Training unique layers of the Detection Head, using proposals 
from RPN trained at step 3, and backbone from step 2

Training
Detection 
Network

Features 
Network

RPN

1D Faster R-CNN

Frozen

Active

Not Involved
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Experiments and Comparison 
with Cisco NCS-1K
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• 628 OTDR traces acquired from 
several fiber setup

• 1674 events labeled together with 
Cisco experts

• OTDR events belonging to the most 
common cases

• Ongoing activities to extend the 
dataset with “less common” events

Dataset
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• Mean Average Precision (mAP) score of 85%

Results
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 Expert Driven Approach

o Limited to few event types

o High number of false positives

o Needs of human expert

 Machine Learning Approach

o Trainable on any set of event types

o Precise localization and classification

o Completely automatic

Comparison with Cisco NCS-1K embedded OTDR
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• Conclusions

o Accurate classification and precise localization of OTDR events

o Models implemented in Python and TensorFlow, Inference in TensorFlow 

Lite

o Running into a real-world application on Cisco NCS-1K routing platforms

• Future Developments

o Benchmark results with other detection architectures applied on time-

series data

o Train the algorithm on an extended dataset with larger set of classes (i.e., 

OTDR events)

Conclusion and Future Work 
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