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Abstract—We address the problem of detecting anomalies
with respect to structured patterns. To this end, we conceive
a novel anomaly detection method called PIF, that combines
the advantages of adaptive isolation methods with the flexibility
of preference embedding. Specifically, we propose to embed the
data in a high dimensional space where an efficient tree-based
method, PI-FOREST, is employed to compute an anomaly score.
Experiments on synthetic and real datasets demonstrate that
PIF favorably compares with state-of-the-art anomaly detection
techniques, and confirm that PI-FOREST is better at measuring
arbitrary distances and isolate points in the preference space.

I. INTRODUCTION

Anomaly detection deals with the problem of identifying
data that do not conform to an expected behavior [1]. This
task, sometimes referred to as outlier detection, finds numerous
applications in fraud [2], [3] and intrusion [4] detection, health
[5] and quality monitoring [6], to name a few examples.
In the statistical and data-mining literature, anomalies are
typically detected as samples falling in low-density regions
of a probability density model describing the data [1]. On the
contrary, normal data are samples that lie in denser regions.
In this paper, we consider anomaly detection in a pattern-
recognition setup, where anomalies are samples that deviate
from certain structured patterns. Although statistical anoma-
lies can also be seen as a particular case of these pattern-
recognition anomalies, where the model describing normal
data is a pdf, statistical-based and pattern-based approaches are
traditionally treated separately in the literature as they employ
different algorithms and methods.

Fig. 1 illustrates differences between statistical and pattern-
recognition anomalies. In Fig. 1a a statistical anomaly can
be easily identified as a sample falling in a low density
area, in Fig. 1b anomalies are instead points that are not
collinear, while normal data belong to two patterns described
by line equations. Note that density by itself in this latter
case is not meaningful to identify anomalies, unless further
processing is considered. Although overly simplified, Fig. 1b
illustrates a primary task that has to be successfully ad-
dressed in several computer vision and pattern recognition
applications, where more general parametric models are used
instead of straight lines to identify structures or regularities in
data. Finding anomalies with respect to a parametric model
is at the core of many low level vision tasks, like robust
curve detection [7]. Moreover, this is a problem routinely
addressed in Structure-from-Motion [8], where data consist in
point-wise matching features between multiple images, and
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Fig. 1: Left: an anomaly (marked as ×) is recognized as a point
in a low density area. Right: anomalies are defined with respect
to their deviation from patterns described by line equations.

anomalies are wrong matches that cannot be described by
consistent geometric transformations, such as homographies
or fundamental matrices. Other examples include 3D registra-
tion [9], where anomalous matches are defined with respect
to rototranslations, and object/template matching [10]–[12].
Anomaly detection in these settings is very challenging, since
anomalies cannot be directly removed without having iden-
tified each and every structure first but, at the same time,
anomalies hinder the identification of the existing structures.
For this reason, anomalies are often detected as a byproduct
of a multi-structure estimation process, which is performed
through robust model fitting algorithms [13]–[16]. Within this
framework, the structures underlying normal data are first
identified, and then, all those points that do not conform with
them are labeled as anomalous. We believe that model fitting is
by far a more difficult problem than anomaly detection and that
algorithms directly detecting anomalies would be preferable
in those situations where anomaly detection is the primary
goal (e.g., because anomalies convey relevant information on
their own). Even in those situations where the focus is on
the recovery of structures/models, it might be convenient to
eliminate structure-less samples first, to ease the subsequent
structure estimation task, as demonstrated by several domain-
specific pre-filtering techniques employed before robust esti-
mation (e.g., [17], [18]).

Here we present Preference Isolation Forest (PIF), a novel
algorithm to directly detect anomalies among structures whose
nature is described by a given parametric function of unknown
parameters. To this purpose, we embed data into an high
dimensional space, called preference space [14], [15], and
then we perform anomaly detection by relying on PI-FOREST,
an efficient tree-based method that reflects a suitable distance



metric for identifying anomalies. To the best of our knowledge,
this is the first time anomaly detection is applied in the pref-
erence space. Extensive experiments show that (i) exploiting
structure information allows to identify anomalies effectively
and (ii) PIF outperforms state-of-the-art anomaly detectors
like Local Outlier Factor [19] (LOF), Isolation Forest [20],
[21] (IFOR) and Extended Isolation Forest [22] (EIFOR). Most
remarkably, we show that straightforward solutions plugging-
in anomaly detection algorithms in the preference space are
often not successful. We speculate that this is due to the fact
that these methods do not leverage an appropriate distance
function for the preference space. On the contrary, PI-FOREST
achieves superior performance thanks to a nested Voronoi
tessellations constructed over the Tanimoto distance [23] that
is specifically designed to capture preference agreements.

In summary our main contributions are:
• PIF, the first algorithm that identifies anomalies with

respect to structured patterns by means of preference
embedding.

• PI-FOREST, a novel tree-based anomaly detection tool
that is very successful in the preference space, but that
can be extended to any metric space.

II. PROBLEM FORMULATION

We assume we are given a noisy finite dataset X =
{x1, . . . ,xn} ⊂ Rd containing both normal1 and anomalous
data. Normal data can be described as belonging to a union
of structures S = S1 ∪ . . . ∪ Sk, defined by a parametric
model family F , of which we assume to know the analytical
expression. In particular, each structure Si corresponds to the
vanishing set of an instance of F , described by a specific pa-
rameter vector θi. In a noisy free setup, all normal points must
satisfy equation F(x,θi) = 0 for some parameter vector θi
but, because of noise, the previous equation is not necessarily
satisfied, and we should rather expect F(x,θi) ≈ 0 for every
x ∈ Si. Anomalies instead do not refer to any structure, and
form a subset A ⊂ X . For example, the inliers depicted in
Fig. 1b can be described as a collection of two lines: in this
case, each normal point x = (x, y) ∈ S ⊂ R2 approximately
satisfies a first degree equation F(x,θ) = θ1x+θ2y+θ3 = 0,
where θ = (θ1, θ2, θ3) represents the line coefficients. On
the contrary, anomalies are generated by a different unknown
process and are not coherent with lines.

We address the problem of automatically detecting all the
anomalies A ⊂ X . Specifically, our aim is to derive an
anomaly score α : X → R that ranks higher the anomalies,
namely α(a) � α(s) for all a ∈ A and s ∈ S, so that it
is possible to detect them by setting an appropriate threshold.
This task is particularly challenging since the overall number
of structures k as well as their parameters {θi}i=1,...,k are
unknown. The nature and amount of noise determining how
much normal data depart from the analytical equations of their
corresponding structure is unknown, but we assume it can be
directly estimated (e.g., [24]).

1Herein and through the paper by normal we do not mean Gaussian, but
rather that conform to the normal state.

III. RELATED WORK

Several approaches have been proposed to identify anoma-
lies, and for a comprehensive description refer to [1], [25]. A
possible taxonomy envisages three main categories: distance-
based, density-based and model-based. In distance-based
anomaly detection [26] an instance is considered anomalous
when its neighborhood does not contain a sufficient number
of samples. Simplest methods of this category are based on
the K-Nearest Neighbors [27] approach: the anomaly score
of a data sample, is simply the distance to its k-th nearest
neighbor. Better results can be obtained when data-dependent
distance measures are employed [28]. Density-based anomaly
detection methods (e.g., [19], [29], [30]) follow a similar
idea, but density is used instead of distance. The key concept
is that anomalous and normal instances differ in their local
density. An important algorithm representative of this category
is LOF [19]. The basic idea is that density around a normal
instance is similar to the density around its k-neighbors,
in contrast the density around an anomaly is significantly
different from the local density of its k-neighbors.

In model-based anomaly detection it is assumed that normal
data are generated from a model, thus, the more an instance
deviates from the model, the higher its probability to be
anomalous. Most existing model-based methods learn a model
from the data, then identify anomalies as those data points that
do not fit the model well. Notable examples of this approach
are classification-based methods [31], reconstruction-based
methods [32], [33], [34], and clustering-based methods [35].
Isolation Forest (IFOR) [20], [21] instead directly isolates
anomalies by assuming that they are “few and different” [20]
compared to normal instances. IFOR builds a forest of ran-
domized trees [36] from data and [20], [21] show that, on
average, anomalous points end up in leaves at shallower levels
of tree height than normal data (herein and hereafter we refer
to height as a synonym for depth). An effective extension of
IFOR is Extended Isolation Forest (EIFOR) [22].

The above methods are usually applied in the ambient space,
namely the space where data are given, and are effective
to identify statistical anomalies. However, when dealing with
pattern-recognition anomalies, this is not the best solution as
pattern or group-level information is not exploited. In our
approach we leverage on the principle that multiple normal
points belong to a structure, shifting the problem in a pref-
erence space where anomalies can be easily separated from
structured data. In the next section we recall the main concepts
of preference analysis necessary for this construction.

IV. PREFERENCE ISOLATION FOREST

The proposed Preference Isolation Forest (PIF) computes
anomaly scores α in two main steps: (i) embedding the data
in the preference space and (ii) adopting a tree-based isolation
approach to detect anomalies in the preference space.

A. Preference embedding

For the first time in the context of anomaly detection,
we propose to use the preference embedding, a technique



Algorithm 1: PIF anomaly detection
Input: X - input data, t - number of trees, ψ -

sub-sampling size, b - branching factor
Output: Anomaly scores {αψ(E(xi))}i=1,...,n
/* Preference embedding */

1 Sample m models {θi}i=1,...,m from X
2 P ← preferenceEmbedding(X, {θi}i=1,...,m)
/* Training Preference Isolation Forest */

3 F ← PI-FOREST(P, t, ψ, b)
/* Scoring input data */

4 for i = 1 to |P | do
5 h← [0, . . . , 0] ∈ Rt
6 for j = 1 to t do
7 T ← j-th PI-TREE in F
8 [h]j ← PATHLENGTH(pi, T, 0)

9 αψ(pi)← 2−
E(h(pi))

c(ψ)

10 return {αψ(pi)}i=1,...,n

previously used in the multi-model fitting literature [14]–[16]
to which the interested reader is referred for further details.
PIF starts by mapping each point x ∈ X to an m-dimensional
vector having components in the unitary interval [0, 1], via
a mapping E : X → [0, 1]m. The space [0, 1]m is called
preference space. More precisely, the embedding depends
on: a family F of models parametric in θ, a set of m
model instances {θi}i=1,...,m and an estimate of the standard
deviation σ of the noise affecting the data. A sample xi ∈ X is
then embedded to a vector pi = E(xi) whose j-th component
is defined as

[pi]j =

{
φ(δij) if δij = F(xi,θj) ≤ 3σ

0 otherwise
, (1)

where δij = F(xi,θj) measures the deviation of sample
xi with respect to the model θj , and φ is a monotonically
decreasing function in [0, 1] such that φ(0) = 1. As in [16],
we use a Gaussian function of the form

φ(δ) = exp(−δ2/σ). (2)

The j-th component of the preference vector pi, namely [pi]j ,
is the preference granted by a point xi to model θj : the closer
xi to θj , the higher the preference. The embedding function
E maps dataset X to the set of preference vectors

P = {pi = E(xi) |xi ∈ X}, (3)

which represents the image of X through the embedding E .
The pool {θi}i=1,...,m of m models are sampled from the data
using a RanSaC-like strategy (line 1, Algorithm 1): minimal
sample set – composed by the minimal number of points
necessary to constraint a parametric model – are extracted
uniformly from the data, and are used to determine the model
parameters. For example, two points are drawn to determine
the equation of a line θj .

The preference space is equipped with the Tanimoto dis-
tance [23] to measure similarity between preferences: given
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Fig. 2: A PI-TREE with branching factor b = 3 and height
limit l = 3 constructed from a set of points in R2. Every
region is recursively split in b sub-regions. The most isolated
samples fall in leaves at lowest heights, such as ’a’ and ’d’
cells.

two samples pi = E(xi) and pj = E(xj) their Tanimoto
distance is

τ(pi,pj) = 1− 〈pi,pj〉
‖pi‖2 + ‖pj‖2 − 〈pi,pj〉

. (4)

Our choice for the Tanimoto distance is motivated by the fact
that points conforming to the same structures share similar
preferences, yielding low distances. In contrast, anomalies
would result in null preferences to the majority of structures,
thus resulting in very sparse vectors that tend to have distance
close to 1 with the majority of other samples.

B. PI-FOREST

By moving from a Euclidean space to the preference space,
state-of-the-art data driven methods such as IFOR and its
variants perform poorly (as we will show in our experiments),
since the splitting criterion used by these techniques implicitly
measures point distances by the `2 norm. For this reason, we
build our solution upon PI-TREE, a novel tree-based isolation
technique where the splitting criterion is based on Voronoi
tessellations. A Voronoi tessellation is simply a partition of a
metric space into b regions defined by b samples, called seeds
S = {si}i=1,...,b. The i-th region produced by the tessellation
contains all the points p of the space having si as the
closest seed in S. The proposed PI-TREE is a nested version
of Voronoi tessellations, where each region is further split
in b sub-regions; this procedure can be repeated recursively
as illustrated in Fig. 2. Voronoi tessellation as partitioning
criterion preserves, better than other splitting schemes, the
notion of distance in the preference space. In fact, in our case,
regions are defined by seeds S and Tanimoto distance (Eq. 4).
In general, Voronoi tessellation naturally applies to any metric
space, preference space included. The construction of a PI-
TREE is described in Algorithm 2 and starts from a single
region corresponding to the whole space [0, 1]m that is then
recursively split in b sub-regions by randomly selecting b seeds
{si}i=1,...,b ⊂ P (line 4). Thus the points are partitioned into b
subsets P = {Pi}i=1,...,b, each Pi ⊂ P collecting those points



Algorithm 2: PI-TREE

Input: P - preference representations, e - current tree
height, l - height limit, b - branching factor

Output: A PI-TREE
1 if e ≥ l or |P | < b then
2 return exNode{Size← |P |}
3 else
4 randomly select a set of b seeds {si}i=1,...,b ⊂ P
5 P ← voronoiPartition(P, {si}i=1,...,b)
6 chNodes← ∅
7 for i = 1 to b do
8 chNodes← chNodes ∪ PI-TREE(Pi, e+ 1,
9 l, b)

10 return inNode{ChildNodes← chNodes,
11 SplitPoints← {si}i=1,...,b}

Algorithm 3: PI-FOREST

Input: P - preference representations, t - number of
trees, ψ - sub-sampling size, b - branching
factor

Output: A set of t PI-TREES
1 F ← ∅
2 set height limit l = logb ψ
3 for i = 1 to t do
4 P ′ ← subSample(P,ψ)
5 F ← F ∪ PI-TREE(P ′, 0, l, b)

6 return F

in P that have si as the closest seed according to Tanimoto
distance (line 5). The number of seeds b is the branching factor
of the tree associated to the splitting process. The partitioning
process stops when it is not possible to further split a region
(i.e., the number of points in the region is less than b), or the
tree reaches a maximum height (lines 1-2), set by default at
l = logb ψ (an approximation for the average tree height [37]),
where ψ is the number of points used to build the tree. The
recursive process is outlined in lines 6-9, where a sub-tree is
build for each subset Pi ∈ P (line 8).

The height of the leaf in which a point falls into is directly
related to its separability: a lower height corresponds to points

Algorithm 4: PATHLENGTH

Input: p - a sample, T - a PI-TREE, e - current path
length

Output: Path length of p
1 if T is an external node then
2 return e+ c(T.size)

3 childNode← voronoiLocate(p, T.splitPoints,
4 T.childNodes)
5 return PathLength(p, childNode, e+ 1)

that can be separated with few splits from the rest of the data.
To get an intuition of the concept of separability consider
Fig. 2 where, for visualization purposes, the Euclidean distance
is being considered. Here anomalies correspond to samples
that fall in leaves with lower height. Conversely, samples in
high-density regions fall in leaves with higher height since in
denser regions the number of possible recursive splits is higher.
In order to gain robustness and to decrease the variance due
to randomness in PI-TREE realizations, this idea is extended
to PI-FOREST, a forest of PI-TREES, and the average height
of a point in this forest is used to compute its overall anomaly
score α. Algorithm 3 details the construction of a PI-FOREST
containing t PI-TREES. Each PI-TREE is instantiated on a
subset P ′ ⊂ P of preference representations of X (line 4).
The subsampling factor is controlled by the parameter ψ.

C. Anomaly score

Anomaly scores are computed as in IFOR and other tree-
based isolation methods [20], [21], [38]. With reference to
Algorithm 1, after the samples are embedded in the preference
space (lines 1-2) and the PI-FOREST is built (line 3), each
instance p ∈ P is passed through all the PI-TREES of the PI-
FOREST, and the heights reached in every tree are computed
and collected in a vector h(p) = [h1(p), . . . , ht(p)] (lines
5-9). Then, (line 10) the anomaly score α is

αψ(p) = 2−
E(h(p))
c(ψ) , (5)

where E(h(p)) is the mean value over the elements of h(p)
and c(ψ) is an adjustment factor.

The heights are computed through PATHLENGTH function
described in Algorithm 4. In particular, at line 3, the instance p
is located in the corresponding region of the Voronoi partition
having T.splitPoints as seeds. Then the child node associated
to the region is identified and used for the subsequent recursive
process at line 5. At line 2, the height is computed as
hi(p) = e+ c(T.size), that is the height e of the leaf where
p falls in the i-th tree, plus an adjustment coefficient c(n)
that depends on the cardinality n of this leaf. The adjustment
factor is necessary to take into account subtrees that stopped
the construction process, having reached the height limit l. We
assume that b = 2, in this case the adjustment factor becomes
as [20], [21]:

c(n) =


0 if n = 1

1 if n = 2

2H(n− 1)− 2(n− 1)/n if n > 2

, (6)

where H(i) is the harmonic number and it can be estimated
by ln(i) + γ (being γ the Euler’s constant).

The complexity of PIF is O(ψ · t · b · logb ψ) as it regards
PI-FOREST construction, and O(n ·t ·b · logb ψ) for the scoring
phase, where n is the number of instances to be scored. With
respect to IFOR we have an additional overhead due to the
embedding E(·), which however can be easily parallelized.

PIF has two main advantages over other isolation-based
anomaly detection tools, like IFOR. First, the preference trick



(a) Input data

(b) IFOR (c) EIFOR

(d) LOF (e) PIF

Fig. 3: Color-coded anomaly scores produced by different
algorithms: high scores in red, low scores in blue.

allows to integrate useful information about normal data and
consequently to better characterize structure-less anomalies.
Second, the Voronoi tessellation preserves the intrinsic dis-
tance of the preference space (i.e., Tanimoto distance) during
the splitting process. These two features can be appreciated
in the example reported in Fig. 3 where the problem of
identifying anomalies with respect to two circles is addressed.
By looking at the color-coded anomaly scores produced by
IFOR, EIFOR, LOF, and PIF, it is possible to recognize
that only PIF correctly identifies anomalies inside the circles.
On the contrary IFOR, that works directly with X , does not
reflect the structures of normal data, as it performs splits
parallel to the axes, and consequently struggles to adapt to
geometries that are not aligned to the main axes. With EIFOR
the situation improves slightly, but anomalies still cannot be
precisely identified. Also LOF, which heavily depends on
the neighbourhood parameter k to estimate local density, has
difficulties. LOF identifies as anomalous those regions where
data density changes. The region outside the circles, although
sparser, does not give rise to a change in density and it is
thus erroneously identified as normal. Note that only PIF
exploits the preference space, the other methods are confined
to operate in terms of density and isolability. However, in the
experiments reported in the next section, we will see that the
advantages of PIF are not just motivated by the preference
embedding, since other anomaly detection methods plugged in
the preference space would yield lower detection performance
than PIF. This further demonstrates the importance of PI-
FOREST having regions defined by Tanimoto distance rather
than Euclidean distance.

V. EXPERIMENTAL VALIDATION

We validate the advantages of PIF by assessing the benefits
of coupling the preference trick with PI-FOREST, both in terms
of detection accuracy and stability. To this purpose, we adopt
both synthetic and real-world datasets.

A. Datasets

We consider the synthetic 2D datasets depicted in Fig. 4.
The structures S characterizing normal data are lines in stair[∗]

and star[∗], and circles in circle[∗], where [∗] indicates the
number of structures. Anomalies have been sampled from
a uniform distribution within the bounding box containing
normal data. For all the datasets every structure has 50 normal
points, with the exception of stair3 and circle3 that have
unbalanced structures, as detailed in Table Ia. Experiments on
real data are performed on the AdelaideRMF dataset [39], that
consists in stereo images and annotated matching points. Erro-
neous matches are also annotated and correspond to anomalies.
The first 19 sequences refer to static scenes containing several
planes, each giving rise to a set of matches described by an
homography. For the remaining 19 sequences the scene is not
static: several objects move independently and give rise to a set
of point correspondences described by a a fundamental matrix.
In both these scenarios we want to recognize anomalous
matches.

B. Methodology

We compare PIF with IFOR, EIFOR and LOF. To assess the
benefits of the preference trick, experiments on synthetic data
are performed in the (i) ambient (Euclidean) space, (ii) pref-
erence space and (iii) binarized preference space, where the
Tanimoto distance specializes exactly to the Jaccard distance
[40] (binary vectors are used in Eq. (4)). We also explore the
performance of PIF without the preference embedding (PIF
`2), i.e. setting P = X , and with the binarized preference
embedding (PIF jac). Preferences are computed with respect
to a pool of m = 10|X| model instances, being circles used
in circle[∗] datasets and lines elsewhere.

To evaluate the stability of our approach, we perform an
additional experiment on stair3 and circle5. These datasets
have been modified so that they contain different percent-
ages of anomalies. In particular, for both datasets, |X| is
kept fixed and equal to 1000, while |S| and |A| vary as:
|A|
|X| = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Experiments on real datasets are performed in the preference
space. The pool of models is determined by sampling m =
6|X| model instances, homographies for the first 19 datasets
and fundamental matrices for the remaining 19.

The parameters of IFOR, EIFOR and PIF are kept fixed to
t = 100, ψ = 256 and b = 2 in all the experiments. As regard
LOF instead, given its sensitivity to the neighborhood size,
various values of the parameter k are employed, ranging from
k = 10 to k = 500.

Anomaly detection performance, collected in Tab. II, IIIa
and IIIb, are evaluated in terms of AUC averaged over 10
runs. The highest value for each dataset is underlined, whereas
a boldface indicates that the best AUC is statistically better
than its competitors in the same embedding, according to a
paired t-test with α = 0.05. The LOF results refer to the k
that maximizes the average AUC along the datasets of each
model family, for all the embeddings (k parameter values
are reported in Table Ib). Fig. 5 displays the AUC achieved
in correspondence with different percentages of anomalies
employed, averaged over 10 runs. Only the best 3 values of k
for LOF have been reported.



(a) stair3 (b) stair4 (c) star5 (d) star11 (e) circle3 (f) circle4 (g) circle5

Fig. 4: Synthetic datasets. Orange dots represent normal data, while blue dots represent anomalies.

C. Discussion

Table II shows that all methods improve their performance
when performed in the preference space. Therefore, it is
always convenient to exploit the preference trick rather than
working directly in the ambient space (i.e., in X). In addition,
continuous preferences must be preferred over binary ones, as
their greater expressiveness produces a space where anomalies
can be identified more effectively. Note that LOF achieves a
better AUC on star5, star11 and circle5 where normal data are
evenly distributed among structures, and it is possible to get an
optimal parameter of k. On the contrary, LOF performs poorly
when structures have different cardinalities (stair3 and circle3).
PIF instead works with fixed parameters and attains good
results also for unbalanced structures; on average PIF is the
best statistical significantly method. The critical dependence
of LOF to k is also highlighted in Fig. 5 where stability is
evaluated with respect to the rate of anomalies contamination.
As the percentage of anomalies varies, the optimal value of
k changes and it becomes difficult to guess a correct size
for the neighborhoods of normal points. This is particularly
evident in the unbalanced dataset stair3. As a consequence,
the performance of LOF has a great variability according to
the chosen k. Moreover, although IFOR and EIFOR achieve
more stable performances, they are not as stable as PIF. In
addition, there is a very apparent performance gap between
IFOR, EIFOR and PIF, since only the latter is able to deal
with the Tanimoto metric.

As real data are concerned, even if the high AUC values
shown in Tab. IIIa and IIIb suggest that anomaly detection on
these tasks is easier than in the synthetic case, the difference in
performance between IFOR, EIFOR (Euclidean distance) and
LOF, PIF (Tanimoto distance) remains evident.

Both LOF and PIF seem to be valid methods to perform
anomaly detection in the preference space, although on aver-
age the performance of PIF is better: the difference between
mean AUCs is always statistically in favor of PIF, except on
Tab. IIIb where the methods are statistically equivalent. In
addition, LOF must be tuned according to the expected size
of the neighborhoods of normal points while PIF has been
tested with fixed parameters.

VI. CONCLUSION AND FUTURE DIRECTIONS

We proposed PIF, a new algorithm for identifying anoma-
lous samples that do not conform to structured patterns.
This was done by wisely coupling – for the fist time –
two ingredients: (i) embedding input data in the preference

|X| |A| |S| |S1|, . . . , |Sk|

stair3 800 400 400 |S1| = 272, |Si| = 64 ∀i ∈ {2, 3}
stair4 400 200 200 |Si| = 50 ∀i ∈ {1, . . . , 4}
star5 500 250 250 |Si| = 50 ∀i ∈ {1, . . . , 5}
star11 1100 550 550 |Si| = 50 ∀i ∈ {1, . . . , 11}
circle3 1000 500 500 |S1| = 376, |Si| = 62 ∀i ∈ {2, 3}
circle4 400 200 200 |Si| = 50 ∀i ∈ {1, . . . , 4}
circle5 500 250 250 |Si| = 50 ∀i ∈ {1, . . . , 5}

(a) Synthetic datasets settings
Euclidean Preference binary Preference

circle 75 25 25
line 25 150 75
homography - 100 100
fundamental - 75 80

(b) Optimal k parameters of LOF

TABLE I: Experiment settings

(a) stair3, unbalanced structures (b) circle5, balanced structures

Fig. 5: AUCs achieved at various percentages of anomalies.

space and, (ii) applying isolation-based anomaly detection
tool (i.e., PI-FOREST) in the preference space. Our empirical
evaluation demonstrated that preference embedding increases
the separability between normal (structured) and anomalous
(not structured) data, leading to superior performance than
simply performing anomaly detection in the original space.
Most remarkably, the proposed anomaly-detection method
PI-FOREST outperforms all the alternatives where anomaly-
detection methods are straightforwardly plugged in the prefer-
ence space. This result highlights the effectiveness of nested
Voronoi tessellations in the isolation process. We believe there
are several research directions to investigate further, includ-
ing use of non-parametric models for preference embedding
(e.g., supervised trained models), and using PIF in real-
world defect-detection applications. Furthermore, given the
ability of PIF to deal with arbitrary distance metric, it could



Euclidean Preference binary Preference

LOF `2 IFOR EIFOR PIF `2 LOF jac IFOR EIFOR PIF jac LOF tani IFOR EIFOR PIF

stair3 0.737 0.925 0.920 0.918 0.904 0.885 0.864 0.958 0.815 0.923 0.925 0.971
stair4 0.814 0.889 0.874 0.871 0.849 0.855 0.860 0.941 0.881 0.912 0.908 0.952
star5 0.771 0.722 0.738 0.788 0.875 0.745 0.769 0.872 0.929 0.761 0.822 0.910
star11 0.671 0.728 0.727 0.738 0.830 0.739 0.741 0.771 0.900 0.738 0.774 0.796
circle3 0.761 0.698 0.732 0.779 0.719 0.842 0.854 0.900 0.731 0.854 0.891 0.930
circle4 0.640 0.641 0.665 0.679 0.827 0.686 0.699 0.860 0.906 0.667 0.720 0.897
circle5 0.543 0.569 0.570 0.633 0.699 0.597 0.617 0.672 0.823 0.573 0.593 0.780

Mean 0.705 0.739 0.747 0.772 0.815 0.764 0.772 0.853 0.855 0.775 0.805 0.891

TABLE II: Synthetic datasets AUCs

LOF tani IFOR EIFOR PIF

barrsmith 0.969 0.708 0.715 0.944
bonhall 0.918 0.969 0.967 0.949
bonython 0.978 0.679 0.691 0.954
elderhalla 0.999 0.925 0.909 0.999
elderhallb 0.986 0.924 0.943 0.999
hartley 0.963 0.749 0.793 0.989
johnsona 0.993 0.993 0.993 0.998
johnsonb 0.776 0.999 0.998 0.999
ladysymon 0.847 0.944 0.943 0.997
library 1.000 0.764 0.771 0.998
napiera 0.975 0.869 0.879 0.983
napierb 0.888 0.931 0.936 0.953
neem 0.985 0.896 0.906 0.996
nese 0.996 0.888 0.892 0.980
oldclassicswing 0.936 0.923 0.943 0.987
physics 0.670 0.858 0.787 1.000
sene 0.997 0.698 0.731 0.988
unihouse 0.785 0.998 0.998 0.999
unionhouse 0.987 0.639 0.664 0.968

Mean 0.929 0.861 0.866 0.983

(a) Homographies

LOF tani IFOR EIFOR PIF

biscuit 0.976 0.994 0.996 1.000
biscuitbook 1.000 0.987 0.988 1.000
biscuitbookbox 1.000 0.990 0.989 0.996
boardgame 0.962 0.400 0.304 0.949
book 0.996 1.000 1.000 1.000
breadcartoychips 0.989 0.978 0.971 0.976
breadcube 1.000 0.998 0.998 0.999
breadcubechips 0.999 0.985 0.985 0.998
breadtoy 0.984 0.999 0.998 0.999
breadtoycar 0.998 0.933 0.883 0.991
carchipscube 0.993 0.981 0.966 0.987
cube 0.999 0.970 0.982 0.999
cubebreadtoychips 0.990 0.962 0.958 0.989
cubechips 1.000 0.995 0.994 1.000
cubetoy 1.000 0.997 0.995 1.000
dinobooks 0.887 0.873 0.857 0.899
game 1.000 0.901 0.895 0.999
gamebiscuit 1.000 0.985 0.988 1.000
toycubecar 0.973 0.290 0.192 0.964

Mean 0.987 0.906 0.891 0.987

(b) Fundamental matrices

TABLE III: Real datasets AUCs

be interesting to apply PI-FOREST in spaces other than the
preference space.
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