
Event-Detection Deep Neural Network for
OTDR Trace Analysis

Davide Rutigliano?†, Giacomo Boracchi?, Pietro Invernizzi‡, Enrico Sozio‡,
Cesare Alippi?§, Stefano Binetti‡

?Politecnico di Milano, Milano, Italy, ‡Cisco Photonics, Vimercate, Italy,
§Universitá della Svizzera Italiana, Lugano, Switzerland

Abstract. The Optical Time Domain Reflectometer (OTDR) is an op-
toelectronic instrument used to characterize an optical fiber using the
measure of scattered or reflected light from points along the fiber. The
resulting signal, namely the OTDR trace, is commonly used to identify
and localize possible critical events in the fiber. In this work we address
the problem of automatically detecting optical events in OTDR traces,
and present the first 1D object-detection neural network for optical trace
analysis. Our approach takes inspiration from a successful object detec-
tion network in images, the Faster R-CNN, which we adapt to time series
domain. The proposed network can both classify and localize many opti-
cal events along an input trace. Our results show that the proposed solu-
tion is more accurate than existing software currently analyzing OTDR
traces, improving the mean average precision score by 27.43%. In con-
trast with existing solutions that are not able to distinguish many types
of events, our algorithm can be trained in an end-to-end manner to de-
tect potentially any type of optic event. Moreover, our network has been
deployed on embedded OTDR devices to be executed in real-time.

1 Introduction

Optical fiber links represent one of the major communication technologies, rang-
ing from the backbone world-wide telecommunication systems to the last mile
connections reaching our apartments. Optical fibers run below streets of our
cities, but also in impervious areas like deserts, oceans or uninhabited lands.
Problems along these links are not uncommon, because of breakages, bad splic-
ing or conjunctions that impair transmission quality when not even stopping
communication entirely. Promptly detecting problems along the fiber, namely
localizing and possibly classifying them into known categories, is one of the pri-
mary concern of communication companies, as this translates in time and money
saving. Moreover, optical-fiber monitoring enables a better characterization of
the transmission performance, and a better allocation of optical channels. This
latter has become a very important aspect since the introduction of coherent
transmission and of mixed modulation schemes.

† D. Rutigliano is currently with Ericsson. This work was done when this author was
an intern with Cisco.

2 D. Rutigliano et al.

Fig. 1 (a): OTDR trace example
Fig. 1 (b): OTDR events examples: face-
plate, pass-through, fiber-cut, fiber-end

A powerful and widely used instrument to test optical fiber links is the Optical
Time Domain Reflectometer (OTDR) [1]. This instrument injects a series of
optical pulses into the fiber and extracts the light that is scattered or reflected
back to the source. Then, the reflection loss is measured and plotted as a function
of the distance, resulting in the OTDR trace (see Fig. 1a). In OTDR traces, the
background signature refers to the attenuation of the signal due to the fiber
dispersion constant. On top of this, multiple “event signatures” might appear,
resulting from Rayleigh scattering and Fresnel reflections caused by physical
devices, bendings, knots or general flaws along the fiber.

Optical experts can visually recognize events along a trace by their specific pat-
terns (see Fig. 1b). Moreover, there exist ad-hoc software that can automati-
cally analyze OTDR traces acquired in laboratories. However, these solutions
are rather simplistic, and are able to recognize only events belonging to two
macro-categories: “reflection” and “loss”. Here we address the problem of pro-
viding advanced event-detection capabilities to embedded devices that can be
deployed in any network element along the fiber link and that – due to their
minimal electronic – acquire traces characterized by higher noise levels than
laboratory setup.

In particular, we analyze OTDR traces and automatically detect events by means
of a deep learning model that can be trained in an end-to-end manner. The pro-
posed model takes as input an optical trace and localize an arbitrary number of
optic events belonging to different categories, easing the root cause analysis. Our
solution takes inspiration from Faster R-CNN [2] and performs both classifica-
tion and localization of different types of events in an input trace. This results in
the first 1D event-detection Convolutional Neural Network (CNN) able to detect
events in optic signals. The proposed network is very effective over our dataset,
achieving a mean average precision (mAP) score of 88% and an improvement in
mAP of 27.43% with respect to automatic analysis software currently embedded
in Cisco devices. Our model can be easily re-trained to detect more event cate-
gories than those considered in this work. Finally, the proposed network is very
efficient and has recently been deployed on Cisco routing platforms.

Event-Detection Deep Neural Network for OTDR Trace Analysis 3

2 Related Work

Here we briefly introduce deep learning networks meant for object detection
in images, which inspired our solution. Then, we briefly survey deep learning
networks designed to analyze time series and OTDR traces.

2.1 Object Detection Networks for Images

Object-detection networks, namely models that are jointly trained to localize
and classify objects in an input image, have been widely investigated in the
computer vision community. Pioneering solutions like R-CNN [3] and Fast R-
CNN [4] leverage an external region proposal algorithm, that typically implement
some heuristic to preliminary identify regions containing objects. Each region
is then classified separately. Faster R-CNN [2] extracts region proposal in an
efficient and elegant way, by introducing Region Proposal Networks (RPN) which
share the same convolutional layers of a Fast R-CNN detection network [4]. The
effectiveness of this model demonstrates that convolutional feature maps used by
region-based detectors can generate accurate region proposals. On top of these
convolutional features, the RPN jointly performs regression over region bounds
and classification over objectness scores at each location on a regular grid.
Detection systems based on R-CNN are composed of two blocks, the first is
applied at multiple locations and scales on the input image and generates re-
gion proposals for the detection algorithm, which represents the second block.
YOLO [5] pursues a different approach where a single neural network is applied
to the entire image. This makes the inference extremely fast – till processing
video frames in real-time – at a cost of a slight decrease the detection accuracy
with respect to Faster R-CNN. Later versions of YOLO are the de-facto standard
for object detection problems in computer vision.
As mentioned in Section 1 we took inspiration from Faster R-CNN, because
this is a simpler architecture than YOLO and we do not have strict timing
constrains during execution. In fact, OTDR signals have to be analyzed much less
frequently than video frames and, moreover, processing 1D signals is definitely
less computationally demanding than images.

2.2 Deep Learning for Time Series

Given the success of CNN in image classification, it is natural to think that
CNN can also discover patterns in 1D signals. Not surprisingly, Deep Neural
Networks have also reached state-of-the-art performance in many fields of time-
series processing. Recent models perform classification over audio recordings,
electroencephalogram (EEG) or electrocardiogram (ECG) as time series.
Time series classification is a challenging problem in data mining, and a plethora
of algorithms have been proposed, thanks to the increasing availability of time
series data. Recently, a few efforts have been devoted to exploit deep neural net-
works for end-to-end time series classification. ConvTimeNet [6] demonstrates
that fully convolutional neural networks achieve great performance, even without

4 D. Rutigliano et al.

using pooling layers to reduce the input dimensionality. More recently, Incep-
tionTimeNet [7] has shown that deeper CNN models coupled with residual con-
nections can further improve classification, reaching state-of-the-art performance
in time series classification. A review of most recent deep learning approaches
to time series classification is given in [8, 9].
The counterpart of object detection in time series corresponds to localizing and
classifying specific patterns or shapes in the input time series, which in our case
are referred as “events”. This problem has been however much less investigated
and the only examples refer to anomaly detection in heartbeats / ECG trac-
ings [10], earthquake detection in seismic waves [11], specific spoken words in
audio signals [12].

2.3 Deep Learning for OTDR Trace Analysis

Recently, deep learning models have been successfully applied to OTDR trace
analysis. A few studies [13, 14, 15], focus on event recognition in distributed
optical fiber sensors by means of neural networks, and demonstrate the high
potential of deep learning for OTDR systems. In particular, [16] proposes a 1D
neural network based on sequence learning, that takes as input a de-noised 1D
signal and recognizes external intrusion events. In [17] the authors propose a
classifier for OTDR traces based on 2D CNN that accurately classifies events
among 5 categories such as walking or digging. Even if some of these methods
focus on recognition of events from OTDR signals, their purpose is rather dif-
ferent from the one considered in our paper. For instance, [14] applies a deep
neural network for processing seismic data, while others like [17] takes into ac-
count event categories that are quite general and not directly related with the
optic field. Furthermore, despite the similar application context, all the methods
presented above formulate events recognition as a classification problem, while
our purpose is to jointly classify and localize events, estimating also the location
and extent of the event along the OTDR trace.

3 Problem Formulation

In this section we provide a formal description of the problem of detecting optic
events in OTDR traces. Each OTDR trace can be described as a vector1 T =
{x1, x2, ..., xn} where xi ∈ R represents the reflection loss at the i-th position
in the fiber, and n ∈ N is the lenght of the trace. Each OTDR trace T might
contain a different number of events, and each event is represented by triplet
e = (y, start, end) that corresponds to a portion {xstart, ..., xend} of the OTDR
trace exhibiting a pattern associated to a known class y ∈ Y , where Y is the
set of event types. In our experiments we consider the most common events:
Y = { face-plate, pass-through, fiber-end, fiber-cut }.
1 We assume that the necessary processing and re-sampling of the acquired time series

has been already performed.

Event-Detection Deep Neural Network for OTDR Trace Analysis 5

Our goal is to design a model able to automatically detect each event in an
input trace T , estimating its location and label. This model has to be sufficiently
lightweight to be executed in an embedded OTDR device. We assume a labeled
training set D = {(Tj , Ej) , j = 1, . . . , N}, containing N traces is provided,
where Ej = {(ye, starte, ende) , e = 1, . . . ,Mj} is the set of Mj annotated events
over the trace Tj .

4 Deep Detection Network for OTDR Traces

Models from the R-CNN family take as input a 2D matrix of pixels, and provide
as output pairs of predicted classes and bounding boxes encoded as the top left
corner of the box and its height and width. In our case, the input is a time series
represented by a 1D vector of equally spaced points, while the output consists
of pairs of estimated classes y and line segments that are encoded by two coor-
dinates (starte, ende), indicating the starting and ending point of the detected
event. The event-detection network for OTDR traces is illustrated in Fig. 2a and
reproduces the Faster R-CNN architecture [2]. In particular, the overall detec-
tion model is a 1D neural network composed of three major components: i) the
feature extraction network, ii) the RPN, the region proposal network, and iii)
the detection head.

4.1 Architecture of the proposed Model

Feature Extraction Network. The architecture of the feature extractor net-
work (FEN) was inspired by the family of ResNet [18]. After a few 1D convolu-
tional layers, there are four 1D-residual blocks having 7 convolutional layers with
a kernel with size 1×13 (see Fig. 2b). The overall architecture has been designed
to maximize detection performance and is composed of 22 convolutional layers,
featuring a receptive field of 278, stride of 8, resulting in 83.888 parameters.

Region Proposal Network. The RPN is a CNN that takes as input the feature
maps from the FEN and outputs a set of region proposals. We obtain a region
proposal for each spatial location in the input feature map and per each anchor.
In our case, anchors are a fixed set of 1D segments (instead of 2D boxes as
in [2]) with relatively small scales. This choice results in faster converge and
better results, even though our experiments confirm that this parameter does
not heavily impact the learning process. In our settings we use 3 different scales,
yielding A = 3 anchors at each location on the feature maps provided by the
FEN. Each region proposal is associated with an eventness score p, that encodes
the confidence of having an event in that specific location, and an offset t, that is
meant to be applied to the corresponding anchor placed in that specific location
to best match an event annotation. As in [2], offsets t = (tx, tw) are described
by two terms: the scale-invariant translation tx and the log-space width scaling
relative to an anchor a:

tx =
x− xa
wa

; tw = log
w

wa
(1)

6 D. Rutigliano et al.

,

Feature Extractor

Region Proposal Network

Eventness

Anchor Offset DetectionHead

RoI Pool Flatten

Regressor

Classifier

Fig. 2 (a): Architecture of the proposed OTDR Event Detection Network

Conv+ReLU

Conv+ReLU Conv

Conv

+

ReLU Conv+ReLU Conv+ReLU Conv

+

ReLU

Fig. 2 (b): Architecture of Convolutional Blocks in the Feature Extraction Network

being xa (x) the location of the corresponding anchor (estimated segment), and
wa (w) the width of the corresponding anchor (estimated segment). In practice
RPN is applied in sliding window fashion and the region proposals are provided
by two sibling output layers (see Fig. 2a).

Detection Head. As illustrated in Fig. 2a, the detection head takes as input
the feature maps from the FEN and event locations provided by the RPN, which
are fed together to a RoI (Region of Interest) pooling layer. RoI pooling layer
returns a fixed-length feature vector from each region proposal, which are then
fed to the two sibling output layers. The former is a classification layer that is
made by a fully connected layer followed by a softmax. This returns – for each
RoI – a collection of classification posterior probabilities over |Y | + 1 classes,
which is augmented by the “no-event” class as required by detection networks.
The latter is made of |Y | regressors that provide as output the offsets (with
respect to the same anchors used in the RPN) for each of the |Y | event classes.
These offsets further refine the location of each event provided by the RPN,
also taking into account its type. Further details on the network architecture are
described in [2].

Event-Detection Deep Neural Network for OTDR Trace Analysis 7

4.2 Training

Before training the entire OTDR detection network, we preliminary train the
convolutional layers of the FEN by formulating an auxiliary classification prob-
lem (see Section 5). This is a required step to train the RPN and the detection
head which will be fed with the feature maps extracted from the FEN. Then, we
pursue an “alternating training” following the scheme in [2], to train the whole
OTDR detection network. The alternating training consists in fours steps:

1. We fix the weights of the pre-trained FEN backbone and fine-tune the RPN
layers for solving the region proposal task.

2. We train only the detection head on the proposals provided by the RPN.
3. We fix the weights of the FEN backbone, and fine-tune specifically the layers

of the RPN, using the entire network as a detector.
4. Finally, we fine tune only the detection-head layers, keeping all the weights

fixed in both RPN and FEN.

Training FEN. As suggested in [4], we take the convolutional layers of the
FEN and add a Global Averaging Pooling (GAP) [19] and a Softmax layers
at the network top. This modification allows us to preliminary train the feature
extraction layers for an event classification task over slices extracted from OTDR
traces. Each slice is cropped over a fixed-sized window of 300 points and labeled
with its corresponding type (including “no-event”). Once trained, the GAP and
softmax layers are removed, and the trained layers are used to initialize the 1D-
Faster R-CNN. Features extracted by these layers are then fed to both the RPN
and detection head (see Fig. 2a).

Training RPN. RPN training develops similar to [2] and promotes estimated
anchors to match the locations of annotated events, ignoring event labels. In
order to define the ground truth for the eventness score returned by the RPN,
we consider the i−th anchor as positive match when it has an IoU higher than
0.5 with the support of at least one annotated event (in this case it is associated
to p∗i = 1). Anchors having IoU smaller than 0.5 with all the support of the
annotated events are deemed as negative (p∗i = 0). The loss function for training
the RPN over a mini-batch combines the classification error for the eventness
scores and a regression error for the estimated anchor offsets:

L (p, t) =
∑
i

Lcls (pi, p
∗
i) + λ ·

∑
i

p∗i · Lreg (ti, t
∗
i) . (2)

Where p and t are the collections of eventness score and offset relative to their
corresponding anchors, respectively. The summation is intended over a mini-
batch of region proposals. The event loss Lcls is the binary cross-entropy over
event/no-event classes (with targets p∗i defined above). The offset regression loss
Lreg is based the smoothed L1 loss [2], namely L1,smooth, which is a variant of
L1 loss function that is smoothed at the origin:

L1,smooth (x) =

{
1
2 x

2, if |x| < 1

|x| − 1
2 , otherwise.

(3)

8 D. Rutigliano et al.

Regression loss compares the estimated (t) and ground-truth (t∗) offset relative
to the same anchor defined as in (1). Regression loss is multiplied by p∗i because
we want to assess localization errors only for positive anchors. The hyperparam-
eter λ balances the two terms of this multi-task loss function.

Training Fast R-CNN. The multi-task loss computed on each RoI follows
from [2] and is defined as:

L (yi, y
∗
i , ti, t

∗
i) = Lcls (yi, y

∗
i) + λ · [y∗i ≥ 1] · Lreg (ti, t

∗
i) (4)

where yi (y∗i) denotes the class prediction (ground truth) for each RoI, while ti
(t∗i) is the offset parameterized as in (1) and represent the shift of the predicted
(true) event with respect to a generic anchor. As in (2), the hyper-parameter λ
balances the classification Lcls and regression Lreg terms of the multi-task loss.
The term [y∗i ≥ 1] evaluates to 1 when y∗i ≥ 1 and 0 otherwise, being y∗i = 0
the no event class. This latter factor is used to assess regression loss only at
optic events. The classification loss Lcls simply consists in the categorical-cross
entropy for the predicted event types, while Lreg is defined as for the RPN.

5 Experiments

In this section we first describe the dataset preparation procedures and the
employed figures of merit, then illustrate the experimental results for both event
detection and for the auxiliary classification task to train the FEN. This latter
indicates how good features are at distinguishing optical events.

5.1 Dataset of OTDR Traces

We first define a range of real fiber span setups, which include different event’s
types placed in different locations of the fiber link. OTDR recordings are stored in
“SOR” file format [20], which includes – together with all the raw measurement
– several information about the OTDR module and the tested link. To obtain
the OTDR traces we extract only the raw measurements and the location along
the fiber for each measurement. As a pre-processing step we normalize all the
power values of the trace to have intensity within [0, 1]. All the traces have been
annotated by locating the initial and final points of each event, and labeled in
Y , see Section 3. A specific annotation tool has been developed for this purpose.
Overall, we have collected 628 traces with 1674 labeled events (excluding no
events). Even if this dataset have much fewer examples than image classification
test-beds, our event-detection network that is designed for 1D signals has overall
103.108 parameters, which is much less than 2D object detection networks.

5.2 Experimental Setup

Due to the relatively small size of the dataset, both approaches have been eval-
uated using K − Fold Cross-Validation. We split our dataset in K = 5 different

Event-Detection Deep Neural Network for OTDR Trace Analysis 9

folds and performance are estimated over the union of all the test folds. During
training we use Adam optimizer with learning rate 0.001, small batch sizes (8 for
the pre-training of the layers of the FEN, and 2 for training the event-detection
network), 200 epochs on each fold and set λ = 5 in (2) and (4). In addition,
to reduce the risk of overfitting, we adopt the early-stopping criteria that the
validation error should decrease in 25 epochs.

Data Augmentation. Given the class imbalance and the limited amount of
annotated events, when training the FEN for the auxiliary classification task,
we resort to several data-augmentation techniques to improve generalization
capabilities of our network. We apply, to 10% of randomly selected data in each
batch, a right/left translation of the OTDR trace by a random amount between
5% and 25% of the original size. Furthermore, we also shift the power amplitude
by adding a random value within [−8,+8]. This latter augmentation is applied
randomly to 5% of each training batch. On top of these “standard” augmentation
transformations, we also adopted mix-up data augmentation [21]. Mix-up has
been shown to be very beneficial when training deep CNNs for solving several
tasks both in image and time series domains. Indeed, we found this technique
is also very effective to improve generalization capabilities of our OTDR event
detection network.

5.3 Event Classification Performance

To evaluate performance of the FEN on the auxiliary event classification task
mentioned in Section 4.2, we resort to common classification metrics, namely
the accuracy, precision, recall and F1 score. Results are computed averaging
performances from all the test folds and are reported in Table 1a. The layers of
the FEN are very good at identifying specific events such as no-event and face-
plate, while for fiber-end and fiber-cut we found slightly worse performance, as
reported in Fig. 3b. This can be due to the class imbalance in our dataset, since
we have roughly 250 examples for fiber-end and fiber-cut class, while at least
500 examples for the other classes (see Fig. 3a).

5.4 Event Detection Performance Metric

In computer vision, object-detection performance are typically assessed via the
mean average precision (mAP) score, which is a global measure of classification
and localization accuracy. This metric has been introduced in the PASCAL VOC
challenge [22]. We also adopt the COCO [23] metric, denoted as mAP@ [.5, .95]:
which evaluates mAP at 10 different intersection over union thresholds. As both
metrics are specifically designed for 2D boxes, they have been adapted to cope
with our predictions that are instead 1D line segments.

5.5 Event detection performance

Our model achieves very satisfactory detection performance with an average
precision score (AP@0.5) exceeding 77% in each class, and a mean average pre-

10 D. Rutigliano et al.

Fig. 3 (a): Class distribution Fig. 3 (b): Confusion Matrix

Metric NE FP PT FE FC AVG

Accuracy 0.9760 0.9970 0.8760 0.9010 0.9260 0.9502
Precision 0.9387 0.9937 0.9544 0.8833 0.9540 0.9448
Recall 0.9763 0.9968 0.8762 0.9008 0.9396 0.9351
F1 Score 0.9571 0.9952 0.9136 0.8919 0.9396 0.9395
ROC-AUC 0.9872 0.9995 0.9914 0.9842 0.9895 −

Table 1 (a): Classification results over Cross-Validation2

Event Type PASCAL-VOC COCO

Face-Plate 0.86 –
Pass-Through 0.89 –
Fiber-End 0.77 –
Fiber-Cut 0.88 –
mAP 0.85 0.49

Event Type NCS-1K Ours

Reflective 0.25 0.76
Non-Reflective 0.77 0.78
End of Fiber 0.49 0.76
mAP 0.50 0.77

Table 1 (b): Mean AP Scores Table 1 (c): NCS-1001 Comparison

cision equal to 85% among all the classes (see Table 1b). We also achieve 49%
of MS-COCO mean average precision.

We have also compared our approach with existing solutions currently embed-
ded in Cisco NCS-1001 (or shortly NCS-1K) for OTDR events detection. To
enable a fair comparison, we have mapped predicted event types to the standard
categories detected by existing solutions, which are fewer than those provided
by the proposed OTDR detection network. These events are reflective, non-
reflective and fiber-end. Results in Table 1c show that the proposed detection
network substantially outperforms existing solutions on NCS-1K devices, which

2 No-Event (NE), Face-Plate (FP), Pass-Through (PT), Fiber-End (FE), Fiber-Cut
(FC), average among classes (AVG)

Event-Detection Deep Neural Network for OTDR Trace Analysis 11

implement hand-crafted detectors characterized by thresholds to be tuned, and
that operate under strict assumptions on the event position and size. Moreover,
the proposed OTDR event-detection network can successfully identify events of
different types, and can provide a more accurate localization since it does not
process the trace on a fixed-size window basis.

6 Conclusion and future work

In this paper we presented a deep learning model that detects events in OTDR
traces. This is a very promising alternative to existing solutions, which are based
on simple expert-driven rules and are not flexible enough to identify different
types of events along the fiber. We show that the proposed approach is not
only able to recognize more event types than existing algorithms, but it is also
accurate in localizing them. Remarkably, the proposed solution can be easily
extended to detect a larger set of event types, including rare events or events
that are less common than those considered in this work.
Finally, our experiments show that the proposed approach can effectively solve
the optical event-detection problem, and that can be used in a real-world envi-
ronment, saving time to optic engineers and providing detailed analysis of OTDR
traces without requiring special expertise. Our event-detection network has been
already deployed onto Cisco NCS-1001 optical platform, offering an on-demand
feature for automatic OTDR trace analysis.

References

[1] M.K. Barnoski et al. “Optical time domain reflectometer”. In: Applied
optics 16.9 (1977).

[2] Shaoqing Ren et al. “Faster R-CNN: Towards real-time object detection
with region proposal networks”. In: Advances in neural information pro-
cessing systems. 2015, pp. 91–99.

[3] Ross Girshick et al. “Rich feature hierarchies for accurate object detection
and semantic segmentation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2014, pp. 580–587.

[4] Ross Girshick. “Fast R-CNN”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2015, pp. 1440–1448.

[5] Joseph Redmon et al. “You Only Look Once: Unified, real-time object
detection”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2016, pp. 779–788.

[6] Kathan Kashiparekh et al. “Convtimenet: A pre-trained deep convolu-
tional neural network for time series classification”. In: 2019 International
Joint Conference on Neural Networks (IJCNN). IEEE. 2019, pp. 1–8.

[7] Hassan Ismail Fawaz et al. “Inceptiontime: Finding alexnet for time se-
ries classification”. In: Data Mining and Knowledge Discovery 34.6 (2020),
pp. 1936–1962.

12 D. Rutigliano et al.

[8] John Cristian Borges Gamboa. “Deep learning for time-series analysis”.
In: arXiv preprint arXiv:1701.01887 (2017).

[9] Hassan Ismail Fawaz et al. “Deep learning for time series classification: a
review”. In: Data Mining and Knowledge Discovery 33.4 (2019), pp. 917–
963.

[10] Özal Yıldırım et al. “Arrhythmia detection using deep convolutional neural
network with long duration ECG signals”. In: Computers in Biology and
Medicine 102 (2018), pp. 411–420. issn: 0010-4825.

[11] Yue Wu et al. “DeepDetect: A cascaded region-based densely connected
network for seismic event detection”. In: IEEE Transactions on Geoscience
and Remote Sensing 57.1 (2018), pp. 62–75.

[12] Dimitri Palaz, Gabriel Synnaeve, and Ronan Collobert. “Jointly Learning
to Locate and Classify Words Using Convolutional Networks.” In: INTER-
SPEECH. 2016, pp. 2741–2745.

[13] Metin Aktas et al. “Deep learning based multi-threat classification for
phase-OTDR fiber optic distributed acoustic sensing applications”. In:
Fiber Optic Sensors and Applications XIV. Vol. 10208. International So-
ciety for Optics and Photonics. 2017, 102080G.

[14] Lihi Shiloh, Avishay Eyal, and Raja Giryes. “Deep learning approach for
processing fiber-optic DAS seismic data”. In: Optical Fiber Sensors. Opti-
cal Society of America. 2018, ThE22.

[15] Sascha Liehr et al. “Real-time dynamic strain sensing in optical fibers using
artificial neural networks”. In: Optics express 27.5 (2019), pp. 7405–7425.

[16] Huijuan Wu et al. “One-dimensional CNN-based intelligent recognition
of vibrations in pipeline monitoring with DAS”. In: Journal of Lightwave
Technology 37.17 (2019), pp. 4359–4366.

[17] Yi Shi et al. “An event recognition method for Φ-OTDR sensing system
based on deep learning”. In: Sensors 19.15 (2019), p. 3421.

[18] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2016, pp. 770–778.

[19] Min Lin, Qiang Chen, and Shuicheng Yan. “Network In Network”. In:
2nd International Conference on Learning Representations, ICLR. Ed. by
Yoshua Bengio and Yann LeCun. 2014.

[20] Optical Time Domain Reflectometer (OTDR) Data Format. SR-4731. Tel-
cordia Technologies. 2011.

[21] Hongyi Zhang et al. “mixup: Beyond Empirical Risk Minimization”. In:
6th International Conference on Learning Representations, ICLR. 2018.

[22] Mark Everingham et al. “The PASCAL visual object classes challenge 2007
(VOC2007) results”. In: (2007).

[23] Tsung-Yi Lin et al. “Microsoft COCO: Common objects in context”. In:
European Conference on Computer Vision. Springer. 2014, pp. 740–755.

